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Apple (Malus spp.) is a widely grown and valuable fruit crop. Leaf shape is important for

flowering in apple and may also be an early indicator for other agriculturally valuable

traits. We examined 9,000 leaves from 869 unique apple accessions using linear

measurements and comprehensive morphometric techniques. We identified allometric

variation as the result of differing length-to-width aspect ratios between accessions

and species of apple. The allometric variation was due to variation in the width of the

leaf blade, not the length. Aspect ratio was highly correlated with the first principal

component (PC1) of morphometric variation quantified using elliptical Fourier descriptors

(EFDs) and persistent homology (PH). While the primary source of variation was aspect

ratio, subsequent PCs corresponded to complex shape variation not captured by linear

measurements. After linking the morphometric information with over 122,000 genome-

wide single nucleotide polymorphisms (SNPs), we found high SNP heritability values

even at later PCs, indicating that comprehensive morphometrics can capture complex,

heritable phenotypes. Thus, techniques such as EFDs and PH are capturing heritable

biological variation that would be missed using linear measurements alone.

Keywords: apple, leaf shape, morphometrics, elliptical Fourier descriptors, persistent homology,Malus domestica

INTRODUCTION

Apples (Malus spp.) are one of the world’s most widely grown fruit crops, with the third highest
global production quantity of over 84 million tons in 2014 (Food Agriculture Organization of the
United Nations, 2017). The shape and size of apple leaves can impact access to light, ultimately
influencing flower number and fruit quality (Wünsche and Lakso, 2000; Dennis, 2003). Apple
leaves are generally simple, with an elliptical-to-ovate shape. Previous studies in apple used linear
measurements, such as length and width, to quantify leaf shape (Liebhard et al., 2003; Bassett
et al., 2011). The length-to-width aspect ratio is a major source of variation in leaf shape. Differing
aspect ratios lead to a disproportionate increase or decrease in length relative to width, resulting in
allometric variation, in leaves (Gurevitch, 1992; Chitwood et al., 2013). While linear measurements
such as leaf length and width are useful, they fail to capture the full extent of leaf shape diversity.
Failing to measure leaf shape comprehensively also limits our ability to discern the total underlying
genetic contributions.

Eigenshape analysis is a traditional morphometric technique for comprehensively quantifying
the outline of a shape, using a number of semilandmarks placed at equal distances around
the shape (Lohmann, 1983). In comparison, Elliptical Fourier descriptors (EFD) analysis first
converts the outline to a chaincode, a lossless data compression method that encodes shape by
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a chain of numbers, in which each number indicates step-by-
stepmovements to reconstruct the pixels comprising the shape. A
Fourier decomposition is subsequently applied to the chaincode,
quantifying the shape as a harmonic series. EFDs have been
used extensively to quantify leaf shape in diverse species, such
as grape (Chitwood et al., 2014), tomato (Chitwood et al., 2012),
and Passiflora (Chitwood and Otoni, 2017). Previous work used
EFDs to assess apple fruit shape (Currie et al., 2000), but this
technique has not yet been applied to apple leaves. A newly
developed morphometric technique, persistent homology (PH),
provides another method for estimating leaf shape. PH, like
EFDs, is normalized to differences in size, but it is also orientation
invariant. PH treats the pixels of a contour as a 2D point cloud
before applying a neighbor density estimator to each pixel. A
series of annulus kernels of increasing radii is used to isolate
and smooth the contour densities. The number of connected
components is recorded as a function of density for each annulus,
resulting in a curve (a reduced version of persistent barcode) that
quantifies shape as topology. The topology-based PH approach
can also be applied to serrations and root architecture, allowing
a similar framework to be used across disparate plant shapes and
structures (Li et al., 2017a,b,c).

Comprehensively measuring leaf shape, using approaches
such as EFDs and PH, may reveal shape features associated with
fruit shape or quality traits. For example, recent work examining
persimmon (Diospyros kaki) found weak but significant
correlations between EFD measurements for leaf and fruit shape
(Maeda et al., 2018). Similarly, in previous work on apple, several
leaf traits such as area and perimeter were correlated with fruit
size (Khan et al., 2014). There are also several cases of unique
leaf characteristics providing an early marker for other genetic
differences in apple. For example, the gene underlying red fruit
flesh color may lead to anthocyanin accumulation in the leaves,
causing red foliage (Chagné et al., 2007; Espley et al., 2009) while
columnar tree architecture may be accompanied by an increase
in leaf number, area, weight per unit area and length-to-width
ratio (Talwara et al., 2013). Leaf pH has also been proposed as an
early indicator of low acid fruit (Visser and Verhaegh, 1978).

In addition to serving as early markers for other traits,
leaf shape and size may influence the amount of light a tree
receives, and light exposure is crucial for flowering in apple. Light
penetration results in higher levels of flowering, while leaf injury
or defoliation can reduce flowering (Dennis, 2003). Thinning
apple trees to a particular leaf-to-fruit ratio is a common
practice to attain optimal fruit color and size. Contrastingly,
trees with fewer fruit may increase vegetative growth and thus
leaf area (Wünsche et al., 2000). Clearly, there is an important
relationship between the leaves and the fruit of an apple tree,
and comprehensively quantifying the variation in leaf shape is a
crucial component to understanding this relationship.

