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Abstract
We obtain global bounds in Lorentz-Morrey spaces for gradients of solu-

tions to a class of quasilinear elliptic equations with low integrability data.
The results are then applied to obtain sharp existence results in the frame-
work of Morrey spaces for Riccati type equations with a gradient source
term having growths below the natural exponent of the operator involved.
A special feature of our results is that they hold under a very general as-
sumption on the nonlinear structure, and under a mild natural restriction
on the boundary of the ground domain.

Résumé
Nous dérivons des bornes globales dans les espaces de Lorentz-Morrey sur

le gradient des solution d’une classe d’équations elliptiques quasi-linéaires
pour des données faiblement intégrables. Ces résultats sont ensuite utilisés
pour obtenir l’existence de solutions dans des espaces de Morrey à des
équations de Riccati sous une hypothèse de croissance du gradient du terme
source inférieure à celle de l’exposant naturel de l’opérateur. Une par-
ticularité de ces résultats est qu’ils s’appliquent sous des hypothèses très
générales sur la structure de la non-linéarité, et la frontière du domaine.

Keywords: Quasilinear elliptic operator; Morrey space; Uniformly thick do-
main; Riccati type equation.

1. Introduction

There are two main goals that we wish to accomplish in this paper. The
first goal is to obtain global regularity in Morrey and Lorentz-Morrey spaces
for gradients of solutions to nonhomogeneous quasilinear equations of the
form {

−divA(x,∇u) = f in Ω,
u = 0 on ∂Ω.

(1.1)
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The second goal is to address the solvability of the following quasilinear
Riccati type equation{

−divA(x,∇u) = |∇u|q + f in Ω,
u = 0 on ∂Ω.

(1.2)

Here Ω is a bounded open set of Rn, n ≥ 2, and for now the data f is a
function in L1(Ω) or a finite measures in Ω.

In (1.1) and (1.2) the nonlinearity A : Rn × Rn → Rn is a Carathéodory
vector valued function, i.e., A(x, ξ) is measurable in x for every ξ and con-
tinuous in ξ for a.e. x. We assume that A satisfies the following growth and
monotonicity conditions: for some 2− 1/n < p ≤ n there holds

|A(x, ξ)| ≤ β |ξ|p−1 ,(1.3)

〈A(x, ξ)−A(x, η), ξ − η〉 ≥ α(|ξ|2 + |η|2)
p−2

2 |ξ − η|2(1.4)

for every (ξ, η) ∈ Rn × Rn \ {(0, 0)} and a.e. x ∈ Rn. Here α and β are
positive constants.

A typical example of such A is given by A(x, ξ) = |ξ|p−2ξ which gives
rise to the p-Laplacian ∆pu = div(|∇u|p−2∇u). However, in general no
smoothness is assumed in the x-variable of the nonlinearity A throughout
the paper.

Most of the results in this paper are obtained under a very mild condition
on the domain Ω. That is the the p-capacity uniform thickness condition
(with constants r0, c0 > 0) imposed on Rn \Ω. In this case we also say that
Rn \ Ω is uniformly p-thick with constants r0, c0 > 0. By definition this
means that there exist constants c0, r0 > 0 such that for all 0 < t ≤ r0 and
all x ∈ Rn \ Ω there holds

(1.5) capp(Bt(x) ∩ (Rn \ Ω), B2t(x)) ≥ c0 capp(Bt(x), B2t(x)).

Here for a compact set K ⊂ B2t(x) we define its p-capacity by

capp(K,B2t(x)) = inf

{ˆ
B2t(x)

|∇ϕ|pdy : ϕ ∈ C∞0 (B2t(x)), ϕ ≥ χK

}
.

It is easy to see that domains satisfying (1.5) include those with Lipschitz
boundaries or even those that satisfy a uniform exterior corkscrew condition,
where the latter means that there exist constants c0, r0 > 0 such that for all
0 < t ≤ r0 and all x ∈ Rn\Ω, there is y ∈ Bt(x) such that Bt/c0(y) ⊂ Rn\Ω.

In this paper solutions u to the boundary value problems (1.1) and (1.2)
are understood in the renormalized sense. It is well known that when the
datum is not regular enough, a solution to nonlinear equations of Leray-Lions
type does not necessarily belong to the natural Sobolev space W1, p

0 (Ω). This
in particular brings up a major unsettling issue regarding the uniqueness of
solutions. Therefore, we find it is most convenient to work with the notion
of renormalized solutions (see [18, 10, 7]). However, for global estimates
involving equation (1.1) it is enough to use a milder notion of solutions (see
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Remark 1.2 below). The notion of renormalized solutions will be recalled in
the next section.

