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ABSTRACT
In this paper, we present a case study for the design, programming
and usage of a reconfigurable system-on-chip, MorphoSys, which
is targeted at computation-intensive applications. This 2-million
transistor design combines a reconfigurable array of cells with a
RISC processor core and a high bandwidth memory interface. The
system architecture, software tools including a scheduler for
reconfigurable systems, and performance analysis (with
impressive speedups) for target applications are described.
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1. INTRODUCTION
Reconfigurable computing represents an intermediate approach
between the extremes of Application Specific Integrated Circuits
(ASICs) and general-purpose processors. Reconfigurable systems
combine a reconfigurable-hardware unit with a software-
programmable processor. These systems allow customization of
the reconfigurable processing unit, which helps meet real-time
computational requirements of an application.  Designing a
reconfigurable system and its software environment for enhanced
performance over a wide range of applications is a challenging
research problem.

This paper describes the MorphoSys reconfigurable computing
system-on-chip that has been designed for multimedia
applications having data-parallelism, and high throughput
constraints, such as video compression. Section 2 presents the
MorphoSys architecture, while Section 3 compares it with related
work. The design methodology is illustrated in Section 4, and
programming and CAD tools are presented in Section 5. Section 6
refers to application performance analysis, and Section 7 lists the
conclusions.

2. ARCHITECTURE OVERVIEW
The MorphoSys architecture (Figure 1) includes a reconfigurable
processing unit (RC Array), a general-purpose (core) processor
(TinyRISC) and a high bandwidth memory interface implemented
as a single chip. Based on the data-parallel nature of target
applications, the reconfigurable component is organized as an
SIMD array of coarse-grain Reconfigurable Cells (RCs) to handle
computation-intensive operations. The TinyRISC performs
sequential processing and controls operation of the RC Array. The
Context Memory stores the RC Array configuration program,
while the Frame Buffer is a specialized streaming buffer. The
DMA controller performs data transfers between external memory
and the RC Array. These components are shown in Figure 1.

2.1 MorphoSys Components
RC Array: This is an array of processing elements called
reconfigurable cells (RCs). Considering that many target
applications (video compression, etc.) tend to be processed in
clusters of 8x8 data elements, the RC Array has 64 cells in a 2-D
matrix (Figure 2). This organization helps exploit the inherent
parallelism of an application for greater throughput.
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Figure 1: MorphoSys M1 System-on-Chip

The RC Array follows the SIMD model. All RCs in the same row
or column share the configuration (context word) as illustrated in
Figure 2. But, each RC operates on different data. Sharing the
context word across a row or column is useful for data-parallel
applications. A reconfigurable three-layer inter-connection
network facilitates fast data exchange between the RCs.

Each RC incorporates a 28-bit ALU, a 16x12 bit multiplier, a shift
unit, 16-input and 8-input multiplexers and a 16-bit register file.
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A 32-bit context register stores the current context word and
provides configuration signals for the RC functional units.

TinyRISC control processor: Most target applications involve
some sequential processing. Therefore, the TinyRISC, a RISC
processor [1], is integrated in the system. This processor has a 4-
stage pipeline with a 32-bit ALU, register file and an on-chip data
cache. The TinyRISC coordinates system operation using specific
instructions (Table 1) that have been added to the TinyRISC ISA
to activate the DMA Controller to transfer data, and provide
control signals to Frame Buffer and RC Array for executing
applications.
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Figure 2: Context Memory (shaded) and Context Propagation
to 8x8 RC Array

Context Memory: The Context Memory (CM) stores the
configuration program (context words) for the RC Array. It is
organized into 2 context blocks, with each block containing 8
context sets. Each context set has 16 context words (Figure 2).

The focus of the RC Array is on data-parallel applications, which
exhibit regularity. Therefore, the context word is broadcast on a
row or column basis. The context words from the CM row block
are broadcast along the rows, while context words from the
column block are broadcast along the columns. Each block has
eight context sets and each context set is associated with a specific
row (or column) of the RC Array. The context word from the
context set is broadcast to each of the eight RCs in the
corresponding row (or column). Thus, all RCs in a row (or
column) share a context word and perform the same operations.