Leaves are the main photosynthetic organs of apple, but the
genetic basis underlying their shape and size remains unknown.
Although there are examples of a single locus controlling major
variation in leaf shape (Kimura et al., 2008; Cartolano et al.,
2015; Andres et al., 2017), in most instances leaf shape appears
to be controlled by numerous small-effect loci (Langlade et al.,
2005; Tian et al., 2011; Chitwood et al., 2013). There are limited

examples of genomic analyses of leaf shape in apple. However, a
previous bi-parental linkage mapping study found two suggestive
quantitative trait loci for leaf size (Liebhard et al., 2003). Work
by Khan et al. (2014) measured several leaf traits such as
area, perimeter and circularity, in 158 apple accessions. The
study linked these measurements with 901 single nucleotide
polymorphisms (SNPs), but found no significant genotype-
phenotype relationships. Thus far, efforts have not been made to
estimate the genetic heritability of comprehensive morphometric
leaf phenotypes, such as those described using EFDs and PH.
It therefore remains unclear to what extent these methods are
capturing biologically meaningful, heritable variation.

To fully understand the genetic basis of leaf shape, it is
essential to include both linear and morphometric estimates
of shape. Decreasing sequencing costs and access to a large
and diverse germplasm collection allowed us to analyze
approximately 9,000 leaves from over 800 unique accessions
which we linked to over 122,000 genome-wide SNPs. We
present the first comprehensive analysis of leaf shape in apple,
revealing that both accessions and species show allometric
variation due to differences in the width of the leaf blade.
While the primary axis of variation in apple using EFDs
and PH is due to this allometric variation, we find high
SNP heritability values even at later principal components,
indicating that comprehensive estimates of shape capture
heritable variation which would be missed by linear estimates
alone.

MATERIALS AND METHODS

Sample Collection
Apple trees in Kentville, Nova Scotia, Canada were budded
onto M.9 rootstocks in spring 2012. In the fall, the trees
were uprooted and kept in cold storage until spring 2013,
when trees were planted in an incomplete block design (see
“REstricted Maximum Likelihood (REML)” below). Leaves from
over 900 trees were collected from August 24th to September
16th 2015. Ten mature leaves were collected from each tree
and efforts were made to collect leaves from portions of
the branch representing third year growth. No leaves were
collected from trees which had been heavily pruned due to
the presence of disease. Leaves were flattened and placed to
avoid touching, then scanned using Canon CanoScan (LiDE
220) Colour Image Scanners. Leaves were then dried for 48 h at
65◦C and weighed to estimate the total dry weight (g) for each
tree.

Morphometric Analyses
Leaf scans were converted into a separate binary image for each
leaf using custom ImageJ macros, which included the “make
binary” function (Abràmoff et al., 2004). Images were converted
to RGB .bmp files and a chain code analysis was performed
using SHAPE (Iwata and Ukai, 2002). The chain code was used
to calculate normalized elliptical Fourier descriptors (EFDs) in
SHAPE. The normalized EFDs were read into Momocs v1.1.5
(Bonhomme et al., 2014) in R (R Core Team, 2016) where
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harmonics B and C were removed to eliminate asymmetrical
variation in leaf shape.

The binary leaf images were also analyzed using PH (Li
et al., 2017c). To numerically estimate the shape of the leaves
using PH, we extracted the leaf contour using a 2D point cloud
(Figure 1A). After centering and normalizing the contour to its
centroid size, we used a Gaussian density estimator (Figure 1B),
which assigns high values (red) to pixels with many neighboring
pixels, and low values (blue) to pixels with fewer neighboring
pixels. We multiplied the density estimator by an annulus
kernel, or ring (Figure 1C), which emphasizes the shape in an
annulus at the centroid and is thus invariant to orientation
(Figure 1D). The resulting function can also be visualized from
the side view (Figures 1E,F). As we moved a plane from the
top to the bottom, we recorded the number of connected
components above the plane, forming a curve. With each new
component this value increased, and each time components were
merged, it decreased (Figure 1G). For each leaf we computed 16
curves corresponding to 16 expanding rings. For computational
purposes, each curve was divided into 500 numbers, ultimately
resulting in the shape of each leaf being represented by 8,000
(16∗500) values.

Only leaves for which both EFDs and PH shape estimations
were successfully calculated were included in subsequent
analyses. Additionally, only trees with 8–10 leaves were included,
as leaves were sometimes removed due to tears, folding, or
the absence of a petiole, which did not allow for accurate
quantification of shape. The final dataset consisted of 915 trees
with 8–10 leaves, which included 869 unique accessions and 8,995
leaves.