We now recall the definitions of Lorentz and Lorentz-Morrey spaces. For
0 < s <∞ and 0 < t ≤ ∞, the Lorentz space Ls, t(Ω) is the set of measurable
functions g on Ω such that

‖g‖Ls, t(Ω) :=

[
s

ˆ ∞
0

(αs|{x ∈ Ω : |g(x)| > α}|)
t
s
dα

α

] 1
t

< +∞

when t 6=∞; for t =∞ the space Ls,∞(Ω) is set to be the usual weak Ls or
Marcinkiewicz space with quasinorm

‖g‖Ls,∞(Ω) := sup
α>0

α|{x ∈ Ω : |g(x)| > α}|
1
s .

It is easy to see that when t = s the Lorentz space Ls, s(Ω) is nothing but
the Lebesgue space Ls(Ω). On the other hand, the Lorentz-Morrey function
space Lq, t; θ(Ω), where 0 < θ ≤ n, 0 < q < ∞, 0 < t ≤ ∞, is the set of
measurable functions g on Ω such that

‖g‖Lq, t; θ(Ω) := sup
0<r≤diam(Ω)

z∈Ω

r
θ−n
q ‖g‖Lq, t(Br(z)∩Ω) < +∞.

Clearly, Lq, t;n(Ω) = Lq, t(Ω). Moreover, when q = t the space Lq, t; θ(Ω)
becomes the usual Morrey space which will be denoted by Lq; θ(Ω).

We are now ready to state the first main result of the paper.

Theorem 1.1. Let 2− 1
n < p < θ ≤ n and 0 < t ≤ ∞, and suppose that Ω ⊂

Rn is a bounded domain whose complement satisfies a p-capacity uniform
thickness condition with constants c0, r0 > 0. Then, under (1.3)-(1.4), there

exists ε0 = ε0(n, p, α, β, c0) > 0 such that for 1 < γ < θ(p+ε0)
θ(p−1)+p+ε0

, and for

any renormalized solution u to (1.1) with f ∈ L γ, t; θ(Ω) there holds

(1.6)
∥∥|∇u|p−1

∥∥
L

θγ
θ−γ ,

θt
θ−γ ; θ

(Ω)
≤ C ‖f‖Lγ, t; θ(Ω) .

Here the constants C depends only on n, p, γ, θ, t, c0 and diam(Ω)/r0.

We note that the upper bound of γ and (1.6) imply that the integrability of
∇u is below p+ ε0. This is natural as we assume no smoothness assumption
on A. The constant ε0 in the above theorem is related to the celebrated
higher integrability results of N. G. Meyers [50] and F. W. Gehring [32] (see
Lemmas 3.1 and 3.5 below).

The restriction p > 2−1/n is linked to the fact that, in general, solutions

to −∆pu = µ for a measure µ may not belong to W 1, 1
loc when 1 < p ≤

2 − 1/n. For this reason an important comparison estimate (see Lemmas
3.2 and 3.6 below) needed in the proof of Theorem 1.1 is not available for
1 < p ≤ 2 − 1/n. We notice that estimates in Morrey spaces are in nature
different from those in Marcinkiewicz spaces as obtained, e.g., in [18], and
the former could not be obtained via interpolation from the latter even in a
linear situation.
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We observe that inequality (1.6) can be viewed as a nonlinear version of
a classical result due to D. R. Adams [2] regarding the optimal bound for
Riesz potentials on Morrey spaces.

Some remarks are now in order.

Remark 1.2. From its proof one finds that Theorem 1.1 holds under the
following milder notion of solutions. For each integer k > 0 the truncation

Tk(u) := max{−k,min{k, u}}

belongs to W 1, p
0 (Ω) and satisfies

−divA(x,∇Tk(u)) = fk

in the sense of distributions in Ω for a finite measure fk in Ω. Moreover, if
we extend both f and fk by zero to Rn \ Ω then fk (resp. |fk|) converges
to f (resp. |f |) weakly as measures in Rn. It is known that renormalized
solutions satisfy these conditions (see Remark 2.4). Alternatively, one can
also adopt the notion of Solutions Obtained by Limit of Approximations
(SOLA) (see [8, 9, 19]) as having been employed, e.g., in [24, 54].

Remark 1.3. In this paper we confine ourselves to zero boundary condi-
tion which, due to the possible low regularity of u, is understood in a very
weak sense, i.e., Tk(u) ∈ W 1, p

0 (Ω) for any k > 0. A reason for such a re-
striction is that we are not aware of any reasonable existence theory for
p-Laplace type equations with general measure data and non-zero boundary
conditions. Moreover, we observe that related gradient estimates below the
natural exponent p for p-Laplace type equations with non-zero right-hand
sides and boundary data having low integrability remain largely open (see
[42]).