The CM provides a context word to the Context Register in each
RC every clock cycle. The data provided to the RC is also
registered, to prevent setup or hold time violations. The context
word specifies ALU function, control bits for input multiplexers,
the registers to store the result of an operation, and the direction
and amount of shift applied to output. Corresponding to either
row/column broadcast of the context word, a set of eight context
words can specify the complete configuration (context plane) for
the RC Array. As there are sixteen context words in a context set,
up to sixteen context planes may be simultaneously resident in
each of the two CM blocks. The CM supports dynamic
reconfiguration, therefore when the context needs to be changed,
it can be updated concurrently with RC Array execution. Dynamic

reconfiguration enables the reduction of effective reconfiguration
time to zero.

Frame Buffer and DMA Controller: The high parallelism of RC
Array will be ineffective if the memory interface is unable to
transfer data at an adequate rate. Hence, an innovative memory
interface consisting of the Frame Buffer (FB) and DMA controller
is incorporated in the system.

The FB serves as a data cache for the RC Array. This buffer has
two sets, each of which further consists of two banks of memory.
Each bank has 64x8 bytes of storage. The double-set FB enables
overlapping of computation with data transfers. Data from one set
is used for computation, while fresh data is loaded into the second
set. This makes memory accesses transparent to the RC Array and
greatly benefits MorphoSys performance. The Frame Buffer is
byte-addressable, and can provide any 8 consecutive data bytes
from each of the 2 banks in a set to the RC array in one cycle.

Interconnection Network: The RC Array has a hierarchical
interconnection network with three layers. The basic network
connects all RCs in a 2-D mesh providing nearest neighbor
connections. The second layer provides complete row and column
connectivity within a quadrant (a 4x4 RC group). Figure 3 depicts
these interconnection layers for a quadrant. Each RC can access
data from any other RC in its row or column in the same quadrant.
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Figure 3: RC Array Quadrant Interconnection Network

At the global level, buses called express lanes run across rows as
well as columns. These lanes supply data from any one cell (out of
four) in a row (or column) of a quadrant to other cells in adjacent
quadrant but same row (or column). Thus, up to four cells in a
row (or column) may access the output value of any one of four
cells in the same row (or column) of an adjacent quadrant.

Data bus: A 128-bit bus from the Frame Buffer to the RC array
columns provides two 8-bit operands to each of the 8 column
RCs. Eight cycles are required to load the entire RC array.

Context bus: The context words in the Context Memory are
distributed to each RC through the row and column context buses.

2.2 System Control Mechanism
The RC Array is configured through context words. Each context
word specifies an instruction opcode for the RC. Context words
are stored in the Context Memory. All RCs in the same
row/column share the same context word but each RC operates on
different data (SIMD model). The TinyRISC controls system
execution by initiating CM and FB loads using DMA controller,



and providing address and control signals to FB, CM and RC
Array through the new TinyRISC instructions (listed in Table 1).

LDCTXT Load context words to Context Memory.

LDFB
(STFB)

Load data from main memory to Frame Buffer (FB)
(store data from FB to main memory)

CBCAST Execute RC Array through context broadcast

SBCB Execute RC Array with context broadcast, and also
provide 64-bit data from one FB bank to RC Array

DBCBC Execute RC Array with column context broadcast,
provide 128-bit data from both FB banks

DBCBR Execute RC Array with row context broadcast,
provide 128-bit data from both FB banks

WFB Write data back to FB (in address from register file)

RCRISC Write one 16-bit data from RC Array to TinyRISC

Table 1 : New TinyRISC Instructions

During operation of the MorphoSys system for executing specific
applications (e.g. multimedia, encryption) on the RC Array, the
instructions in Table 1 are used as follows to:

a) Load context words into Context Memory from main memory

b) Load computation data into the first set of Frame Buffer
(FB) from external main memory

c) Execute RC Array with context broadcast and concurrently
load data into second FB set

d) Execute RC Array, concurrently store data from first FB set
to memory, and load new data into FB set.

3. RELATED WORK
There are two major classes of reconfigurable systems: fine-grain
(processing units have datapath widths of a few bits such as
DPGA [20]) and coarse-grain (processing elements have data-
paths of 8 bits or more). Examples of the latter are PADDI [3],
MATRIX [13], RaPiD [5], and REMARC [14]. MorphoSys is
compared with these processors, since it is also a coarse-grain
architecture. Many of the previous designs are only in software,
whereas MorphoSys has been developed from software down to
the physical (chip) level.

PADDI [3] has a distinct VLIW nature because each EXU uses a
53-bit instruction word (which may be different for different
EXUs), whereas MorphoSys exhibits SIMD nature since each
column/row performs the same function. PADDI has static
reconfiguration but MorphoSys has dynamic reconfiguration.
MorphoSys has more context planes (32) than PADDI (eight).