EFDs and PH values were averaged across leaves from an
individual tree. The contribution of EFD harmonics 1–15 to
the mean leaf shape across all trees was visualized using the
“hcontrib” function in the Momocs R package (Figure 2). To
allow for discrimination between accessions based on leaf shape,
principal component analysis (PCA) was performed using the
Momocs “PCA” function (Bonhomme et al., 2014) for EFDs, and
the “prcomp” function in R for PH values, which center but do
not scale the data. The resulting principal component (PC) values
were adjusted using REstrictedMaximumLikelihood (see below).
Subsequently, we identified the accession with the minimum and
maximum value along each of the first 5 PCs.

In addition to estimating the contour of the leaf using EFDs
and PH, we used several more metrics to describe the leaves.
Using ImageJ, we automated the measurement of leaf surface
area (cm2), length (cm) of the leaf and width (cm) of the leaf as
well as major (blade length) and minor (blade width) axes of the
best fitting ellipse—which excluded the petiole—through batch
processes (Abràmoff et al., 2004). Throughout the manuscript,
we use “major” when referring to the length of the leaf blade, and
“minor” when referencing the width of the leaf blade. We also
calculated the aspect ratio of the leaf, by dividing themajor axis by
the minor axis. Additionally, leaf mass per area was calculated for
780 trees where we possessed surface area data for all 10 leaves,
by calculating the ratio of dry weight to surface area (g/cm2).

While linear phenotypes were calculated as an average value
for a particular tree, we also estimated variance within a tree for

aspect ratio, length, width, major and minor axis, and surface
area. Variance was calculated as the coefficient of variation using
the “cv” function in the raster package (Hijmans, 2016) in R to
estimate within-tree variability in leaf size, which is indicated as
“var” throughout this manuscript.

REstricted Maximum Likelihood (REML)
Adjustment of Phenotype Data
The orchard sampled in this study is an incomplete block
design with 1 of 3 standards per grid. The standards, or
“control trees”—‘Honeycrisp,’ ‘SweeTango,’ and ‘Ambrosia’—are
replicated across the grid. Leaves from these trees were sampled
multiple times across the orchard which allowed us to correct
for positional effects. Each phenotype was adjusted using a
REstricted Maximum Likelihood (REML) model which resulted
in one adjusted value per accession, even when multiple trees
were measured. The impact of row grid (rGrid), column grid
(cGrid), and rGrid × cGrid effects were adjusted for using the
following REML model:

phenotype ∼ accession+ ( 1 | rGrid)+ ( 1 | cGrid)

+ ( 1 | cGrid : rGrid)

We fit a linear mixed-effects model via REML using the “lmer”
function in the lme4 package in R (Bates et al., 2015) and then
calculated the least squares means using the “lsmeans” function
in the lsmeans R package (Lenth, 2016).

Thus, while the initial phenotype data were collected for
915 trees, following REML adjustment, one value remained per
unique accession, resulting in 869 accessions. REML-adjustment
was applied directly to all size, weight and variance estimates. For
PH and EFDs, we applied the REML following PCA and thus the
percent contribution for each PCwas calculated using unadjusted
values. The adjusted data for all 24 phenotypes are included in
Table S1.

Phenomic Analyses
The correlation between leaf phenotypes was calculated using
Pearson’s correlation and p-values were Bonferroni-corrected
for multiple comparisons. The resulting heatmap was visualized
using the “geom_tile” function in ggplot2 in R (Wickham, 2009).
Next, we examined the leaves for allometry using the “SMA”
function in the smartr R package (Warton et al., 2012) to estimate
if the slope between the log-transformed minor and major axis
differed from 1.

Accessions were labeled as either Malus × domestica Borkh.
or Malus sieversii Lebed. based on information provided by the
United States Department of Agriculture (USDA) Germplasm
Resources Information Network website (https://npgsweb.ars-
grin.gov) (Table S2). We used a Mann-Whitney U-test to test
if any phenotypes differed between species and Bonferroni-
corrected all p-values for multiple comparisons.

Genomic Analyses
DNA was extracted using commercial extraction kits.
Genotyping-by-sequencing (GBS) libraries were prepared
using ApeKI and PstI-EcoT221I restriction enzymes according
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FIGURE 1 | Visualization of persistent homology technique for annulus kernel 7. Binary images were converted into a 2D point cloud (A) which was then normalized

using a Gaussian density estimator (B). For each leaf, 16 annulus kernels were used. Annulus kernel 7, indicated in purple (C) is used as an example for this

visualization. The density estimator is multiplied by ring 7 (D). The function can also be visualized from the side view (E,F). As a plane moves from top to bottom, the

number of connected components is recorded along the curve (G). Below (G) are five visualizations of curves that are represented as red vertical dotted lines in (G).
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FIGURE 2 | Contribution of elliptical Fourier descriptor harmonics to leaf shape. The leaf shapes depicted are the mean leaf shapes based on all 915 trees. Harmonics

1–15 are represented on the x-axis and each harmonic is multiplied by the amplification factor on the y-axis to visualize their contribution to mean leaf shape. An

amplification factor of 0 indicates the removal of the harmonic; a factor of 1 results in the normal shape; and values above 1 exaggerate effects to better visualize the

harmonic’s contribution to the final shape.

