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Introduction 
The aim of this paper is to provide a set of functions for performing distance-based morphometric 
analysis in R (R Core Team 2013). No previous knowledge of R is necessary. The functions 
includes data import from Excel or tab-delimited text files, descriptive statistics for populations and 
taxa, histograms of characters, correlation matrices of characters, cluster analysis, principal 
component analysis (PCA), linear discriminant analysis (LDA) with permutation tests, 
classificatory discriminant analysis and k-nearest neighbour classification. The use of the functions 
is demonstrated on a sample data set. Detailed descriptions of the functions and examples of the 
scripts for producing graphics are included in this manual.  

Experienced R users are welcome to modify the functions according to their specific needs. I 
would also be grateful for any comments, improvements of the functions or suggestions for 
additions in future versions. 

Citation 
Koutecký P. (2014): MorphoTools: a set of R functions for morphometric analysis. – Plant 
Systematics and Evolution xxx: xxx-xxx; doi 10.1007/s00606-014-1153-2 

Files 
Four files can be downloaded from http://botanika.prf.jcu.cz/systematics/morphotools.html: 
•  this manual (MorphoTools.pdf) 
•  function definitions (MorphoTools.R) – this file can be directly used as source code in R 
•  sample data (SamplaData.txt) – tab-delimited text file containing morphological measurements 

(see the ‘Sample data’ paragraph for details) 
•  working protocol (protocol.R) – plain text file (.R extension, but can be opened as a .txt file) 

that includes all commands used in the analysis of the sample data (including graphics); the 
commands can be easily copied to R, or the whole protocol can be opened in specialised 
software such as RStudio (see Installation) and directly edited and run. 

Sample data 
The sample data include portions of data sets from previously published studies by Koutecký (2007) 
and Koutecký et al. (2012): 25 morphological characters (see the cited studies for details) of the 
vegetative (stems and leaves) and reproductive structures (capitula and achenes) of three diploid 
species of the Centaurea phrygia complex: C. phrygia L. s.str. (abbreviated “ph”), C. 
pseudophrygia C.A.Mey. (“ps”) and C. stenolepis A.Kern. (“st”). Moreover, a fourth group includes 
the putative hybrid C. pseudophrygia × C. stenolepis (“hybr”). The data represent 8, 12, 7 and 6 
populations for each group, respectively, and 20 individuals per population, with one exception in 
which only 12 individuals were available. All morphological characters are either quantitative 
(direct measurements, counts or ratios) or binary (two characters states or presence/absence). In 
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four characters of achenes, there are missing data because fruits were not available in all 
individuals. In two populations of C. stenolepis fruits were completely missing. In total, the data set 
includes 652 individuals (453 complete) from 33 populations (31 complete). 

Styles used in this manual 
function The function described in the following paragraph. 
function(parameters) Examples of R commands and functions calls. Anything underlined 

must be replaced by a specific value/name. 
results Names of R functions; results and values printed on screen 

Installation 
R and additional packages can be downloaded from http://www.r-project.org/. Follow the 
instructions on the R web page. All functions described here were tested with R version 3.0.2.  

In working with R, it is possible to directly use the console version you will install. 
However, other software can communicate with R and handle your data in more conveniently (if 
software operated by text commands can be called convenient at all). I recommend RStudio 
(http://www.rstudio.com/), which, among other features, allows for the easy editing of R scripts and 
the running of selected parts of the script, highlights the syntax, and provides an instant list of 
objects and functions in the current environment. 

Apart from the base R installation, download and install the following additional packages: 
ade4, class, permut, scatterplot3d, vegan. The packages are most easily downloaded and installed 
from the menu Packages – Install packages. 

After installing R and the packages, set the working directory (menu File – Change dir…), 
copy the file with the function definitions (MorphoTools.R) to the working directory and either read 
it as a source using the menu File – Source R code… or type: 
source(“FILE”) (replace FILE with the case-sensitive file name, and be careful not to omit the 

quotes; if the file is not in the R working directory, you must enter the whole 
path, e.g., “D:/R/FILE.R”) 

Introductory notes (for inexperienced R users) 

There are many text books / web pages that can be used to learn basics of the R environment, such 
as Getting started with R (Beckerman & Petchey 2012), quite comprehensive The R book (Crawley 
2013) or Quick-R webpage (http://www.statmethods.net/) and manuals on R homepage 
(http://cran.r-project.org/manuals.html). Here, I highlight only a few points that are necessary to 
know for using MorhoTools functions. 
•  R is case sensitive (including the names of objects, functions and function parameters) 
•  Text values in function calls (such as external files to be imported, names of taxa to be analysed, 

etc.) must be enclosed in double quotes (e.g., “taxon”). Function parameters are enclosed in 
parentheses, while individual parameters are usually separated by commas. Be careful not to 
omit any of these symbols; missing quotes etc. are frequent causes of non-functioning code and 
error warnings. 

•  Note that R (unlike Windows) will not ask for confirmation if you command it to delete or 
overwrite something, and these operations are generally irreversible. 

•  Most of the functions return new data as results (such as ordination scores, coefficients for 
variables, etc.). You must assign the results to a new object using <- .  When not assigned, the 
results are displayed on a screen and lost. The commands therefore usually have this structure: 
RESULTS<-FUNCTION(data,parameters) 

•  R has useful help for built-in functions. To see the help file, simply type a question mark 
followed by the function name: 
?FUNCTION 
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•  To see an entire whole object, simply write its name. (However, this procedure is not useful for 
large datasets.) 

•  To open table-like objects (data frames, matrices) in a separate window: 
View(data)   # note the capital V in the function name 

•  Editing objects (good for functions; to edit data tables, it is usually easier to open data in an 
external editor and import the new version into R): 
fix(data) 

•  List of objects and tidying up. To see all objects in the current R environment (i.e., all objects 
and functions you have imported or created): 
ls() 

•  To delete object(s), use the command rm: 
rm(object1,object2,object3,…) 

•  To delete everything in the current R environment: 
rm(list=ls()) 

Introductory notes on graphics (for inexperienced R users) 
•  R can produce many types of graphs. However, making graphics through text commands is a 

rather creative process, and the settings of graphical parameters (such as symbol size or colour, 
axis labels, etc.) must be adjusted to fit optimally with the given data. Therefore, graphics 
production cannot be automated as a function. Instead, examples of figures for the sample data 
and the annotated codes used to generate them are included in this manual. 

•  Many graphical parameters can be set within graph-making functions such as plot. Parameters 
may also be set using par, but such settings are permanent and will influence all further plots. 
Therefore, the default settings should be stored in a list and restored from it, if necessary. 
To see all parameters: 
par(no.readonly=T) 

To save the default values into a list: 
default.pars<-par(no.readonly=T) 

To set the values of parameters: 
par(fg=”blue”) # changing the default (foreground) colour to blue 
par(fg=”blue”,lty=2) # changing the default colour and the default line type to dashed 

To restore the default values: 
par(default.pars) 

•  The parameter mar controls the width of graph margins (bottom, left, top, right). The default 
values are mar=c(5, 4, 4, 2)+0.1, which allows for the display of axis labels, as well as 
the main title and subtitle. Depending on the size of your screen and graphics window, it may be 
useful to adjust these margins. (For example, I rarely use the main title and therefore usually 
reduce the free space at the upper margin.) 
par(mar=c(4.5,4.5,1,2)) 

•  Graphics are easily exported from R in vector formats as metafiles (.emf) or PostScript files 
(.eps or .ps) or PDFs. Direct export to raster formats (.bmp, .jpg, .png, .tif) is also possible 
through the menu Save as… (appears when the window of the graphical device is active), but 
the resulting images are low resolution.  