MATRIX [13] proposes the design of a basic reconfigurable unit
(BFU). This 8-bit BFU unifies resources used for instruction
storage with resources needed for computation and data storage,
and assumes a multi-level interconnection network. But the
complete system organization based on the BFU is not presented,
while MorphoSys is a well-defined system. This leaves many
system-level issues such as integration with host processor,
memory interface, I/O bandwidth, and performance unknown.

The RaPiD [5] design is organized as a linear array of
reconfigurable processing units, which is not appropriate for
block-based applications (for example, 2-D processing). Due to its

organization, the potential applications of RaPiD are those of a
systolic nature or applications that can be easily pipelined. A
complete system implementation is not described.

REMARC [14] is similar to MorphoSys and targets the same class
of applications. However, it has static reconfiguration, lacks a
direct interface to external memory, and data transfers cannot be
overlapped with computation. Performance figures for
applications (e.g. 2-D IDCT) reflect that REMARC is
significantly slower than MorphoSys (Section 6).

In summary, the major features of MorphoSys are:

Integrated model: MorphoSys is a complete system-on-a-chip
except for main memory.

Multiple contexts on-chip: MorphoSys has multiple contexts with
dynamic and single-cycle reconfiguration.

On-chip general-purpose processor: This processor, which is also
the system controller, enables efficient execution of complex
applications that include both serial and parallel tasks.

Innovative memory interface: In contrast to other reconfigurable
systems, MorphoSys provides overlap of data transfers with
computation through a two-set data buffer.

4. IMPLEMENTATION METHODOLOGY
MorphoSys components are implemented [11] in 0.35 micron
technology with four metal layers using the twin approaches of
custom design and standard cell design. The components on the
critical path (e.g. RC) or those with a regular structure (e.g.
Context Memory, and Frame Buffer) are custom designed so that
they may be optimized for delay and area. This enables
MorphoSys to be designed for operation at 100 MHz. The control
intensive components (TinyRISC and DMA controller) are
designed using Synopsys logic synthesis and Mentor Graphics
layout synthesis tools. The complete design has about two million
transistors and occupies an area of 170 sq. mm (Figure 4).

The top two metal layers are reserved for power routing and
routing between the component blocks. Only two layers are used
for routing within a component such as the RC. Custom designs
are verified using switch-level and transistor-level simulators. For
synthesized blocks, gate-level, switch-level and transistor-level
simulators are used for functional and timing verification.
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Figure 4: MorphoSys M1 Chip Layout



Global Routing: This network consists of the RC Array
interconnections, data/context buses, clock tree, and the power
supply network. Automatic routing tools were unable to maintain
the regularity of the global routing. Hence, this routing layout was
accomplished using a combination of procedural and custom
design approach. More implementation details are in [11].

The clock tree within the RC Array was designed as a custom
layout using an H tree pattern. Buffers were then inserted in paths
to other components of MorphoSys (e.g. TinyRISC, DMAC, and
Frame Buffer) to minimize the skew. The width of metal layers
used for power was based on the technology electron-migration
rules and worst-case power consumption. The M1 chip taped out
in Dec. 1999.

5. PROGRAMMING AND CAD TOOLS
For each application, two different kinds of programs are
required. These are the RC Array configuration program (context
words) and the TinyRISC instruction program.

Context Generation: This is done using an assembler-parser,
mLoad. An assembly format has been specified for the context
words, and the user defines the application computations in this
syntax, either directly or through a GUI, mView (Section 5.2).
mLoad converts this assembly code into the context program.

TinyRISC program: This is generated through a C language
compiler, mcc, developed using the SUIF compiler environment
[19]. Currently, the compiler produces code for the application
tasks to be executed on the TinyRISC. Special TinyRISC
instructions (Table 1) are then added by the designer to execute
the context for the RC Array. Figure 5 depicts the software
environment with its different components explained below.

5.1 MorphoSys Simulators
Two different simulators have been developed to analyze
application mapping and performance issues for different
applications, such as Motion Estimation (video compression),
Discrete Cosine Transform (DCT), and Automatic Target
Recognition (ATR). Both simulators use configuration program,
TinyRISC program and the input data to execute applications.
mULATE is a C++ simulator while MorphoSim is the VHDL-
based simulator. The former enables simulation with breakpoints,
and displays the contents of the RC Array, FB, CM, and data
cache.