Remark 1.4. We notice that, at least in the case 2 ≤ p ≤ n, a local version
of inequality (1.6) has already been obtained by G. Mingione for the first
time in [53] and the possibility of extending such local results to global ones
was also mentioned in the same paper. We borrow some of the key ideas in
[53], but technically our presentation instead resembles that of [56].

Remark 1.5. Under our conditions on A and ∂Ω, the range of γ in Theorem
1.1 is sharp.

Next we address the solvability of the Riccati type equation (1.2). Equa-
tion (1.2) is a typical model for a class of quasilinear equations with an
arbitrary power law growth q > 0 in the gradient that has been widely stud-
ied in the literature. It is now known that this equation exhibits different
behaviors in the case 0 < q ≤ p−1 and in the case p−1 < q < +∞. As was
shown in [7] (see also [14, 21, 22]), for 0 < q ≤ p − 1 equation (1.2) admits
at least a solution as long as f is a finite measure in Ω. On the other hand,
in order for (1.2) to have a solution when q > p − 1 it is necessary to have
both smallness and regularity assumptions on the datum f . It was shown
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in [55] (see also [40] for the case p = 2) that such necessary conditions on f
can be quantified by the following trace inequality

(1.7)

ˆ
Ω
ϕ

q
q−p+1 fdx ≤ C

ˆ
Ω
|∇ϕ|

q
q−p+1dx

for all ϕ ∈ C∞0 (Ω) and ϕ ≥ 0.
In this paper we confine ourselves to the solvability of (1.2) in the sub-

natural range q ∈ (p− 1, p]. For q > p an existence result in the frame work
of Morrey spaces has been obtained in [55], where it was shown that there

exists a constant C0 > 0 such that if f ∈ L1+δ;
q(1+δ)
q−p+1 (Ω) for some δ > 0 with

(1.8) ‖f‖
L1+δ;

q(1+δ)
q−p+1 (Ω)

≤ C0,

then (1.2) has a solution provided Ω is a bounded C1 domain. Moreover,
the condition (1.8) is sharp in the sense that it is not possible to take δ = 0
there as the necessary (1.7) may fail then (see [48]).

There are numerous papers in the literature concerning the solvability of
(1.2) in the natural growth case q = p, see for example [1, 4, 5, 12, 13, 16,
28, 29, 35, 36, 43, 44, 45, 49, 57]. See also [30] for the case q = p = 2 that
is studied up to the boundary of the ground domain Ω.

For general q ∈ (p−1, p], various sharp criteria of solvability were obtained
in [40] but only in the semilinear case p = 2. This case was also studied

in [37] for datum f ∈ Ln(q−1)/q(Ω). For general p ∈ (1, n], existence results
for this subnatural range of q have been obtained recently in [27, 20] under

the assumption that the datum f is at least in the Lebesgue space Ln/p(Ω)
(with p− 1 < q ≤ p), a sufficient condition that is far from being necessary.

In the present paper we are concerned with the solvability of (1.2) for
2− 1/n < p ≤ n and when the growth q is in the subnatural range p− 1 <
q ≤ p. In particular, we are mainly interested in the so-called supercritical
case n(p − 1)/(n − 1) ≤ q ≤ p. In this case, we present a sharp existence
result in the framework of Morrey spaces under a very general structural
assumption on A and a mild natural restriction on the boundary of Ω.

Theorem 1.6. Let 2 − 1
n < p ≤ n, n(p−1)

n−1 ≤ q ≤ p, and suppose that Ω ⊂
Rn is a bounded domain whose complement satisfies a p-capacity uniform
thickness condition with constants c0, r0 > 0. Assume (1.3)-(1.4) and that

f ∈ L1+δ;
q(1+δ)
q−p+1 (Ω) for some δ > 0. There exists a constant c > 0 depending

on n, p, q, α, β, δ, c0, and diam(Ω)/r0 such that if

‖f‖
L1+δ;

q(1+δ)
q−p+1 (Ω)

≤ c,

then there is a renormalized solution u ∈W 1, q(1+δ)
0 (Ω) to the equation (1.2)

such that ∇u ∈ Lq(1+δ),
q(1+δ)
q−p+1 (Ω) with

‖∇u‖q
Lq(1+δ),

q(1+δ)
q−p+1 (Ω)

≤ qc

q − p+ 1
− ‖f‖

L1+δ,
q(1+δ)
q−p+1 (Ω)

.
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Remark 1.7. The condition f ∈ L1+δ;
q(1+δ)
q−p+1 (Ω) for some δ > 0 is satisfied

when f ∈ Ln(q−p+1)/q,∞(Ω) provided n(q − p + 1)/q > 1, i.e., q > n(p−1)
n−1 .