to Elshire et al. (2011). GBS libraries were sequenced using
Illumina Hi-Seq 2000 technology. Reads which failed Illumina’s
“chastity filter” were removed from raw fastq files. Remaining
reads were aligned to the Malus × domestica v1.0 pseudo
haplotype reference sequence (Velasco et al., 2010) using
the Burrows-Wheeler aligner tool v0.7.12 (Li and Durbin,
2009) and the Tassel version 5 pipeline (Glaubitz et al., 2014).
Tassel parameters included a minKmerL of 30, mnQS of 20,
mxKmerNum of 50000000 and batchSize of 20. The kmerlength
was set to 82 for ApeKI and 89 for PstI-EcoT22I based on themax
barcode size. The minMAF for the DiscoverySNPCallerPluginV2
was set to 0.01. All other default parameters were used.
Non-biallelic sites and indels were removed using VCFtools
v.0.1.14 (Danecek et al., 2011). Variant Call Format (VCF)
files for both enzymes were then merged using a custom perl
script, preferentially keeping SNPs called by PstI-EcoT22I
at overlapping sites, since those sites tended to have higher
coverage.

Missing genotypes were imputed using LinkImputeR v0.9
(Money et al., 2017) with global thresholds of 0.01 for minor
allele frequency (MAF) and 0.70 for missingness. We examined
depths of 3–8 and selected a case for imputation with a max
position/sample missingness of 0.70, a minimum depth of 5, and
an imputation accuracy of 94.9%. The VCF was converted to a
genotype table using PLINK v1.07 (Purcell et al., 2007; Purcell,
2009).

Of the 869 accessions assessed in this study, 816 had genomic
data following imputation and filtering and were included in
downstream analyses. The resulting genotype table consisted of
816 accessions and 197,565 SNPs. Subsequently, a 0.05 MAF
filter was applied using PLINK, after which 128,132 SNPs
remained. SNPs with more than 90% heterozygous genotypes
were removed. The final genotype table consisted of 816 samples
and 122,596 SNPs.

Prior to performing PCA, SNPs were pruned for linkage
disequilibrium (LD) using PLINK. We considered a window of
10 SNPs, removing one SNP from a pair if R2 > 0.5, then shifting
the window by 3 SNPs and repeating (PLINK command: indep-
pairwise 10 3 0.5). This resulted in a set of 75,973 SNPs for
816 accessions. PCA was performed on the LD-pruned genome-
wide SNPs using “prcomp” in R. The first 2 genomic PCs were
visualized using ggplot2 in R (Wickham, 2009).

We performed a genome-wide association study (GWAS)
using the mixed linear model in Tassel (version 5) for each
phenotype, adjusting for relatedness among individuals using a
kinship matrix as well as the first 3 PCs for population structure
(Bradbury et al., 2007; Zhang et al., 2010). The threshold for
significance was calculated using simpleM (Gao et al., 2008, 2010)
which estimates the number of PCs needed to explain 0.995 of the
variance, or the number of independent SNPs. The inferred Meff
used to calculate the significance threshold was 91,667 SNPs.

We searched the regions surrounding any significant GWAS
SNPs using the Genome Database for Rosaceae GBrowse tool
for Malus × domestica v1.0 p genome (Jung et al., 2014). We
used a window of ±5,000 bp (10 kb) surrounding the significant
SNP to check for genes, and when identified, we used the basic
local alignment search tool (BLAST) from NCBI to search for
the mRNA sequence and reported the result with the max score
(Altschul et al., 1990).

Genomic prediction was performed using the “x.val” function
in the R package PopVar (Mohammadi et al., 2015). The rrBLUP
model was selected and 5-fold (nFold = 5) cross-validation
was repeated 3 times (nFold.reps = 3) with no further filtering
(min.maf = 0) from the set of 122,596 SNPs used for GWAS. All
other default parameters were used. In addition to performing
genomic prediction on the main 24 phenotypes examined in this
study, we performed genomic prediction on all 40 PCs for EFDs
and on the first 40 PCs for PH values. We also used the “rnorm”
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function in R to generate 1,000 random phenotypes with a mean
of 0 and a standard deviation of 1, and performed genomic
prediction using these random phenotypes to obtain the range of
genomic prediction accuracies one can expect at random. Lastly,
we used genome-wide complex trait analysis (GCTA) v.1.26.0
which estimates the genetic relationships between individuals
based on genome-wide SNPs and uses this information to
calculate the variance explained by these SNPs. The ratio of
additive genetic variation to phenotypic variance is used to
calculate SNP heritability (h2) of a trait (Yang et al., 2011).
We used GCTA to estimate heritability for each phenotype,
including the first 40 PCs for EFD and PH. We also estimated
the correlation between genomic prediction accuracy (r) and SNP
heritability (h2) using a Pearson’s correlation.