5.2 RC Array GUI: mVIEW
A graphical user interface, mView, has been developed for the RC
Array. It may be used to generate the configuration program for an
application or to simulate an application and its data movements
and functions across the RC Array. The user provides input for
each application in terms of specification of operations and data
sources or destinations for each RC. mView then generates context
code for the RC Array. It operates in one of two modes:
programming mode or simulation mode.

In the programming mode, mView generates the application
context file based on the user input and specifications. For the
simulation mode, mView takes an application context file, or
VHDL simulation output file and displays the state of each RC as
the application is executed per cycle. mView is an efficient tool for
verifying or debugging simulation runs.

5.3 Code Generation for MorphoSys
As part of an ongoing effort to develop tools for automatic
mapping and code generation for MorphoSys, the next step is to
enhance the mcc compiler to support inline assembly code for
application kernels that are mapped to the RC Array. The
application code will thus constitute of TinyRISC functions and
RC Array functions. The RC Array functions will be coded using
functions representing the special TinyRISC instructions and the
corresponding context code will be provided in a configuration
library. From this code with inline assembly functions, the mcc
compiler will generate TinyRISC object code. At an advanced
level, MorphoSys would perform online profiling and dynamic
adjustment of reconfiguration profile for enhanced performance.
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Figure 5: Software Environment for MorphoSys

5.4 Application Kernel Scheduling: mSched
Problem Overview: A typical complex application consists of a
sequence of tasks that are executed repeatedly. These tasks or
kernels are well defined, and can be executed independently after
the previous tasks in the execution flow-graph. Once the context
program corresponding to the kernels has been determined as
explained earlier, the kernel execution and data movements have
to be scheduled for minimizing total execution time.

This scheduling problem for reconfigurable computing is a new
and significant issue. Previous approaches for scheduling tasks in
reconfigurable computing are high-level synthesis technique
extensions for specific features of reconfigurable systems
[6,10,15,21]. However, these fail to consider unique aspects of
reconfigurable computing, such as multiple contexts, data
memories, and variable reconfiguration time.

We have developed an algorithm (implemented as mSched) to
schedule the kernels for optimized performance within the
architectural constraints of MorphoSys. This assumes that the
kernel timing is available, the application flow graph is known,
the kernel configuration does not exceed the context memory size
and two kernels can not be executed simultaneously.

An application example is MPEG, a video compression standard,
whose encoder kernel sequence is given in Figure 6a. The kernels
are Motion Estimation (ME), Motion Compensation (MC),



Discrete Cosine Transform (DCT), Quantization (Q), Inverse
Quant. (IQ), Inv. DCT (IDCT), and Inv.Motion Comp. (IMC).

Although each application imposes some constraints to the
execution order (DFG), it is possible to have different execution
sequences that result in different total execution times. Also,
partitioning of the execution graph may improve the final result.
Thus, it is not possible to know the best solution in advance. It is
necessary to explore the design space, using the three criteria of:
Context reloading (minimize), Data reuse (maximize) and
Overlap of computation and data transfers (maximize).

MPEG
sequence:

ME MC DCT Q IQ IDCT IMC

6 blocks block block block block block block

8 4 21 6 6 21 4#  of contexts:

Granularity
of comp.:

a.

ME MC
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b.

6

IQ

6

IMC

c.
6x396

MC DCT QME

396

IDCT

396

6

IMC

6

IQ

6

Figure 6: a) MPEG sequence, b) possible schedule of image
frame and c) alternative schedule

Proposed Solution: We find the actual schedule to obtain the total
execution time for a given application using a two-pronged
approach of partitioning the DFG and then scheduling each
partition. Our algorithm [12] uses the application data-flow graph,
a kernel library (Figure 5) for computation time, input and output
data sizes, for each kernel and utilizes system parameters for the
MorphoSys architecture such as Frame Buffer size, access times,
context load time, and bus width. We use a backtracking
technique to support the search process in both tasks. This is
guided by a heuristic that tries to explore best candidates first.
Bounding heuristics are employed to prune the solution space
early on.