Thus this substantially improves earlier existence results obtained in [27, 20]

for datum f being at least in Ln/p(Ω) since n(q − p + 1)/q < n/p holds
whenever q < p. Moreover, in view of the necessary condition (1.7), the
condition on f in Theorem 1.6 is sharp. In particular, it is not possible to
take δ = 0 in the above theorem (see [48]).

It is worth mentioning recent results of [38] and [3], which prove existence
of solutions and a priori estimates for more general problems of this type
by using different nonlinear techniques, either truncation arguments or re-
arrangement methods. Those results deal with data in optimal Lebesgue
or Lorentz spaces. We notice that those methods, naturally applied to re-
arrangement invariant spaces, are not likely to apply to Morrey spaces, a
fact which gives extra motivation for the result of this paper.

Finally, we discuss the subcritical case p − 1 < q < n(p − 1)/(n − 1). In
this case, to obtain existence results it is enough to require the datum f to
be a finite measure (plus a smallness condition). This is possible since for
this range of q the necessary condition (1.7) holds for any finite measure f .
Moreover, when p 6= n we do not need to impose any regularity condition
on ∂Ω.

Theorem 1.8. Let 2 − 1
n < p ≤ n, p − 1 < q < n(p−1)

n−1 , and let Ω be a

bounded domain in Rn. In the case p = n assume in addition that Rn \ Ω
satisfies an n-capacity uniform thickness condition with constants r0, c0 > 0.
Let f be a finite measure in Ω. Under (1.3)-(1.4), there exists a constant
c > 0 such that if

(1.9) |Ω|
q

n(q−p+1)
−1|f |(Ω) ≤ c,

then there is a renormalized solution u to equation (1.2) with

‖∇u‖q
L
n(p−1)
n−1 ,∞

(Ω)

≤ |Ω|
q(n−1)
n(p−1)

− q
n(q−p+1)

[
qc

q − p+ 1
− |Ω|

q
n(q−p+1)

−1|f |(Ω)

]
.

Here c depends only on n, p, q, α, β for p 6= n, and also on c0 and diam(Ω)/r0

for p = n.

We notice that existence results in this subcritical case have been obtained
recently in [38] even for 1 < p ≤ 2− 1/n. Since our proof of Theorem 1.8 is
not long we choose to present it here for the sake of completeness.

2. The notion of renormalized solutions

In this section we recall the notion of renormalized solutions. LetMB(Ω)
be the set of all signed measures in Ω with bounded total variations. We
denote by M0(Ω) (respectively Ms(Ω)) the set of all measures in MB(Ω)
which are absolutely continuous (respectively singular) with respect to the
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capacity capp(·,Ω). Here capp(·,Ω) is the capacity relative to the domain Ω
defined by

capp(K,Ω) = inf
{ˆ

Ω
|∇φ|p dx : φ ∈ C∞0 (Ω), φ ≥ 1 on K

}
for any compact set K ⊂ Ω. Thus every measure inMs(Ω) is supported on
a Borel set E with capp(E,Ω) = 0. Recall from [31, Lemma 2.1] that, for
every measure µ in MB(Ω), there exists a unique pair of measures (µ0, µs)
with µ0 ∈M0(Ω) and µs ∈Ms(Ω), such that µ = µ0 + µs.

For a measure µ in MB(Ω), its positive and negative parts are denoted
by µ+ and µ−, respectively. We say that a sequence of measures {µk} in
MB(Ω) converges in the narrow topology to µ ∈MB(Ω) if

lim
k→∞

ˆ
Ω
ϕdµk =

ˆ
Ω
ϕdµ

for every bounded and continuous function ϕ on Ω.
The notion of renormalized solutions is a generalization of that of entropy

solutions introduced in [6] and [10], where the measure data are assumed
to be in L1(Ω) or in M0(Ω). Several equivalent definitions of renormalized
solutions were given in [18], two of which are the following ones.

Definition 2.1. Let µ ∈ MB(Ω). Then u is said to be a renormalized
solution of {

−divA(x,∇u) = µ in Ω,
u = 0 on ∂Ω,

(2.1)

if the following conditions hold:

(a) The function u is measurable and finite almost everywhere, and

Tk(u) belongs to W 1, p
0 (Ω) for every k > 0.

(b) The gradient ∇u of u satisfies |∇u|p−1 ∈ Lq(Ω) for all q < n
n−1 .