•  To obtain high-quality raster images, it is necessary to wrap the script (one or more lines) used 
to produce the image inside additional two lines, one starting the special graphical device and 
the other closing it after the image is produced. There are four functions, bmp, jpeg, png, 
tiff with the same parameters: file name, width and height, specification of units for width 
and height (px [pixels], in [inches], cm, mm), and resolution in dpi. Note that there are also 
additional parameters, but the default settings usually work well. 
png("File.png",width=15,height=12,units="cm",res=600) 

plot... 
axis... 

dev.off() 
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Data structure 
All functions expect the following data structure: (i) one individual is recorded per row; (ii) the first 
three columns include unique identifiers for individuals, populations and taxa/groups, respectively; 
(iii) starting from the fourth column, any number of quantitative or binary morphological characters 
may be recorded; (iv) the first row contains variable names. Any column names can be used 
(avoiding spaces and special characters); the first three columns will be renamed to “ID”, 
”Population” and “Taxon” by the import functions, respectively, because these names are expected 
by the other functions. If mixed populations containing more taxa are present, they must be divided 
into (sub)populations with unique names (i.e., each population consists of a single taxon). The 
columns ID, Population and Taxon are expected to be factors (categorial variables) and not numeric 
variables; if numbers are used, they will be converted to factor levels by the import functions. If 
there are missing values in the data, they must be represented as empty cells or by the text NA (not 
quoted), not zero, space or any other character. 

An example of tab-delimited data file: 

ID Population Taxon SN SF ST SFT ... 
RTE1 RTE hybr 35.2 23.6 58.8 0.40 ... 
RTE2 RTE hybr 39.0 11.8 50.8 0.23 ... 
... 
PREL31 PREL st 47.2 9.1 56.3 0.16 ... 
PREL32 PREL st 57.8 4.0 61.8 0.06 ... 
... 

Typical workflow and functions 

Data import and control 

read.morfodata and read.morfodata2 import data from tab-delimited text files; import from 
Excel spreadsheets through the clipboard in Windows also usually works well. These functions are 
basically the read.delim and read.delim2 functions, respectively, but they also rename the 
first three columns and convert them into factors if necessary. The two functions differ only in the 
decimal separator used: dot (default in R) is expected by the former, comma by the latter. The 
functions have only one parameter: the name of the input file. 
data<-read.morfodata(“file.txt”) 
data<-read.morfodata2(“clipboard”) 

To check the data structure: 
str(data) 

This command displays the object’s class (should be “data.frame”), dimensions, and a list of its 
columns and their types. The first three columns should be “factor”; check the number of levels 
(populations, taxa) in the second and third columns. All other columns should be “num” (numeric) 
or “int” (integer). The presence of a “factor” among the characters indicates a problem with data 
import (check the decimal used) or in the data themselves (some values may not have been 
recognised as numbers, causing the column to be imported as text). 

Brief summary of the data: 
summary(data) 

This command shows the levels and number of observations within the first 6 levels for factors and 
the min-max values, quartiles and medians for numeric variables. Checking the minimum and 
maximum values often helps to trace errors in data (missing decimal points, etc.). If there are 
missing data (NAs in R terminology) in some variable, the number of observations with missing 
data is indicated. Note that with other types of objects (such as computation results), the generic 
function summary provides different outputs specific to the type (class in R terminology) of the 
object. 
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Other useful functions: 
dim(data) # dimensions (no. of rows/columns) of table-like objects 
length(data) # number of values in a vector or a list 
levels(data$Population) # list of populations 
levels(data$Taxon) # list of taxa 
colnames(data) # list of column names (characters) 

Basic data manipulation 

To make a copy of an object (of any type): 
newdata<-data 

Replacing an object with a new/modified one of the same name – for example, the results of 
functions that omit incomplete rows or modify some columns: 
data<-FUNCTION(data) 

Selecting part of the data. The easiest way to select part of a data frame is the use of subscripts, 
which take the form DATA[ROWS,COLUMS]. For example, DATA[2,3] selects the value on the 
second row in the third column. To access all rows of the third column, leave the rows parameter 
empty: DATA[,3] (Note that comma between rows and columns is still present!) Similarly, to 
select the second row with the values of all columns, use DATA[2,]. The range of numbers can be 
entered using a colon: DATA[1:30,] selects the values for the rows 1 to 30 and all columns. It is 
possible to use logical conditions (typically for rows); however, it is necessary to wrap the 
command using the with function (which has two parameters, the data and the expression to be 
evaluated; thus, in our case DATA must be repeated twice). Named elements (such as columns in a 
data frame) can also be referred using the symbol $, for example DATA$Taxon. 

Note that after selecting part of the data, all factor levels from the original data are retained 
(for ID, Population and Taxon), even if there are no rows for a certain level in the new data. This 
situation can cause problems in further calculations. The droplevels function should be 
employed to remove the unused factor levels. 
To select all data for a specified taxon (note the operator = = , “equals”) 
newdata<-with(data,data[Taxon=="taxon",])     
newdata<-droplevels(newdata) 

For more taxa (any number), use the operator |  (logical OR) 
newdata<-with(data,data[Taxon=="taxon1"|Taxon=="taxon2",]) 
newdata<-droplevels(newdata) 

Removing part of the data is similar to selecting, only using negative indices. For example,  
DATA[-(1:30),] will remove the first 30 rows from the data frame and DATA[,-4] will remove 
the 4th column. To remove selected rows/columns that are not adjacent, use the function c() inside 
the subscript. For example, DATA[,-c(5,7,10)] removes the 5th, 7th and 10th columns. 
To remove all data for a specified taxon (note the operator != , “not equal”) 
newdata<-with(data,data[Taxon!="taxon",]) 
newdata<-droplevels(newdata) 

For more taxa (any number), use the operator & (logical AND) 
newdata<-with(data,data[Taxon!="taxon1" & Taxon!="taxon2",]) 
newdata<-droplevels(newdata) 

Missing data 

MorphoTools functions can handle missing data; the omission of rows with missing data is usually 
included in the functions. To remove rows with missing data manually, use na.omit followed by 
droplevels to remove unused levels of the factors. 
newdata<-na.omit(data) 
newdata<-droplevels(newdata) 



 6 

 

na.meansubst substitutes missing data using the average value of the respective character in the 
respective population. Generally, most of the multivariate analyses require a full data matrix. The 
preferred approach is to reduce the data set to complete rows only (i.e. perform the casewise 
deletion of missing data, as is incorporated within most of the functions) or to remove characters for 
which there are missing values (if they are concentrated in a few characters). The use of mean 
substitution, which introduces values that are not present in the original data, is justified only if (i) 
there are relatively few missing values, (ii) these missing values are scattered throughout many 
characters (each character includes only a few missing values) and (iii) removing all individuals or 
all characters with missing data would unacceptably reduce the data set. 
newdata<-na.meansubst(data) 

Exporting results 

export.res can be used to export spreadsheet-like results (of the data frame or matrix classes) for 
most of the following functions; it will create a tab-delimited text file or copy the data to a clipboard 
(but the latter operation usually fails for large data). This function is only a wrapper for the 
write.table function with some parameters set differently from the default. The function has 
two parameters: the name of the data to be exported and the name of the file to be created; 
“clipboard” is the default for the latter. 
export.res(data) # makes export to the clipboard 
export.res(data,”clipboard”) # the same 
export.res(data,”file.txt”) # makes export to a file 

Descriptive statistics 

descr.all, descr.tax and descr.pop calculate the descriptive statistics of each character in 
the whole dataset, each taxon and each population, respectively. The following statistics are 
included: number of observations, mean, standard deviation, and the percentiles 0% (minimum), 
5%, 25% (lower quartile), 50% (median), 75% (upper quartile), 95% and 100% (maximum). The 
5% and 95% percentiles are included because the trimmed range (without the most extreme 10% of 
values) is sometimes used in taxa descriptions, determination keys, etc. The results are formatted as 
data frames and can be exported using the export.res function. 
results1<-descr.all(data) 
results2<-descr.tax(data) 
results3<-descr.pop(data) 

Box-and-whisker plots for characters (for example, the character ML from the sample data):  
boxplot(ML~Taxon,data=indiv.orig,cex.axis=1,cex.lab=1,range=1.5,col="grey", 

xlab="Taxon",ylab="ML: length of appendages (mm)", 
pars=list(whisklty=1,boxwex=0.7)) 

The command can take one line or be divided into several 
lines; the only rules are that the parameters must be 
comma-separated and each line must end with a hard stop 
(enter). The parameters are as follows:  
� The formula y~x defines the character to be plotted 

(y-axis) and grouping variable (x-axis), from data. 
� cex (character expansion) – size of axis values 

(cex.axis) and axis labels (cex.lab) relative to 
the default. 