RESULTS

Variation in Apple Leaf Shape
We examined 24 phenotypes related to apple leaf shape and size
including length, width, surface area, dry weight, leaf mass per
area, within-tree variance, and overall shape estimated using PCs
derived from EFD and PH data (see Materials and Methods and
Figures 1–2). The distribution and raw values for each phenotype
are provided (Figure S1, Table S1).

To visualize the primary axes of morphometric variation, we
chose a representative leaf from accessions with the minimum
and maximum values along the first 5 PCs for EFDs and PH
(Figure 3A). The accessions with extreme values along PC1
for both methods are similar. In fact, ‘Binet Rouge’ has the
lowest value along PC1 for EFD and PH, with the axis clearly
representing a decrease in the length-to-width (aspect) ratio.
The annulus kernels most strongly contributing to PH PC1
(Figure S2) provide further evidence that this PC captures
variation in aspect ratio. Variation in leaf shape captured by
higher-order PCs is more complex and cryptic, and is thus not
captured using linear measurements alone. In addition, while the
primary axis of variation (PC1) using EFDs and PH may explain
similar aspects of leaf morphology, the morphospaces resulting
from the two techniques differ (Figure 3B).

Next, we examined the correlation between all measured traits
(Table S3). By assessing the correlation of PCs resulting from
a classical morphometric technique such as EFDs with a novel,
topology-based morphometric approach like PH, we reveal
how complementary the methods are (Figure 4, Figure S3).
While there is a highly significant correlation between PC1
for both methods (R2 = 0.949, p < 1 × 10−15), later PCs
are often not significantly correlated, with the most notable
exception being EFD PC2 and PH PC3 (R2 = 0.432, p <

1 × 10−15), although several other PCs also show weak
correlations. Thus, while the primary axis of variation (PC1) is
consistent and highly correlated between methods, each method
captures distinct aspects of leaf morphology in subsequent
PCs.

Many of the leaf phenotypes show a strong correlation
with each other (Figure 4). In particular, aspect ratio is highly
correlated with PH PC1 (r = −0.878, p < 1 × 10−15), EFD PC1
(r = −0.855, p < 1 × 10−15) and minor axis (leaf blade width)

(r =−0.734, p < 1× 10−15). The correlation between the minor
axis of a leaf and surface area (r = 0.939, p < 1 × 10−15) is
higher than the correlation between the major axis (blade length)
and surface area (r = 0.810, p < 1 × 10−15). As expected, leaf
surface area is also highly correlated with average leaf dry weight
(r = 0.934, p < 1 × 10−15), indicating that larger leaves are
heavier.

Allometry in Apple Leaves
The high correlation between aspect ratio and PC1 for both
EFD and PH methods indicates that length-to-width ratio is the
primary source of variation in apple leaf shape. If there is an
allometric relationship between the minor and major axis, and
thus, the length and width of a leaf do not increase at equal rates,
a slope significantly differing from 1 is expected. We find that the
slope between the two measurements is significantly >1 (95% CI
= 1.506–1.678, R2 = 0.343, p < 1 × 10−15), indicating that the
minor axis increases at a greater rate than the major axis. While
there is no significant correlation between the major axis (blade
length) and EFD PC1 (R2 = 0.001, p= 1) or PH PC1 (R2 = 0.002,
p =1), there is a significant correlation for the minor axis (blade
width) and EFD PC1 (R2 = 0.541, p < 1 × 10−15) and PH PC1
(R2 = 0.573, p < 1 × 10−15) (Figure 5). As PC1 explains 80.23%
of the variation in the leaf shape for EFDs, and 62.20% for PH, it
is apparent that the width of the leaf blade, and not length, is the
major source of leaf shape variation in apple. In fact, the aspect
ratio, calculated as the ratio of the major axis to minor axis, is
even more strongly correlated with EFD and PH PC1, with an R2

of 0.732 for EFD PC1 (p < 1× 10−15) and an R2 of 0.771 for PH
PC1 (p < 1 × 10−15). Given the significant correlation between
EFD PC1 and PH PC1 (Table S3, Figure S3), it is not surprising
that aspect ratio is highly correlated with both.

In addition to variation between accessions, we investigated
differences in leaf shape and size between species by comparing
M. domestica, the domesticated apple, with its primary
progenitor species, M. sieversii (Table S4). PCA of the genome-
wide SNP data reveals a primary axis of genetic variation that
separates M. domestica and M. sieversii, although separation is
incomplete (Figure 6A). The major axis (p= 0.975) of the leaves
does not differ between species (Figure 6B). However, the minor
axis (p= 4× 10−4) ofM. domestica leaves are significantly larger
than M. sieversii (Figure 6C) and the aspect ratio (p = 0.023) is
significantly less (Figure 6D). Thus, there is allometric variation
both within (Figure 5) and between (Figure 6)Malus species.