(c) If w belongs to W 1, p
0 (Ω) ∩ L∞(Ω) and if there exist w+∞ and w−∞

in W 1, r(Ω) ∩ L∞(Ω), with r > n, such that{
w = w+∞ a.e. on the set {u > k},
w = w−∞ a.e. on the set {u < −k}

for some k > 0 thenˆ
Ω
A(x,∇u) · ∇wdx =

ˆ
Ω
wdµ0 +

ˆ
Ω
w+∞dµ+

s −
ˆ

Ω
w−∞dµ−s .

Definition 2.2. Let µ ∈MB(Ω). Then u is a renormalized solution of (2.1)
if u satisfies (a) and (b) in Definition 2.1, and if the following conditions hold:

(c) For every k > 0 there exist two nonnegative measures inM0(Ω), λ+
k

and λ−k , concentrated on the sets {u = k} and {u = −k}, respec-

tively, such that λ+
k → µ+

s and λ−k → µ−s in the narrow topology of
measures.
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(d) For every k > 0

(2.2)

ˆ
{|u|<k}

A(x,Du) · ∇ϕdx =

ˆ
{|u|<k}

ϕdµ0 +

ˆ
Ω
ϕdλ+

k −
ˆ

Ω
ϕdλ−k

for every ϕ in W1, p
0 (Ω) ∩ L∞(Ω).

Remark 2.3. By [18, Remark 2.18], if u is a renormalized solution of (2.1)
then (the capp-quasi continuous representative of) u is finite quasieverywhere
with respect to capp(·,Ω). Therefore, u is finite µ0-almost everywhere.

Remark 2.4. By (2.2), if u is a renormalized solution of (2.1) then

−divA(x,∇Tk(u)) = µk in Ω,

with
µk = χ{|u|<k}µ0 + λ+

k − λ
−
k .

Since Tk(u) ∈W 1, p
0 (Ω), by (1.4) we see that µk belongs to the dual space

of W 1, p
0 (Ω). Moreover, by Remark 2.3, |u| < ∞ µ0-almost everywhere and

hence χ{|u|<k} → χΩ µ0-almost everywhere as k →∞. Therefore, µk (resp.
|µk|) converges to µ (resp. |µ|) in the narrow topology of measures as well.

Remark 2.5. If u is a renormalized solution to (2.1) then for 1 < p < n
the following global gradient estimate

‖∇u‖p−1

L
n(p−1)
n−1 ,∞

(Ω)

≤ C|µ|(Ω)

holds with C = C(n, p, α, β) for any bounded domain Ω (see [18, Theorem
4.1]). For p = n this estimate holds as well provided the complement of Ω
satisfies an n-capacity uniform thickness condition (see [56]).

3. Comparison and decay estimates

In this section, we obtain some local interior and boundary comparison
and decay estimates that are essential to our development later. First let
us consider the interior ones. With u ∈ W 1, p

loc (Ω), for each ball B2R =

B2R(x0) b Ω we defined w ∈ u + W 1, p
0 (B2R) as the unique solution to the

Dirichlet problem

(3.1)

{
div A(x,∇w) = 0 in B2R,

w = u on ∂B2R.

Then a well-known version of Gehring’s lemma applied to the function
w defined above yields the following result (see [34, Theorem 6.7] and [34,
Remark 6.12]).

Lemma 3.1. With u ∈ W 1, p
loc (Ω), let w be as in (3.1). Then there exists

a constant θ0 = θ0(n, p, α, β) > 1 such that for any t ∈ (0, p] the reverse
Hölder type inequality( 

Bρ/2(z)
|∇w|θ0pdx

) 1
θ0p

≤ C

( 
Bρ(z)

|∇w|tdx

) 1
t
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holds for all balls Bρ(z) ⊂ B2R(x0) for a constant C depending only on
n, p, α, β, t.

The following important comparison lemma involving an estimate “below
the natural growth exponent” was established in [52] (see also [24, Lemma
3.3]) for the degenerate case p ≥ 2. This lemma was later obtained in [25,
Lemma 4.2] for the singular case 2− 1/n < p < 2.

Lemma 3.2. With p > 2− 1/n, let u ∈W 1, p
loc (Ω) be a solution of (2.1) and

let w be as in (3.1). Then there is a constant C = C(n, p, α, β) such that

 
B2R

|∇u−∇w|dx ≤ C

[
|µ|(B2R)

Rn−1

] 1
p−1

+C

[
|µ|(B2R)

Rn−1

]( 
B2R

|∇u|dx
)2−p

.

Moreover, when p ≥ 2 the second term on the right-hand side can be dropped.

The next lemma follows from the standard interior Hölder continuity of
solutions, which can be found in [34, Theorem 7.7].