� range – length of whiskers (not more than range 
times the interquartile range); values more distant 
from the lower/upper quartiles are drawn as outliers; 
range=0 spreads the whiskers from the min to the 
max. 

� col (colour) – fill of the boxes, which can be set 
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separately for each box using col=c(“col”,”col”,…); to obtain a list of all colours use the 
command colors(); there are also a default 8 colours that can be coded by number instead of 
name (quotes are then not used): 1: black, 2: red, 3: green, 4: blue, 5: cyan, 6: magenta, 7: 
yellow, 8: grey. 

� xlab and ylab – axis labels; similarly, main and sub define the graph main title (above the 
graph) and subtitle (under x-axis label), here, both are suppressed by the default settings 
main=”” and sub=””.  

� Names of groups on the x-axis are taken from the data (levels in the grouping variable) but can 
be overridden by the parameter names=c(“name”,“name”,...). 

� Other parameters are listed in pars 
– whislty – line type for whiskers (1: solid; 2: dashed [default], 3: dotted, etc.) 
– boxwex – relative width of boxes 

Note that many other graphical parameters can be listed within pars (above, only those I consider 
important for the particular graph are used); see the help for all the parameters. 

Population means 

popul.means calculates the average value for each character in each population, with the 
pairwise deletion of missing data. The resulting data frame has populations as rows, and the first 
three columns are Population, Taxon, and N (the number of complete rows for each population). 
The data frame can be exported using the export.res function. 
newdata<-popul.means(data) 

If there are many missing data, some population may be represented only by a few complete 
individuals. In such a case, average values can be biased, and it can be useful to omit these 
populations from further analyses in which the populations are used as the operational taxonomic 
units (OTUs). To omit populations with less than x complete observations: 
newdata<-with(data,data[!N<x,]) 
newdata<-droplevels(newdata) 

popul.otu converts the data frame with the population means so that the populations can be used 
as OTUs in the multivariate analyses. This data frame must have the same structure as that of the 
individual data; i.e., the first three columns must be ID, Population and Taxon; in this case, ID 
contains the same data as Population. Note that when using populations as OTUs they are handled 
with the same weight in all analyses (disregarding population size, within-population variation, etc.) 
newdata<-popul.otu(data) 

Distribution of characters, transformations 

charhist and charhist.t plot histograms and the expected normal distribution of 
quantitative (not binary) characters, the former for the whole dataset and the latter for a specified 
taxon. These functions show graphs for the characters sequentially and the next graph is initiated by 
pressing enter or clicking the mouse. The purpose of these functions is to examine normality of 
distribution, which is expected by some analyses (Pearson correlation coefficients, PCA, 
discriminant analyses). More precisely, within-group distribution should be normal, and thus one-
taxon histograms are more relevant. 
histchar(data) 
histchar.t(data,”taxon”) 

If a normality test of some character is needed, the Shapiro-Wilk test may be performed with the 
following R base function: 
shapiro.test(data$character) 

For a selected taxon only: 
x<-with(data,data[Taxon==”taxon”]) 
shapiro.test(x$character) 

Several other normality tests are available in the package nortest (Gross & Ligges 2012). 
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The characters that deviate most from the normal distribution can be transformed. If both 
individuals and populations are used as OTUs, both data sets should be transformed in the same 
way. Logarithmic, both natural (log) and common (log10), and square root (sqrt) 
transformations are the most often used. If there are zero values in the data, it is necessary to add 
some constant (for common logarithmic transformation, a value of 1 is often used, as this value 
becomes 0 after transformation). In case of frequency (percentage) data (such as portion of certain 
type of trichomes among all trichomes), sometimes no transformation is needed (if the span of 
values is not too big and the values are generally between 30 and 70%) or simple arcsin (angular) 
transformation is often sufficient. Examples are as follows: 
data$character<-sqrt(data$character) 
data$character<-log(data$character) 
data$character<-log10(data$character+1) 
data$character<-log10(10*data$character+1) 
data$character<-asin(sqrt(data$character/100)) 

data$character<-asin(sqrt(data$character)) # as above for frequency from 0 to 1, not % 

Using the same character names on the left side as on the right side, the function will overwrite 
the original values. Using different names, the function creates a new column and retains the 
original values in the data. I prefer the former option. In this case, it is useful to rename the 
transformed characters. First, use the colnames function to see the (ordered) column names. 
Alternatively, you can find the index of the requested character using which. Then, rename the 
columns using subscripts to colnames with the position (index) of each character. For example, 
renaming Char2 and Char5 from data: 
colnames(data) 
[1] “ID” “Population” “Taxon” “Char1” “Char2” “Char3” “Char4” 
[8] “Char5” “Char6” 

or 
which(colnames(data)=="Char2") 
[1] 5 

which(colnames(data)=="Char5") 
[1] 8 

then 
colnames(data)[c(5,8)] <- c(“logChar2”,”logChar5”) 

The transformed data can be exported using the export.res function. 

Correlations of characters 

cormat.p and cormat.s calculate the matrices of the correlation coefficients of the characters 
(Pearson’s and Spearman’s, respectively). The results are formatted as data frames to allow export 
with the export.res function. Highly correlated characters (r > |0.95|) should not be used in 
principal component analysis and especially in discriminant analysis. Significance tests are not 
performed, as they are usually unnecessary for morphometric analysis. 
results<-cormat.p(data) 
results<-cormat.s(data) 

If significance tests are needed, they can be computed using the cor.test function from the R 
base installation (which tests pairs of characters) or the corr.test function from the psych 
package (Rewelle 2013) (matrix of significance tests). 
cor.test(data$char1,data$char2,method="pearson") 
cor.test(data$char1,data$char2,method="spearman") 
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Cluster analysis 

clust.upgma and clust.ward perform agglomerative hierarchical clustering based on 
Euclidean distances using UPGMA and Ward’s method, respectively. Both functions include 
(i) standardisation of the characters to a zero mean and a unit standard deviation using the scale 
function, (ii) calculation of the distance matrix using the dist function and (iii) clustering using the 
function hclust. Typically, populations are used as OTUs. 
results<-clust.upgma(data) 
results<-clust.ward(data) 

Dendrograms are produced using plot (note that this is a generic R function, with settings 
depending on the class of the plotted object): 
plot(popul.ward,cex=0.6,cex.axis=0.8,cex.lab=0.8,frame.plot=T,hang=-0.1, 

main="",sub="",xlab="",ylab="distance") 

Important parameters: 
� data – the first parameter (unlike 

other function, it is not called 
data=data). 

� cex, cex.axis, cex.lab – relative 
size of OTU names, y-axis values 
and axis labels. 

� frame.plot – logical (T/F or 
TRUE/FALSE), sets if the frame 
along the plot is drawn. 

� hang – distance (fraction of the plot 
height) of the label from the last 
node of the dendrogram, i.e., length 
of the terminal branches; if negative 
(any value), the labels hang down from 0. 

� main, sub, xlab, ylab – main title, subtitle, x-axis label, and y-axis label, respectively; 
”” indicates no label. 