The Genetic Basis of Leaf Shape in Apple
GWAS of the 24 leaf phenotypes examined in this study yielded
few significant results (Figure S4). We identified 70 significant
SNPs representing 5 phenotypes which are reported in Table S5.
Manhattan plots for 4 phenotypes which include 69 of the
70 significant SNPs are shown in Figure 7. We examined the
regions surrounding significant SNPs for candidate genes using
the GBrowse tool (Table S6; Jung et al., 2014). We searched
within a ±5,000 bp window, which should capture any linked
causal variation given the rapid LD decay observed in a diverse
collection of apples that is largely replicated in the germplasm
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FIGURE 3 | Examples of leaf shape across PCs derived from EFDs and PH. Binary images of leaves from accessions with minimum and maximum values along PCs

1–5 for EFD and PH estimates. PCs were calculated using averages estimated across 8–10 leaves but only a single representative leaf is displayed. PCs were

REML-adjusted based on tree position in the orchard. The accession name is also listed (A). Visualization of PC1 vs. PC2 for EFD and PH data. Accessions with

minimum and maximum values along PC1 and PC2 are indicated (B).
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FIGURE 4 | Correlations among leaf phenotypes. Values above the diagonal are colored according to the Pearson’s correlation coefficient, and those below the

diagonal indicate Bonferroni-corrected p-values. The box enclosed by the dotted lines indicates comparisons between phenotypes captured by comprehensive

morphometric analyses.

studied here (Migicovsky et al., 2016). However, no strong
candidate genes were identified.

While GWAS examines the genome for single, large-effect
loci, genomic prediction estimates our ability to predict a
phenotype using genome-wide marker data. We complimented
our GWAS with genomic prediction and observed prediction
accuracies (r) ranging from−0.10 to 0.52 (Table S7, Figure S5A).
Aspect ratio is the primary source of variation in leaf shape
(Figure 5C) and it was also the leaf measurement that had the
highest genomic prediction accuracy (0.52). Other phenotypes
highly correlated with aspect ratio, such as leaf width (0.51),
minor axis (0.49), EFD PC1 (0.48), and PH PC1 (0.47), all had
relatively high prediction accuracies. PH PC3 (0.51) was also
among the most well-predicted using genetic data.

Similarly, estimates of SNP heritability (h2) calculated using
GCTA (Yang et al., 2011) ranged from 0 to 0.75, with the highest
heritability observed for aspect ratio (0.75) followed by leaf
width (0.71), EFD PC1 (0.71), minor axis (0.69), and PH PC1
(0.65) (Figure 8, Table S8). Heritability estimates were highly

correlated with genomic prediction accuracies (Figure S5B, R2

= 0.936, p < 1 × 10−15), which is not surprising given that both
techniques involve predicting a phenotype from genome-wide
SNP data. None of the phenotypes measuring variance within
the 8–10 leaves sampled had heritability estimates significantly
different from 0.

While the primary axis of variation in leaf shape detected
by EFDs and PH is aspect ratio, we were also interested
in determining if higher-order PCs, which capture variation
not readily visible to the eye, are extracting information
that is biologically meaningful. Using genomic prediction and
heritability estimates, we found evidence of a genetic basis for
these complex “hidden phenotypes,” which are unmeasurable
using linear techniques. For example, the heritability of
phenotypes such as PH PC6 (0.48), PH PC9 (0.35), PH PC10
(0.33), and EFD PC9 (0.33) is similar to traditionally measured
phenotypes such as leaf length (0.44) and leaf mass per area
(0.40). While higher PCs may have relatively high heritability
values, after a certain point the values (± standard error)
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FIGURE 5 | Correlation between the primary axis of variation (PC1) captured using EFD and PH values and leaf shape measures. EFD PC1 is plotted against the

major axis (length of leaf blade) (A), minor axis (width of leaf blade) (B) and aspect ratio (ratio of length-to-width of blade) (C). PH PC1 is plotted against the same

measures in (D–F). The percent variances explained by PC1, prior to REML-adjustment, is shown in parentheses. All p-values are Bonferonni-corrected based on the

number of comparisons in Figure 4. A regression line from a linear model with a shaded 95% confidence interval is also shown.

FIGURE 6 | Genetic and phenotypic comparison of the domesticated apple and its wild ancestor. PCs 1 and 2 were derived from 75,973 genome-wide SNPs and

samples are labeled as M. domestica (purple), M. sieversii (green) or unknown (gray) (A). M. domestica leaves do not differ from M. sieversii leaves along the major

axis (B), but they have a larger minor axis (C) and aspect ratio (D). P-values reported are Bonferroni-corrected based on multiple comparisons (Table S4). Species

labels are based on USDA classification.
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FIGURE 7 | Manhattan plots of GWAS results for traits of interest. Results are shown for EFD PC3, PH PC4, leaf mass specific area, and width variance. P-values are

log-transformed. The horizontal dotted line represents the simpleM-corrected significance threshold. Chromosome R indicates SNPs found on contigs unanchored to

the reference genome. All remaining Manhattan plots are included in Figure S4.

overlap with 0, indicating that they are not heritable. The
cutoff for morphometric PCs with a heritable genetic basis is
approximately PC17. These results suggest that by making use of
morphometric techniques that measure shape comprehensively,
we are describing biologically meaningful, heritable phenotypes
which would be missed by simple measurements such as leaf
length, width and surface area.