Lemma 3.3. With u ∈ W 1, p
loc (Ω), let w be as in (3.1). Then there exists a

constant β0 = β0(n, p, α, β) ∈ (0, 1/2] such that( 
Bρ(z)

|w − wBρ(z)|pdx

) 1
p

≤ C(ρ/r)β0

( 
Br(z)

|w − wBr(z)|
pdx

) 1
p

for any z ∈ B2R(x0) with Bρ(z) ⊂ Br(z) ⊂ B2R(x0). Moreover, there holds

(3.2)

( 
Bρ(z)

|∇w|pdx

) 1
p

≤ C(ρ/r)β0−1

( 
Br(z)

|∇w|pdx

) 1
p

for any z ∈ B2R(x0) such that Bρ(z) ⊂ Br(z) ⊂ B2R(x0). Here C =
C(n, p, α, β).

Using Lemma 3.1, inequality (3.2) can be further improved as in the
following lemma. This lemma appears for the first time in [52] and has been
used, e.g., in [53, 54].

Lemma 3.4. With u ∈ W 1, p
loc (Ω), let w be as in (3.1). Then there exists a

constant β0 = β0(n, p, α, β) ∈ (0, 1/2] such that for any t ∈ (0, p] there holds( 
Bρ(z)

|∇w|tdx

) 1
t

≤ C(ρ/r)β0−1

( 
Br(z)

|∇w|tdx

) 1
t

for any z ∈ B2R(x0) such that Bρ(z) ⊂ Br(z) ⊂ B2R(x0). Here C =
C(n, p, t, α, β).
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Next we consider the counterparts of the above lemmas up to the bound-
ary. As Rn \ Ω is uniformly p-thick with constants c0, r0 > 0, there exists
1 < p0 = p0(n, p, c0) < p such that Rn \ Ω is uniformly p0-thick with con-
stants c∗ = c(n, p, c0) and r0. This is by now a classical result due to J. Lewis
[47] (see also [51]). Moreover, p0 can be chosen near p so that p0 ∈ ( np

n+p , p).

Thus, since p0 < n, we have

capp0
(Bt(x) ∩ (Rn \ Ω), B2t(x)) ≥ c∗ capp0

(Bt(x), B2t(x))(3.3)

≥ C(n, p, c0) tn−p0

for all 0 < t ≤ r0 and all x ∈ Rn \ Ω.
Now let x0 ∈ ∂Ω be a boundary point and for 0 < 2R ≤ r0 we set

Ω2R = Ω2R(x0) = B2R(x0) ∩ Ω. For u ∈ W 1, p
0 (Ω) we consider the unique

solution w ∈ u+W 1, p
0 (Ω2R) to the equation

(3.4)

{
div A(x,∇w) = 0 in Ω2R,

w = u on ∂Ω2R.

In what follows we extend µ and u by zero to Rn \ Ω and then extend w
by u to Rn \ Ω2R.

The next two lemmas are the boundary counterparts of Lemmas 3.1 and
3.2, that have been obtained in [56]. Note that the proof Lemma 3.5 uses
(3.3), whereas Lemma 3.6 holds for general domains and thus the p-capacity
uniform thickness condition is not needed there.

Lemma 3.5. With u ∈ W 1, p
0 (Ω), let w be as in (3.4). Then there exists a

constant θ0 = θ0(n, p, α, β, c0) > 1 such that for every t ∈ (0, p] the reverse
Hölder type inequality( 

Bρ/2(z)
|∇w|θ0pdx

) 1
θ0p

≤ C

( 
B3ρ(z)

|∇w|tdx

) 1
t

holds for all balls B3ρ(z) ⊂ B2R(x0) for a constant C = C(n, p, t, α, β, c0).

Lemma 3.6. With p > 2− 1/n, let u ∈W 1, p
0 (Ω) be a solution of (2.1) and

let w be as in (3.4). Then there is a constant C = C(n, p, α, β) such that

 
B2R

|∇u−∇w|dx ≤ C

[
|µ|(B2R)

Rn−1

] 1
p−1

+C

[
|µ|(B2R)

Rn−1

]( 
B2R

|∇u|dx
)2−p

.

Moreover, when p ≥ 2 the second term on the right-hand side can be dropped.

We now consider the boundary version of Lemma 3.3.
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Lemma 3.7. With u ∈ W 1, p
0 (Ω), let w be as in (3.4). Then there exists a

constant β0 = β0(n, p, α, β, c0) ∈ (0, 1/2] such that

(3.5)

( 
Bρ(z)

|w|pdx

) 1
p

≤ C(ρ/r)β0

( 
Br(z)

|w|pdx

) 1
p

for any z ∈ ∂Ω with Bρ(z) ⊂ Br(z) ⊂ B2R(x0). Moreover, there holds

(3.6)

( 
Bρ(z)

|∇w|pdx

) 1
p

≤ C(ρ/r)β0−1

( 
Br(z)

|∇w|pdx

) 1
p

for any z ∈ B2R(x0) such that Bρ(z) ⊂ Br(z) ⊂ B2R(x0). Here C =
C(n, p, α, β, c0).