Rectangles highlighting certain clusters can be added using rect.hclust: 
rect.hclust(popul.ward,h=12,which=c(1,2,3),border=c("red","green","blue")) 

� data – the same as in the function 
plot. 

� h – linkage distance (in units of the y-
axis) to cut the dendrogram; branches 
crossing this value define clusters. 

� which – number of clusters to be 
drawn (from left to right); for example, 
there may be five clusters at h=12, but 
we want to draw only the first three. 
For one cluster, directly enter the 
number (e.g., which=2); for more 
clusters, wrap the numbers in the 
function c(), as above. 

� border – colour of the rectangle; 
either single a value common to all clusters selected by which (e.g., border = “green”) or 
a separate colour for each cluster. 

The use of both the plot and the rect.hclust functions requires some experimentation. After 
finding good parameters for plot, start with rectangles specifying only h (i.e., draw all clusters). 
Select the rectangles to draw using which, set border, and rerun both functions. 
The rect.hlust function with different parameters can be used several times for one dendrogram. 
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The example figure was created using this code (for comparison with the previous graph, 
frame.plot=F is used): 
popul.ward<-clust.ward(popul) 
plot(popul.ward,cex=0.6,cex.axis=0.8,cex.lab=0.8,frame.plot=F,hang=-0.1, 

main="",sub="",xlab="",ylab="distance") 
rect.hclust(popul.ward,h=12,which=c(1,2,3),border=c("red","green", 

"darkviolet")) 
rect.hclust(popul.ward,h=14,which=4,border="blue") 
rect.hclust(popul.ward,h=2,which=c(14,16,21,30,31),border="black") 

The red cluster is Centaurea stenolepis, the green is C. phrygia s.str., the violet is the hybrid C. 
pseudophrygia × C. stenolepis and the blue is C. pseudophrygia. The “incorrectly” clustered 
populations are highlighted as the black “clusters” (BABL and LES were originally classified as C. 
pseudophrygia, PROS as a hybrid and BUK and NSED as C. phrygia s.str.). 

Principal component analysis (PCA) 

pca.calc performs principal component analysis using the R base prcomp function after 
omitting the rows with missing data. Standardisation of characters to have a zero mean and a unit 
standard deviation is employed. Note that there are also other PCA functions in R, such as 
princomp and dudi.pca (the ade4 package, Dray & Dufour 2007). 
results<-pca.calc(data) 

Variation explained by individual axes: 
summary(results) 

Note that the function prcomp stores only the square roots of eigenvalues (i.e., standard deviations 
of the principal components). To obtain the actual eigenvalues, use the pca.eigen function: 
pca.eigen(results) 

You can also plot the eigenvalues as a scree plot (the second command draws points connected with 
a line instead of bars): 
plot(results) 
plot(results,type=”lines”) 

The correlation of the characters and ordination axes, i.e., character loadings, can be extracted using 
pca.cor with two parameters, PCA results and number of axes to save (n). For n, the default value 
is 4, but any value can be specified. 
correlations<-pca.cor(results) # extracts the first four principal components 
correlations<-pca.cor(results,n) # extracts the specified n of principal components 

pca.scores computes the ordination scores of cases (objects, OTUs). Note that this function has 
three arguments: results (PCA definition), data, and number of axes to extract (n; default is four). 
The data may also contain additional (passive) samples that were not present in the original 
analysis. The function adds the first three columns (ID, 
Population, Taxon) from the data to the final data frame, 
which is useful for plotting taxa/populations with different 
symbols or colours. 
scores<-pca.scores(results,data) 
scores<-pca.scores(results,data,n) 

Both coefficients of characters and case scores can be 
exported using export.res function. 

A scatterplot of the ordination scores can be produced 
using the plot function. There are 20 different symbols 
in R and 5 additional (21–25) symbols whose background 
colours can be set differently from their foreground 
colours. Colours are coded by name (type colors() to 
see the list); 8 default colours may also be coded by 
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number(1: black, 2: red, 3: green, 4: blue, 5: cyan, 6: magenta, 7: yellow, 8: grey). Factor levels 
may be used in the variable Taxon to code symbols/colours by specifying the pch [symbols] and 
col [colour] arguments of plot (see below) using as.numeric(Taxon), but this method has 
one major drawback. The as.numeric function will code the first level found in the specified 
variable as 1, the second as 2, etc., and these numbers will then be used to code the 
symbols/colours. 

If you want use different symbols/colours, define a copy of the Taxon column in the data 
frame, then recode the levels to the desired numbers and use them for plotting. A new column, 
Symb or Col (or both), must be created using the as.numeric function, and the functions 
recode.symb or recode.col then set the numbers in the Symb/Col column according to the 
values in Taxon column. 
data$Symb<-as.numeric(data$Taxon) 
data<-recode.symb(data,"taxon",symbol) 
data$Col<-data$Taxon # if colours will be coded by names 
data<-recode.col(data,"taxon","colour") 
data$Col<-as.numeric(data$Taxon) # if colours will be coded by numbers 
data<-recode.col(data,"taxon",colour) 

Then use the plot function to create the scatterplot; to simplify the column names, it may be 
wrapped in the function with: 
with(popul.pca.sc,plot(PC1,PC2,type="p",pch=Symb,bg="grey80",col=Col, 

xlim=c(-4.0,8.0),ylim=c(-6.0,3.0),cex=1.5,cex.axis=1,cex.lab=1, 
xlab="PC1 (33.4%)",ylab="PC2 (20.9%)")) 

Important parameters: 
� The first parameter of the with function defines the data to plot. 
� The first and second parameter of the plot function represent the column names from the data 

that define the x- and y-coordinates, respectively; in the PCA.calc results, the columns are 
called PC1, PC2,… 

� pch defines the symbols; it can be a single number (all symbols will be of the same type) or the 
column containing the symbol codes. When pch is omitted, the default symbol (1: open circle) 
will be used. 

� col defines the colour of the symbols, in a similar way as pch. 
� bg sets the background colour for symbols 21–25. 
� xlim,ylim define the minimum and maximum for the x- and-y axis, respectively. This 

parameter can be omitted. Extending the axes can be useful to create free space for a legend or 
point labels, etc. 

� cex, cex.axis, cex.lab, cex.main and cex.sub define the relative sizes of symbols, axis 
values, axis labels, main title and subtitle, respectively (last two are not used in an example 
above). 

� xlab and ylab are labels for the x- and y-
axis, respectively; if omitted, the respective 
column names are used. The parameters 
main (main title) and sub (subtitle) are 
similar (not used here). 

Several other elements can be added into the 
existing plot by functions called after the plot 
function. The function abline adds lines at x=0 
and y=0 (or any other position controlled by the 
parameters h and v); the parameter lty defines 
the line type (1: solid, 2: dashed, 3: dotted; three 
other types are available); col defines colour in 
usual way.  
abline(h=0,v=0,lty=3,col=”grey”)  
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Text descriptions of points may be added using the function text. To display population names: 
with(popul.pca.sc,text(PC1,PC2, 

Population,cex=0.5,adj=NULL,pos=4, 
offset=0,col="black")) 

The function call is similar to the plot function, and its special parameters are as follow: 
� The first two arguments are the x- and y-coordinates of the data point; the third argument is the 

variable containing labels. 
� adj – adjustments of the label position, as c(x,y) 
� pos – position of the label relative to the data point (1: below, 2: to the left, 3: above, 4: to the 

right); if specified, it overrides adj. 
� offset – the offset (in fraction of character width) of the label from the position specified by 

pos; default is 0.5. 
� Note that it is possible to select populations for labelling with the text function using 

subscripts (to data that are specified within the with function); rerunning the function with 
different settings of the pos and offset parameters for the selected populations can prevent 
the labels of individual characters from overlapping. 