Explo-
ration #

Cover LEE ∑ LB(Pi)
cycles

Executi
on time

1 {ME,MC,...,IMC} Ø 5110 NNS

2 {ME} {MC,...,IMC} {1} 4941 4941

15 {ME} {MC,DCT,Q}
{IQ,IDCT,IMC}

{1,2,5} 5080 NNS

30 {ME,..,Q}{IQ,...,IMC} {2,5} 5036 NNS

Not
explored

{ME}{MC}{DCT}{Q
}{IQ}{IDCT}{IMC}

{1,2,3,4
,5,6,7}

5806

Note: Lower Bound = 4894 cc.; NNS= not necessary to schedule.

Table 2: Experimental data for MPEG

Experiments and Results: The MPEG encoder application is used
to demonstrate our algorithm. Table 2 lists some of the best
results generated during the search. One solution that was not
explored (due to search space pruning) is included to illustrate the
validity of the bounding check.

The bounding check reduces the search space from 64 different
covers to only 31. The best solution is obtained in the second
iteration, but the partitioning process continues because the lower
bound is not reached. The execution time for second partitioning
(obtained after detailed scheduling) is lower than lower bound for
all other solutions. Detailed scheduling is not performed for other
covers, as no other solution can have lesser execution time.

6. PERFORMANCE ANALYSIS
Several target applications have been mapped to MorphoSys [11].
Performance analysis for some applications is given below.

6.1 Video Compression: Motion Estimation
Motion Estimation is the most computation-intensive task in the
MPEG standard [9] for video compression. MorphoSys
performance is compared with ASIC architectures implemented in
[7], [22] using full search block matching for matching one 8x8
reference block against its search area in Table 3, after accounting
for the clock rate and technology. The result shows that
MorphoSys can deliver similar performance compared to ASICs
and an order of magnitude speedup over Pentium MMX [8].

MorphoSys ASIC[7] ASIC[22] Pentium Mmx

Cycles 1020 581 1159 29000

Time 10.2 µs 2.9 µs 5.8 µs 145 µs

Table 3: Performance Comparison for Motion Estimation

6.2 Discrete Cosine Transform (DCT)
The forward and inverse DCT are used in MPEG encoders and
decoders. Table 4 compares MorphoSys performance for 2-D
DCT/IDCT on a 8x8 block with Remarc [14] reconfigurable
system (64 processors), V830R/AV [2] superscalar multimedia
processor, and optimized Pentium MMX instructions [8].

MorphoSys Remarc V830R/AV Pentium Mmx

Cycles 37 54 201 240

 T (ns) 370 540 1005 1200

Table 4: Performance Comparison for DCT/IDCT

6.3 Automatic Target Recognition (ATR)
Automatic Target Recognition (ATR) is the machine function of
detecting, classifying, recognizing, and identifying an object. The
ATR processing model [4] developed at Sandia National Labs has
been mapped to MorphoSys. The system parameters used in [4]
are used for comparison of MorphoSys with the fine-grain FPGA-
based ATR systems [4] and [16] in Table 5. MorphoSys
outperforms Mojave and Splash 2 by a factor of 2 for performing
ATR on an image (one template pair). ATR computations are
inherently fine-grain, and map very well to FPGA-based systems
of [4] and [16]. Therefore, MorphoSys performance enhancement
is significant.  Even though the FPGA-based systems have a lower
operating frequency, this frequency is relatively fast for FPGAs.

System MorphoSys Mojave [4] Splash 2 [16]

Time 6 ms 24 ms 12 ms

Table 5: ATR Performance Comparison

6.4 Data Encryption (IDE Algorithm)
Data security is a key application domain. The International Data
Encryption Algorithm (IDEA) [18] is a typical example of this



application class. IDEA involves processing of plain-text data in
64-bit blocks with a 128-bit encryption/decryption key. Table 6
depicts the performance of MorphoSys, as compared to a software
implementation on a Pentium II (after scaling for clock speed of
233 MHz assuming same fabrication technology). MorphoSys
even excels the HiPCrypto[17] ASIC designed for the IDEA
algorithm.

System MorphoSys HiPCrypto Pentium II

Cycles for 64 bit data 4.5 8 153

Table 6: Performance Comparison for IDE Algorithm

7. CONCLUSIONS
This paper represents a case study of the unique MorphoSys
system with its architecture, implementation, programming and
scheduling aspects. A software environment has been developed
and a novel application kernel scheduling algorithm has been
formulated. MorphoSys has been shown to achieve performance
levels similar to ASICs for the target applications. We are
working to design a suite of CAD tools to provide advanced
application mapping features. Future work involves enhancing the
functionality and reconfigurability of MorphoSys for widening the
range of target applications.
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