Proof. It is enough to consider the case ρ ≤ r/20. For a set U we set
osc(w,U) = supU w − infU w. Then by [41, Corollary 6.36] we can find a
constant β0 = β0(n, p, α, β, c0) ∈ (0, 1/2] such that

osc(w,Ωρ(z)) ≤ C(ρ/r)β0 osc(w,Ωr/4(z)),

and since w = 0 on Rn \ Ω this yields( 
Bρ(z)

|w|pdx

) 1
p

≤ C(ρ/r)β0 osc(w,Ωr/4(z)).

Thus to prove (3.5) it is enough to show that

(3.7) osc(w,Ωr/4(z)) ≤ C

( 
Br/2(z)

|w|pdx

) 1
p

.

For any y ∈ ∂Ω ∩Br/2(z), consider the balls Bt(y) ⊂ BT (y) with 0 < t <
T ≤ r/2. Let ϕ ∈ C∞0 (BT (y)) be such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in Bt(y) and
|∇ϕ| ≤ c(T − t)−1. Using φ = ϕp(w−k)+, k ≥ 0, as a test function for (3.4)
we find

(3.8)

ˆ
Bt(y)

|∇[(w − k)+]|pdx ≤ C

(T − t)p

ˆ
BT (y)

|(w − k)+|pdx.

Likewise, using φ = ϕp(w− k)−, k ≤ 0, as a test function for (3.4) we get

(3.9)

ˆ
Bt(y)

|∇[(w − k)−]|pdx ≤ C

(T − t)p

ˆ
BT (y)

|(w − k)−|pdx.

In the language of [23, Chap. 10, Sec. 7], these inequalities say that the
function w belongs to the (homogeneous) boundary De Giorgi classes DG+

and DG− with zero Dirichlet data on ∂Ω∩Br/2(z). Thus following the proof
of Theorem 2.1 in [23, Chap. 10, Sec. 2] (see also [34, Remark 7.6]) we have
for any y ∈ ∂Ω ∩Br/2(z),

sup
Ωr/4(y)

w+ ≤ C

( 
Br/2(y)

(w+)pdx

) 1
p
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and

sup
Ωr/4(y)

w− ≤ C

( 
Br/2(y)

(w−)pdx

) 1
p

.

Adding the last two inequalities with y = z we arrive at (3.7).
Next, we prove (3.6) for the case z = z0 ∈ ∂Ω. By (3.8) and (3.9) with

k = 0 we have ˆ
Bρ(z0)

|∇w|pdx ≤ C

ρp

ˆ
B2ρ(z0)

|w|pdx.

On the other hand, by a Sobolev inequality (see, e.g., Lemma 8.11 and
Remark 8.14 in [51]) there holds( 

Br(z0)
|w|pdx

) 1
p

≤ C

(
1

capp(K,B2r(z0))

ˆ
Br(z0)

|∇w|pdx

)1/p

,

where K = Br/2(z0) ∩ {w = 0}. Thus by our condition on ∂Ω we get

(3.10)

( 
Br(z0)

|w|pdx

) 1
p

≤ C

(
rp
 
Br(z0)

|∇w|pdx

)1/p

.

These inequalities and the relation (3.5) gives (3.6) for z = z0 ∈ ∂Ω.
In order to prove (3.6) for general z ∈ B2R(x0) we reduce it to the case

z = z0 ∈ ∂Ω by considering the following two cases.
Case 1: Br/4(z) ⊂ Ω. Then inequality (3.6) follows from the standard

interior Hölder continuity of solutions; see, e.g, [34, Theorem 7.7].
Case 2: Br/4(z) ∩ ∂Ω 6= ∅. In this case we let z0 ∈ ∂Ω ∩ Br/4(z) such

that |z − z0| = dist(z, ∂Ω). Note then that |z − z0| ≤ r/4, and thus

(3.11) Br/4(z0) ⊂ Br/2(z), and Br/2(z0) ⊂ B3r/4(z).

Now if ρ ≥ |z − z0|/4 then since Bρ(z) ⊂ B5ρ(z0) we find( 
Bρ(z)

|∇w|pdx

) 1
p

≤ C

( 
B5ρ(z0)

|∇w|pdx

) 1
p

≤ C(ρ/r)β0−1

( 
Br/4(z0)

|∇w|pdx

) 1
p

≤ C(ρ/r)β0−1

( 
Br/2(z)

|∇w|pdx

) 1
p

,

where we use (3.11) and the fact that z0 ∈ ∂Ω. This gives (3.6) when
ρ ≥ |z − z0|/4.