The whole code used to generate the figure for populations (to demonstrate various symbol types, 
colours and work with text labels): 
popul.pca<-pca.calc(popul) 
popul.pca.sc<-pca.scores(popul.pca,4,popul) 
popul.pca.sc$Symb<-as.numeric(popul.pca.sc$Taxon) 
popul.pca.sc$Col<-as.numeric(popul.pca.sc$Taxon) 
popul.pca.sc<-recode.symb(popul.pca.sc,"ps",1) 
popul.pca.sc<-recode.symb(popul.pca.sc,"st",8) 
popul.pca.sc<-recode.symb(popul.pca.sc,"hybr",23) 
popul.pca.sc<-recode.symb(popul.pca.sc,"ph",17) 
popul.pca.sc<-recode.col(popul.pca.sc,"ps","blue") 
popul.pca.sc<-recode.col(popul.pca.sc,"st","seagreen") 
popul.pca.sc<-recode.col(popul.pca.sc,"hybr","red") 
popul.pca.sc<-recode.col(popul.pca.sc,"ph","black") 
with(popul.pca.sc,plot(PC1,PC2,type="p",pch=Symb,bg="grey70",col=Col, 

xlim=c(-4,8),ylim=c(-6,3),cex=1.5,cex.axis=0.9,cex.lab=0.9, 
xlab="PC1 (33.4%)",ylab="PC2 (20.9%)")) 

abline(h=0,v=0,lty=3,col="grey") 
with(popul.pca.sc[-c(3,6,13,14,15,16,18,24),],text(PC1,PC2,Population,cex=0.9, 

adj=NULL,pos=4,offset=0.2,col="black")) 
with(popul.pca.sc[c(13,14),],text(PC1,PC2,Population,cex=0.9,adj=NULL,pos=1, 

offset=0.3,col="black")) 
with(popul.pca.sc[c(3,6,16),],text(PC1,PC2,Population,cex=0.9,adj=NULL,pos=2, 

offset=0.3,col="black")) 
with(popul.pca.sc[c(15,18,24),],text(PC1,PC2,Population,cex=0.9,adj=NULL, 

pos=3,offset=0.3,col="black")) 

The ordination scores of characters may be drawn as arrows. An empty plot (drawn with only axes 
and their labels) must be prepared using the function plot, zero lines added using the abline 
function, and arrows and their labels added using the functions arrows and text. (Both functions 
must be called after plot, as they only add elements into the already existing plot.) 
 The functions plot, abline and text are called as above. The only difference is the use 
of type=”n” as a parameter of plot (no points are drawn; this also renders useless any graphical 
parameters concerning the data points, such as cex, col, pch).  
with(popul.pca.co,plot(PC1,PC2,type="n",xlim=c(-1,1.1),ylim=c(-1,1))) 
abline(h=0,v=0,lty=3,col="grey") 
with(popul.pca.co,arrows(0,0,PC1,PC2,length=0.15,lty=1,col="red")) 
with(popul.pca.co[-c(2,4,6,13,23,25),],text(PC1,PC2,Character,pos=4,cex=0.75)) 
with(popul.pca.co[c(6,13,23,25),],text(PC1,PC2,Character,pos=2,offset=0.2, 

cex=0.75)) 
with(popul.pca.co[2,],text(PC1,PC2,Character,pos=1,offset=0.3,cex=0.75)) 
with(popul.pca.co[4,],text(PC1,PC2,Character,pos=3,offset=0.3,cex=0.75)) 
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The arguments of the arrows function are as follow: 
� The first two arguments (0,0 here) define the 

origin of the arrows. The next two arguments are 
variables in the data (here PC1, PC2) that define 
the end points of the arrows. 

� length defines the size of the arrow heads. 
� lty and col have their usual meanings (line type 

and colour, respectively) 

Generally, both scripts may be combined to produce a 
biplot by making a plot of the populations and then 
adding arrows and their labels, omitting the second 
call of plot and abline. However, some rescaling 
of population scores to values comparable to the 
characters is usually necessary. (Here, the x-axis for 
the populations was <-4,8> while it was <-1,1> for 
the characters; thus, dividing population scores by 4 
would create a better picture). This procedure can be conducted directly within the plot and text 
functions: 
with(...,plot(PC1/4,PC2/4,...)) 
with(...,text(PC1/4,PC2/4,...)) 

However, if there are many characters and data points, they will most likely overlap. I therefore 
consider two separate scatterplots more informative than a biplot. 

Here is a PCA of individuals, configured to 
highlight the position of the hybrids in a 
greyscale-only figure. Compared to the 
scatterplot of populations, individual labels 
are omitted (too many would be present), but 
use of a legend is demonstrated: 
indiv.pca<-pca.calc(indiv) 
pca.sc<-pca.scores(indiv.pca,4,indiv) 
pca.sc$Symb<-as.numeric(pca.sc$Taxon) 
pca.sc$Col<-as.numeric(pca.sc$Taxon) 
levels(pca.sc$Taxon) 
pca.sc<-recode.symb(pca.sc,"ph",2) 
pca.sc<-recode.symb(pca.sc,"ps",21) 
pca.sc<-recode.symb(pca.sc,"st",3) 
pca.sc<-recode.symb(pca.sc,"hybr",16) 
pca.sc<-recode.col(pca.sc,"ph","grey50") 
pca.sc<-recode.col(pca.sc,"ps","grey50") 
pca.sc<-recode.col(pca.sc,"st","grey50") 
pca.sc<-recode.col(pca.sc,"hybr","black") 
with(pca.sc,plot(PC1,PC2,type="p",pch=Symb,col=Col,bg="grey", 
xlim=c(-8.5,4.3),ylim=c(-4.5,6),cex=1,cex.axis=1,cex.lab=1, 

xlab="PC1 (22.3%)",ylab="PC2 (13.8%)")) 
abline(h=0,v=0,lty=2,col="black") 
legend(-8.5,6.0,levels(pca.sc$Taxon),pch=c(16,2,21,3), 

col=c("black",rep("grey50",3)),pt.bg="grey",bty="o",cex=0.9,pt.cex=1,ncol=2) 

The parameters of legend: 
� The first two arguments indicate the position of the upper left corner of the legend. Note that it 

is possible to create free space for the legend by properly setting the xlim and ylim parameters 
of the plot function. 

� The third argument defines the text labels displayed in the legend. Here, the labels are taken 
from the variable Taxon using the levels function. Alternatively, arbitrary text labels can be 
defined using the c() function: 
c(“text1”,”text2”,...) 
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� pch – symbols used in the legend (be careful to use the correct order respective to the Taxon 
levels). 

� col – colour of symbols. Note that I used the function rep here, which has two arguments: 
what to repeat and how many times: rep(“grey50”,3) is equivalent to 
“grey50”,“grey50”,“grey50”. 

� pt.bg is equivalent to bg in the plot function, i.e., the background colour of symbols 21–25. 
Note that the parameter bg is also present in the legend function, but it defines the background 
of the whole legend. 

� bty defines the frame around the legend (“o” for rectangle or “n” for none) 
� cex defines the relative size of the legend text, while pt.cex defines the size for legend 

symbols; if pt.cex is not specified (default), then pt.cex = cex. 
� ncol defines the number of columns in the legend. The default is ncol=1, i.e., a vertical 

legend. ncol=k, where k is the number of levels, would produce a horizontal legend. 
� Note that many other graphical parameters are present for legend that define legend text 

alignment, spacing or colour, legend frame type and colour, etc., but the default settings usually 
work well; see the help for details. 