DISCUSSION

Leaves play a crucial role in the growth and development of apple
trees. To elucidate the genetic basis of variation in apple leaves, we
quantified leaf shape using traditional linear measurements and
comprehensive morphometric techniques. Our work offers the
first comparison between the novel topology-based technique,
PH, and EFDs, which we find are complementary but distinct
methods. For both methods, PC1 was highly correlated with the
aspect ratio, providing evidence that the primary axis of variation
in apple leaf shape can be captured using linear measurements.
The minor axis, or width of the leaf blade, was also highly
correlated with PC1, while themajor axis was not. Thus, variation
in the aspect ratio is due to variation in the leaf blade width,

not length. Leaf surface area was also more highly correlated
with the minor axis than the major axis. Variation in leaf
width is therefore essential to both the size and shape of apple
leaves, similar to previous work in tomato (Schwarz and Kläring,
2001).

The width of the leaf blade is not only the source of variation
between apple accessions, but also betweenM. domestica andM.
sieversii. The presence of the same allometric relationship within
and between species suggests that the genetic loci controlling
intra-specific leaf shape variation within M. domestica may be
the same as those controlling the divergence in leaf shape
observed between the domesticated apple and its wild ancestor.
For example, in birds, while PC1 and PC2 of bill shape explain
the majority of variation across 2,000 species, they are also
consistently associated with the variation between higher taxa
(possessing >20 species) (Cooney et al., 2017). Our results
suggest that the increase in leaf size since domestication has not
been an overall increase in leaf size but specifically an increase
in blade width leading to larger leaves with a reduced length-to-
width ratio.

Our work provides evidence that allometry is the primary
source of morphometric variation in apple leaves. These findings
are consistent with work reported in other species such as tomato,
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FIGURE 8 | SNP heritability (h2) of leaf phenotypes. Values represent the additive genetic variance (Vg) divided by the phenotypic variance (Vp) with a standard error

as calculated using GCTA (Yang et al., 2011). The dotted lines are found at h2 = 0, indicating that none of the phenotypic variance is explained by the genetic data.

The proportion of the total phenotypic variance explained by each PC is indicated in parentheses.

where the length-to-width ratio was the major source of shape
variation (>40%) (Chitwood et al., 2013). Similarly, work in
Passiflora and Vitis species performed using two independent
morphometric techniques identified allometric variation as the
primary source of variation in PC1, which explained at least
40% of the variation in leaf shape (Chitwood and Otoni, 2017;
Klein et al., 2017). Thus, linear measurements—in particular
aspect ratio—are an important source of information when
describing leaf shape. However, linear measurements are not
sufficient for capturing the full spectrum of diversity. In our
study, PC1 accounts for 62.20% or 80.23% of the variation,
depending on the technique used. By simply quantifying apple
leaves using linear measurements, we would miss nearly 40%
of the variation in some cases. While PC1 is highly correlated
with aspect ratio, later PCs represent orthogonal variation that
can likely only be captured through morphometric techniques
such as EFDs and PH. Therefore, to fully quantify variation
in leaf shape, comprehensive morphometric techniques are
essential.

To discern the genetic contributions to leaf shape, we paired
both linear and comprehensive morphometric estimates of
shape with genome-wide SNP data. There are examples of

a simple genetic basis of leaf shape, such as in Arabidopsis
thaliana, where the ANGUSTIFOLIA and ROTUNDIFOLIA3
independently control leaf width and length (Tsuge et al.,
1996). In barley, transcript levels of BFL1 limit leaf width,
with overexpression resulting in narrower leaves and loss of
BFL1 function resulting in a reduced length-to-width ratio (Jöst
et al., 2016). Using GWAS, we found no robust associations
with shape phenotypes, observed a low ratio of significant
SNPs to the number of phenotypes examined, and found
that significant SNPs were sparsely distributed across multiple
chromosomes. In addition, the small number of significant SNPs
are likely spurious associations due to poor correction for cryptic
relatedness, as evidenced by the QQ plots (Figure S4). These
observations suggest that leaf shape is likely polygenic and
controlled by a large number of small effect loci, such as in
tomato and maize (Tian et al., 2011; Chitwood et al., 2013). In
comparison, GWAS on apple fruit phenotypes, such as color and
firmness, have revealed strong associations resulting from a small
number of large effect loci (Migicovsky et al., 2016). However,
it is possible that large effect loci were missed in the present
study, either because of poor reference genome assembly or
inadequate marker density due to rapid LD decay. Improvements
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in genome assembly and increases in marker number will aid
to further reveal the genetic architecture of apple leaf shape
variation.