An interesting possibility for showing the overlap of groups is the “spider” diagram of the function 
s.class from the ade4 package. Note that this package also includes other graphing functions 
(such as s.arrow for characters and scatter for biplots), as well as its own PCA function, 
dudi.pca. 
library(ade4) 
par(oma=c(2,2,1,1)) 
s.class(pca.sc,pca.sc$Taxon,xax=4,yax=5,pch=16,label=levels(pca.sc$Taxon), 

col=c("black","blue","green","red"),cstar=1,axesell=F,addaxes=T,grid=F, 
clabel=0.8,cpoint=0.8) 

axis(1,pos=-4.7,cex.axis=1,lwd=0,at=c(-8,0,5),labels=c("-8.0","0.0","5.0")) 
axis(2,pos=-9.5,cex.axis=1,lwd=0,at=c(-4,0,5),labels=c("-4.0","0.0","5.0")) 
par(default.par) 

Parameters of s.class: 
� The first arguments the data to plot, and the 

second the variable that define the classes to 
plot. 

� xax and yax are the numbers of columns in 
the data with x- and y-coordinates, 
respectively 

� pch and col have their usual meaning and 
must be either a single number (the same for 
all classes) or values for each class enclosed 
in the c() function. 

� label defines class labels, using either an 
expression (such as the function levels 
here) or a list of values for each class, 
similarly to col and pch. 

� cstar defines the length of star “rays” from the interval <0,1>, axesell=F suppress inertia 
ellipses, addaxes=T draws axes, and grid=F suppress gridlines. 

� clabel and cpoint defines the sizes of class labels and points, respectively (equivalents of the 
cex parameters of the plot function). 

The function s.class does not print axis values. These values can be added using the generic 
function axis, although much experimentation is needed depending on the graph window size and 
shape. First, it is necessary to set the margins using par(oma=...)) and then to use the axis 
function: 
� the first argument is axis to be drawn (1: horizontal, 2: vertical) 
� pos is the axis position on the perpendicular axis 
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� cex.axis sets the size of the axis labels as usual. 
� lwd=0 suppresses the axis to be draw (lwd is line width) so as not to interfere with the axes 

drawn by s.class 
� tickmarks would be displayed if lwd were not zero, their length is controlled by the tcl 

parameter. However, it is difficult to find a combination of axis position, labels and tickmark 
length that creates a good figure. Therefore, tickmarks are omitted here. 

A 3D scatterplot can be produced using the scatterplot3d function from the scatterplot3d 
package (Ligges & Mächler 2003). Similarly to the process for 2D plotting, it is first necessary to 
define symbol types and colours:  
levels(pca.sc$Taxon) 
pca.sc<-recode.col(pca.sc,"ph","blue") 
pca.sc<-recode.col(pca.sc,"ps","red") 
pca.sc<-recode.col(pca.sc,"st","green") 
pca.sc<-recode.col(pca.sc,"hybr","black") 
library(scatterplot3d) 
with(pca.sc,scatterplot3d(PC1,PC2,PC3,color=Col,pch=16,type="h", 

lty.hplot=1,grid=T,col.grid=”grey”,box=F,angle=60,scale.y=0.9,cex.symbols=1, 
cex.axis=0.9,cex.lab=0.9,mar=c(4,4,0,3),y.margin.add=0.3,xlab="PC1 (22.3%)", 
ylab="PC2 (13.8%)",zlab="PC3 (9.3%)")) 

Then, it is necessary to load the 
scatterplot3d package using the library 
command. The parameters of the 
scatterplot3d function are as follow: 
� The first three parameters represent the 

x-,y- and z-coordinates of the points, 
respectively. 

� color has the same meaning as col 
in the other plotting functions. 

� bg is also similar to its use in the plot 
function (symbols 21–25; not used 
here). 

� pch has its usual meaning; note that in the present figure, only one character is used for all taxa. 
� type is similar to the same parameter in the plot function; the relevant values are “p” for 

points only, “h” for points with vertical lines and “n” for nothing. 
� grid is logical (TRUE/FALSE) – whether gridlines are drawn the on x-y plane. 
� col.grid sets the colour of the gridlines if grid=T. 
� box (logical) defines whether only the axes or all edges of a box are drawn around the graph. 
� angle and scale.y control the “rotation” of the graph; the former is the angle between the x- 

and y-axis and the latter is the relative length of the y-axis. 
� mar defines the width of the margins in a similar way as par(mar=...); note that setting 

margins using par is not effective in the scatterplot3d package. 
� y.margin.add adds extra space between the y-axis values and the axis label to avoid overlap. 
� cex., xlab, ylab, zlab, sub, and main all have their usual meanings. 
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Canonical discriminant analysis 
(also know as linear discriminant analysis or canonical variate analysis; CDA or LDA or CVA) 

Canonical discriminant analysis can be performed in several R packages. Here, the use of the 
vegan package (Oksanen et al. 2013) is demonstrated. The major advantage of vegan is that it 
uses permutation significance tests, which overcome the need for the normal distribution of 
characters. Standardisation of data is not necessary in discriminant analyses and thus the original 
values of characters are used. 
discr.calc creates an object, discr.data, that contains two data frames (values of the 
characters and classification of objects into taxa) and passes them to the cca function from the 
vegan package, which performs the discriminant analysis. 
results<-discr.calc(data) 

discr.sum summarises the results and returns the eigenvalues of the canonical axes, the 
percentage of explained variation, the canonical correlation coefficients of the individual axes, and 
the permutation tests of the whole model and of the individual axes (using the functions 
summary.cca, eigenvals, spenvcor and anova.cca). Note that the axes are called CCA1, 
CCA2, etc. The eigenvalues in vegan (similarly as in Canoco) are equal to the squares of canonical 
correlation coefficients and are different from the eigenvalues printed by other software packages 
(see ter Braak & Šmilauer 2012 for details); the recalculation is returned as the first item by the 
discr.sum function. The number of permutations can be set using the parameter perm; the default 
value is 500. The number of permutations determines the lowest achievable significance level (1/n); 
setting more permutations allows for more precise tests, but the permutation procedure is rather 
slow in R. 
discr.sum(results) # using default number of permutations (500) 
discr.sum(results,perm=1000) # user-specified number of permutations 

discr.coef returns the coefficients of discriminant function (regression coefficients) for 
individual characters (based on the function coef). These coefficients refer to centered but 
unstandardised characters [for characters A, B,.., the equation is (A – mean (A)) * coef A +  (B – 
mean (B)) * coef B + …]. Because character means are needed to compute the object scores, they 
are returned as the first column of the resulting data frame. However, the calculation of canonical 
scores (even for new objects) is more easily achieved using the discr.scores function (see 
below). The results can be exported using the export.res function. 
coefficients<-discr.coef(results) 

discr.taxa returns the positions (centroids) of taxa (using the function scores); the results can 
be exported using the export.res function. 
scores<-discr.taxa(results) 

discr.scores computes the ordination scores of cases (OTUs). The function has two arguments, 
results (discriminant analysis definition) and new data. The function uses the generic function 
predict and can also calculate scores for (passive) samples that were not present in the original 
ordination. This approach is advantageous for testing the positions of “atypical” populations (e.g., 
putative hybrids) or for assessing the taxonomic positions of selected individuals (e.g., type 
herbarium specimens). The function adds the first three columns (ID, Population and Taxon) from 
the data to the final data frame, which is useful for plotting taxa/populations using different symbols 
or colours. The resulting data frame can be exported using the export.res function. 
scores<-discr.scores(results,data) 

discr.bip returns the “biplot scores”, i.e., the contribution of characters to individual axes (also 
called factor structure or total structure coefficients by other software packages). Compared to usual 
biplot scores (as returned by the summary.cca function), these values are standardised by within 
group variance instead of by total variance to better reflect the relative importance of the characters 
(see Lepš & Šmilauer 2003 for details). The resulting data frame can be exported using the 
export.res function. 
scores<-discr.bip(results) 
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discr.test performs significance tests of individual characters. Two types of tests are computed. 
First, the marginal effects (i.e., when a character is alone in the model) are computed using the 
generic function add1. Second, the unique contributions of the characters (i.e., the addition of each 
character into the model with all other characters) are tested using the anova.cca function with the 
setting by=”margin”; note that these contributions are called marginal effects in vegan 
terminology. The latter analogous to the standardised coefficients of the discriminant function 
computed by several other software packages. Similarly to the discr.sum function, the number of 
permutations (500 is default) should be chosen with respect to the desired significance level. 
Although the algorithm is rather slow, calculation should not take more than a few minutes, even 
with 1000 permutations (unless the dataset is extremely large). As many tests (one for each 
character) are performed, some correction of significance levels should be considered. The results 
of the discr.test function consist of a list containing two data frames. These data frames can be 
exported separately using the export.res function by adding a subscript to the list (note the 
double brackets). They can also be exported together, but the names of the columns are changed 
during the export. 
tests<-discr.test(results) 

tests<-discr.test(results,perm=1000) # user-specified number of permutations 
export.res(tests[[1]]) # marginal effects 
export.res(tests[[2]]) # unique contributions 

Forward selection of characters is performed by the discr.step function, which is based on the 
ordistep function. Two models can be specified by the parameter dir: dir=”forward” 
performs the addition of characters starting with a null model, while with dir=”both”, the 
function alternates the addition and removal of one character and stops when no significant change 
is possible in either direction. Direction (default is forward) and number of permutations (default is 
perm = 500) can be specified, and the threshold significance level can also be set (default is 
p=0.05). The inclusion of a character into/removal from the model is based on permutation tests; 
the function also print AIC values (similarly to other stepwise models in R), but these values are not 
meaningful for cca ordination (see the R help for details). 
 Note that the discr.step function is intended to print the results on a screen. The results 
of stepwise selection using the discr.step function may be assigned as a new discriminant 
analysis, however, the functions for characters (discr.coef, discr.bip) will not work properly, 
as they look for (the original set of) characters stored in discr.data. Therefore, a new data set 
with only selected characters should be prepared and the discr.calc function then used to 
produce a new discr.data list. 
discr.step(results) # default settings 
discr.step(results,perm=200) # reducing the number of permutations 
discr.step(results,perm=1000,dir=”both”,p=0.05/22) 
 # all parameters set manually, Bonferroni correction of 

significance levels used (22 characters present) 
newresults<-discr.step(results) # saves the results as a new discriminant analysis 

Graphics can be produced in a similar way as in PCA. The code to produce a scatterplot of 
individuals (without hybrids, which were excluded from the analysis) and a plot of characters is as 
follows: 
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# individuals (from discr.inds3) 
discr.inds3$Symb<-as.numeric(discr.inds3$Taxon) 
discr.inds3$Col<-as.numeric(discr.inds3$Taxon) 
levels(discr.inds3$Taxon) 
discr.inds3<-recode.symb(discr.inds3,"ph",2) 
discr.inds3<-recode.symb(discr.inds3,"ps",21) 
discr.inds3<-recode.symb(discr.inds3,"st",3) 
with(discr.inds3,plot(CCA1,CCA2,type="p",pch=Symb,col="black",bg="grey50", 

xlim=c(-5,5),ylim=c(-6,4.5),cex=1,cex.axis=1,cex.lab=1, 
xlab="discrim. axis 1",ylab="discrim. axis 2")) 

abline(h=0,v=0,lty=2,col="black") 
legend(3.75,4.5,c("ph","ps","st"),pch=c(2,21,3),col="black",bty="o", 

pt.bg="grey50",cex=0.9,pt.cex=1,ncol=1) 
# characters (from discr.indb) 
with(discr.indb,plot(CCA1,CCA2,type="n",asp=1,xlim=c(-0.7,0.65), 

ylim=c(-0.6,0.6))) 
abline(h=0,v=0,lty=2,col="black") 
with(discr.indb,arrows(0,0,CCA1,CCA2,length=0.15,lty=1,col="red")) 
with(discr.indb[-c(1,2,3,13,14,16,18,19,21),],text(CCA1,CCA2,Character,pos=4, 

cex=0.75)) 
with(discr.indb[c(1,3,13,14,16,18,19,21),],text(CCA1,CCA2,Character,pos=2, 

offset=0.2,cex=0.75)) 
with(discr.indb[2,],text(CCA1,CCA2,Character,pos=3,offset=0.2,cex=0.75)) 
par(default.par) 

A scatterplot of individuals, with a focus on putative hybrids treated as passive samples: 
discr.indsh<-discr.scores(discr.ind,indivx) 
discr.indsh$Symb<-as.numeric(discr.indsh$Taxon) 
discr.indsh$Col<-as.numeric(discr.indsh$Taxon) 
levels(discr.indsh$Taxon) 
discr.indsh<-recode.symb(discr.indsh,"ph",2) 
discr.indsh<-recode.symb(discr.indsh, "ps",21) 
discr.indsh<-recode.symb(discr.indsh,"st",3) 
discr.indsh<-recode.symb(discr.indsh,"hybr",16) 
discr.indsh<-recode.col(discr.indsh,"ph","grey50") 
discr.indsh<-recode.col(discr.indsh,"ps","grey50") 
discr.indsh<-recode.col(discr.indsh,"st","grey50") 
discr.indsh<-recode.col(discr.indsh,"hybr","black") 
with(discr.indsh,plot(CCA1,CCA2,type="p",pch=Symb,col=Col,bg="grey", 

xlim=c(-5,6),ylim=c(-6,5),cex=1,cex.axis=1,cex.lab=1,xlab="discrim. axis 1", 
ylab="discrim. axis 2")) 

abline(h=0,v=0,lty=2,col="black") 
legend(2.9,5.0,c("ph","ps","st","hybr"),pch=c(2,21,3,16),bty="o", 

col=c(rep("grey50",3),"black"),pt.bg="grey",cex=0.9,pt.cex=1,ncol=2) 
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If there are only two groups (for example, only C. phrygia and C. pseudophrygia from the sample 
data are analysed), there is only one canonical axis, and canonical scores are plotted as a histogram. 
The easiest way is to plot two separate histograms for each group: 
par(mfrow=c(1,2)) 
with(discr.ind2s,hist(discr.ind2s[Taxon=="ps",4],plot=T,axes=F,freq=T, 

col="grey30",border="black",breaks=seq(-5.0,5.0,0.5),xlim=c(-5.0,5.0), 
ylim=c(0,40),main="",xlab="canonical score",ylab="count",cex.lab=0.75)) 

axis(1,at=(seq(-5.0,5.0,1)),labels=as.character(seq(-5.0,5.0,1)),tcl=-0.3, 
cex.axis=0.75) 

axis(2,at=(seq(-0,40,5)),labels=as.character(seq(0,40,5)),tcl=-0.3, 
cex.axis=0.75) 

with(discr.ind2s,hist(discr.ind2s[Taxon=="ph",4],plot=T,axes=F, freq=T, 
col="white",border="black",breaks=seq(-5.0,5.0,0.5),xlim=c(-5.0,5.0), 
ylim=c(0,40),main="",xlab="canonical score",ylab="count",cex.lab=0.75)) 

axis(1,at=(seq(-5.0,5.0,1)),labels=as.character(seq(-5.0,5.0,1)),tcl=-0.3, 
cex.axis=0.75) 

axis(2,at=(seq(-0,40,5)),labels=as.character(seq(0,40,5)),tcl=-0.3, 
cex.axis=0.75) 

par(mfrow=c(1,1)) 

The first parameter, mfrow, divides the 
drawing space into two parts (one row, 
two columns) in which two independent 
graphs can be plotted. The last line 
restores the default settings. The 
function hist plots a histogram. Most 
of the parameters are similar to those of 
the plot function, with some 
differences and specific parameters: 
�  breaks provides one way of 

defining histogram classes 
(columns). Here, the function seq is 
used (with three parameters: 
minimum, maximum, and step). 