Lastly, we investigated the degree to which leaf shape is
heritable and can be predicted using genome-wide SNP data.
We find that the genomic prediction accuracies of the primary
axes of leaf shape variation are similar to previously reported
estimates for fruit width (0.48) and length (0.47), indicating
that leaf shape is as heritable as fruit shape (Migicovsky et al.,
2016). In combination with few significant GWAS results,
high SNP heritability estimates support a polygenic basis for
leaf shape. Aspect ratio was identified as the primary source
of variation in leaf shape in apple and had the highest
genomic prediction and heritability estimates, indicating that
there is a genetic, heritable basis for allometric variation
in apple. Further, although the first 5 PCs for both EFDs
and PH explain the majority of the variation in apple leaf
shape, most PCs from 1 to 14 have heritability estimates
above 0.20 and may still represent crucial differences in
leaf shape from an ecological, evolutionary, or agricultural
perspective. Thus, while our ability to detect the primary
axes of variation in leaf shape using genome-wide data is
expected, our observation that higher level PCs are also heritable
confirms that these comprehensive morphometric methods
capture biologically meaningful variation that would be missed
by linear measurements alone.

CONCLUSIONS

It is clear from our work that variation in apple leaf shape
and size are under genetic control. Further, high genomic
prediction and heritability estimates for higher morphometric
PCs indicate that techniques such as EFDs and PH are
capturing heritable biological variation that will be missed if
researchers restrict leaf shape estimates to linear measurements.
Additionally, a better understanding of the variation in leaf
shape and size in apple could have important implications for
canopy management, where light exposure is crucial to flowering
(Dennis, 2003). Ultimately, through the first in-depth study of
leaf shape in apple, we uncover allometry between accessions
and species, as well as evidence that complex and heritable
phenotypes can be captured using comprehensive morphometric
techniques.
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Figure S1 | Distribution of leaf phenotypes following REML-adjustment. N is

equal to the total number of unique samples.

Figure S2 | Visualization of contributions of each annulus kernel to PH PC1.

Annulus kernels 6, 7 and 16 contribute the most to leaf shape according to PH

PC1. The placement of each annulus kernel is visualized on a leaf representing the

minimum and maximum value along PC1 (A). The contribution to PC1 of each of

the 16 annulus kernels is also shown (B).

Figure S3 | Comparison of morphometric EFD and PH PCs 1 to 5. Correlation

between first 5 PCs, estimated using Pearson’s correlation, including R2 and

Bonferroni corrected p-values based on Figure 4, Table S3.

Figure S4 | GWAS results for all 24 leaf phenotypes examined. Manhattan and

QQ plots are included for each phenotype. The QQ-plot shows both the results of

a naive GWAS (Pearson correlation) and the results from applying the mixed

model. P-values are log-transformed and the threshold for significance is

simpleM-corrected and indicated by a horizontal dotted line. Chromosome R

indicates SNPs found on contigs unanchored to the reference genome.

Figure S5 | Genomic prediction accuracy (r) (A) and correlation between

genomic prediction results and SNP heritability estimates (h2) for all leaf

phenotypes (B). Genomic prediction accuracies represent the average correlation

(± standard deviation) between observed and predicted phenotype scores, based

on 5-fold cross-validation with 3 iterations. Dotted red lines indicate the minimum

and maximum prediction average accuracy (r) achieved using 1,000 randomly

generated phenotypes. The percent variance explained by each PC was

calculated prior to REML-adjustment and is indicated in parentheses.

Table S1 | All leaf phenotypes assessed in apple, following REML-adjustment.

Accessions are identified by their unique “apple id.” Species information for these

accessions is available in Table S2.

Table S2 | Species (M. domestica, M. sieversii, or unknown) for all accessions

assessed in this study.

Table S3 | Correlation between leaf phenotypes as well as Bonferroni-adjusted

p-values. Pearson’s product moment correlation coefficients are reported. These

results are visualized in Figure 2.

Table S4 | Comparison of leaf phenotypes between accessions based on

species. Bonferroni-adjusted p-values resulting from a Mann-Whitney U-test

estimating the difference between accessions based on species

(M. domestica/M. sieversii) for the leaf phenotypes examined.

Table S5 | Positional information for significant GWAS results. Additional

information about significant SNPs are included such as p-value, marker R2,

minor and major allele, minor and major effect and MAF.

Table S6 | Genes found within ±5 kb of SNPs with significant GWAS

associations. Results are listed according to the Genome Database for Rosaceae

GBrowse (accessed January 27, 2017). Overlapping mRNA, length, contig, GO

category, GO term accession, GO term name, InterPro Term, InterPro Description,

and NCBI sequence with Max Score when BLASTed using NCBI are reported.
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Table S7 | Genomic prediction accuracies (r) for leaf phenotypes. r_avg

represents the average correlation between observed and predicted phenotype

scores, based on 5-fold cross-validation with 3 iterations. The standard deviation

(r_sd) is also reported. These results are visualized in Figure S5A.

Table S8 | SNP heritability (h2) for leaf phenotypes. h2 represents the

genetic variance (Vg) divided by the phenotypic variance (Vp). The

standard error (SE) is also reported. These results are visualized in

Figure 8.
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