� col defines the inner fill of the columns, and the outline is defined by border. 
� Axes must be drawn for the whole range of both groups, including the area in which no data are 

present (i.e., the area occupied by the other group). This situation is generally handled poorly by 
R functions. Therefore, it is better to suppress the axes to be drawn by the hist function (the 
parameter axes=F) and draw the axes manually using the axis function. The first parameter 
determines the axis to be drawn (1: x, 2: y), at and tck parameters define the positions and 
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size of the tickmarks, respectively, labels sets the labels for each tickmark, and cex.labels 
defines the size of the labels. The number of labels must be the same as the number of 
tickmarks, and any text string can be used as a label (i.e., labels=c(“text1”,”text2”,…) 
would be possible); here, both the position of tickmarks and the labels are generated by the 
function seq as a regular sequence from -5 to 5 by 1 (for the x-axis) and from 0 to 40 by 5 for 
(for the y-axis). 

A histogram with semitransparent colours allows for both groups to be combined into one figure. 
However, note that in this case, the graph cannot be exported to a metafile. (This procedure does not 
support semitransparent colours.) Export to pdf or raster formats works well: 
png("Discr2.png",width=16,height=15,units="cm",res=600) 
with(discr.ind2s,hist(discr.ind2s[Taxon=="ps",4],plot=T,col="grey30", 

border="black",freq=T,breaks=seq(-5.0,5.0,0.5),xlim=c(-5.0,5.0), 
ylim=c(0,40),main="",xlab="canonical score",ylab="count",axes=F)) 

with(discr.ind2s,hist(discr.ind2s[Taxon=="ph",4],plot=T,col=rgb(1,1,1,0.5), 
border="black",freq=T,breaks=seq(-5.0,5.0,0.5),xlim=c(-5.0,5.0), 
axes=F,add=T)) 

axis(1,at=(seq(-5.0,5.0,1)),labels=as.character(seq(-5.0,5.0,1)), 
tcl=-0.3,cex.axis=1) 

axis(2,at=(seq(-0,40,5)),labels=as.character(seq(0,40,5)), 
tcl=-0.3,cex.axis=1) 

dev.off() 

The first function, hist, plots the histogram 
for one group (preferably the darker colour); it 
is necessary to define the ranges of x- and y-
axes so that they cover both groups, as in the 
case of the two separate histograms. The 
second call of the hist function draws the 
second histogram, which is semi-transparent, 
and adds it into the current plot (the parameter 
add=T). This semi-transparency is achieved by 
applying the function rgb to the col 
parameter of the hist function. The function 
rgb has four parameters: the first three are red, 
green and blue on a scale from 0 to 1, while the 
fourth parameter is opacity on a scale from 0 to 
1. For colours, a scale from 0 to 255 can also 
be used, but then an additional parameter, 
maxColorValue=255, must be placed inside 
the rgb function. The axes are then added 
using the axis function. 
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Classificatory discriminant analysis 

Classificatory discriminant analysis with cross-validation, based on the lda function from the 
package MASS (Venables & Ripley 2002) is used.  

classif.da and classif.da.1 return the original three columns from the data (ID, Population, 
Taxon), a column with the classification from discriminant analysis, the posterior probabilities of 
classification into each group (taxon) and a column with the correctness of classification 
(true/false). The results are formatted as a data frame and may be exported using the export.res 
function. The two functions differ in the mode of crossvalidation. classif.da.1 uses the standard 
one-leave-out method. However, as some hierarchical structure is usually present in the data 
(individuals from a population are not completely independent observations, as they are closer to 
each other than to individuals from other populations), the function classif.da uses whole 
populations as leave-out units. This method does not allow classification if there is only one 
population for a taxon and is more sensitive to “atypical” populations, which usually leads to a 
somewhat lower classification success rate. 
results<-classif.da(data) 
results<-classif.da.1(data) 

classif.samp conducts the classificatory discriminant analysis of a sample set based on an 
independent training set. This function may be used to classify hybrid populations, type herbarium 
specimens, etc. Note that there can be groups (taxa) in the sample set that are not present in the 
training set (such as the hybrids from the sample data, which were classified using data from the 
three pure taxa); however, the last column in the results is then meaningless (The classification will 
always be evaluated as “false”.) The results can be exported using the export.res function. 
results<-classif.samp(sample_data,training_data) 

classif.matrix formats the results of the above three functions as a classification matrix of 
taxa. For each taxon from the original data, the function shows the number of classifications into all 
taxa present and the percentage of correct classifications; the total percentage of correct 
classifications over all taxa is also computed. The results can be exported using the export.res 
function. 
matrix<-classif.matrix(results) 

classif.pmatrix computes the classification matrix for populations; for each population, it 
shows the numbers of classifications into all taxa present in the data and the percentage of correct 
classifications. The results can be exported using the export.res function. The detailed 
classification of populations is very useful, as it can reveal some atypical or incorrectly assigned 
populations. For example, most of the populations (excluding hybrids) from the sample data are 
successfully classified using the classif.da function (generally over 70% correct classifications 
and often 100%), but two populations (BABL and LES) have only 31% and 15% of correct 
classifications, respectively; the first one is probably influenced by hybridization, while the latter is 
“atypical” within the sample dataset (it may represent different subspecies). When hybrid 
populations from the sample data are analysed (using classif.samp function), some individuals 
are usually classified as C. pseudophrygia and some as C. stenolepis (and none as C. phrygia) 
within each population, which clearly demonstrates the intermediacy of these populations.  
matrix<-classif.pmatrix(results) 

k-nearest neighbours classification 

This method is used as a nonparametric alternative to classificatory discriminant analysis. It 
classifies an individual according to the a priori classification of its k neighbours (by Euclidean 
distance) using a majority vote. The functions are based on the knn and knn.cv functions from the 
package class (Venables & Ripley 2002). As the k-nearest neighbour method uses Euclidean 
distance, the characters are standardised to a zero mean and a unit variation in all of the functions 
below. 
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knn.select and knn.select.1 search for the optimal k for the given data set. The functions 
only differ in cross-validation method in a similar way as the classificatory discriminant analysis 
functions. The functions the compute number of correctly classified individuals for k values from 1 
to 30 and highlight the value with the highest success rate. Ties (i.e., when there are the same 
numbers of votes for two or more groups) are broken at random, and thus several iterations may 
yield different results. Therefore, the functions compute 10 iterations, and the average success rates 
for each k are used; the minimum and 
maximum success rates for each k are 
also displayed as error bars. Note that 
several k values may have nearly the 
same success rates; if this is the case, 
the similarity of iterations may also be 
considered. In the example displayed 
here, the highest average value is for k 
= 6, but individual solutions have both 
considerably higher and considerably 
lower success rates; in comparison, k = 
7 has nearly the same average success 
rate, but the individual iterations are 
more similar to each other. 
knn.select(data) 
knn.select.1(data) 

knn.classif and knn.classif.1 perform knn classification for the specified k; differing only 
by cross-validation method (as above). The results are similar to those for classificatory 
discriminant analysis: they include the first three columns from the data (ID, Population, Taxon), a 
column with the knn classification, the proportion of votes for the “winning” group (analogous to 
the posterior probabilities in the discriminant analysis) and a column with the correctness of 
classifications (true/false). The results can be formatted as classification matrices using the 
classif.matrix or classif.pmatrix functions and both the knn results and the matrices can 
be exported using the export.res function. 
results<-knn.classif(data,k) 
results<-knn.classif.1(data,k) 
matrix<-classif.matrix(results) 
matrix<-classif.pmatrix(results) 

knn.samp conducts knn classification from a sample set using an independent training set 
(similarly to the classif.samp function for classificatory discriminant analysis). The result can 
be accessed using the classif.matrix or classif.pmatrix functions and exported using the 
export.res function. 
results<-knn.samp(sample_data,training_data,k) 
matrix<-classif.pmatrix(results) 
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