On the other hand, if ρ < |z−z0|/4 then by interior Caccioppoli inequality
we have

(3.12)

ˆ
Bρ(z)

|∇w|pdx ≤ C

ρp

ˆ
B2ρ(z)

|w − wB2ρ(z)|pdx,
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and also by [34, Theorem 7.7]

 
B2ρ(z)

|w − wB2ρ(z)|pdx

≤ C

(
ρ

|z − z0|

)β0p  
B|z−z0|/2(z)

|w − wB|z−z0|/2(z)|pdx

≤ C

(
ρ

|z − z0|

)β0p  
B|z−z0|/2(z)

|w|pdx

≤ C

(
ρ

|z − z0|

)β0p  
B3|z−z0|/2(z0)

|w|pdx.

Thus using (3.10) and the case z = z0 ∈ ∂Ω we get
 
B2ρ(z)

|w − wB2ρ(z)|pdx

≤ C

(
ρ

|z − z0|

)β0p

|z − z0|p
 
B3|z−z0|/2(z0)

|∇w|pdx

≤ C

(
ρ

|z − z0|

)β0p

|z − z0|p
(
|z − z0|

r

)(β0−1)p  
Br/2(z0)

|∇w|pdx

≤ C
(ρ
r

)β0p
rp
 
Br(z)

|∇w|pdx,

where the last inequality follows from (3.11). Therefore, in view of (3.12)
we see that  

Bρ(z)
|∇w|pdx ≤ C

(ρ
r

)(β0−1)p
 
Br(z)

|∇w|pdx.

This completes the proof of the lemma. �

Lemmas 3.5 and 3.7 now yield the following boundary version of Lemma
3.4.

Lemma 3.8. With u ∈ W 1, p
0 (Ω), let w be as in (3.4). Then there exists a

constant β0 = β0(n, p, α, β, c0) ∈ (0, 1/2] such that for any t ∈ (0, p] there
holds ( 

Bρ(z)
|∇w|tdx

) 1
t

≤ C(ρ/r)β0−1

( 
Br(z)

|∇w|tdx

) 1
t

for any z ∈ B2R(x0) such that Bρ(z) ⊂ Br(z) ⊂ B2R(x0). Here C =
C(n, p, t, α, β, c0).



14 MORREY GLOBAL BOUNDS AND RICCATI TYPE EQUATIONS

4. Applications of comparison estimates

Our approach to Theorem 1.1 is based on following technical lemma which
allows ones to work with balls instead of cubes. A version of this lemma ap-
peared for the first time in [58]. It can be viewed as a version of the Calderón-
Zygmund-Krylov-Safonov decomposition that has been used in [17, 53]. A
proof of this lemma, which uses Lebesgue Differentiation Theorem and the
standard Vitali covering lemma, can be found in [15] with obvious modifi-
cations to fit the setting here.

Lemma 4.1. Assume that A ⊂ Rn is a measurable set for which there exist
c1, r1 > 0 such that

(4.1) |Bt(x) ∩A| ≥ c1 |Bt(x)|
holds for all x ∈ A and 0 < t ≤ r1. Fix 0 < r ≤ r1 and let C ⊂ D ⊂ A be
measurable sets for which there exists 0 < ε < 1 such that

(1) |C| < ε rn|B1| and
(2) for all x ∈ A and ρ ∈ (0, r], if |C ∩Bρ(x)| ≥ ε |Bρ(x)|, then Bρ(x) ∩

A ⊂ D.
Then we have the estimate

|C| ≤ (c1)−1ε |D|.

We now recall that for a function f ∈ L1
loc(Rn) the Hardy-Littlewood

maximal function of f is defined by

Mf(x) = sup
r>0

 
Br(x)

|f(y)|dy.

It is well known that M is of weak type (1, 1), i.e., there exists a constant
C(n) > 0 such that

(4.2) t|{x ∈ Rn : Mf(x) > t}| ≤ C(n) ‖f‖L1(Rn)

for every t > 0.
We will also use the first order fractional maximal function M1 defined

for each nonnegative locally finite measure ν by

M1(ν)(x) = sup
r>0

r ν(Br(x))

|Br(x)|
, x ∈ Rn.

In order to apply Lemma 4.1 we need the following proposition, whose
proof relies essentially on the comparison estimates obtained in the previous
section.

Proposition 4.2. There exist constants A, θ0 > 1, depending only on n,
p, α, β, c0, so that the following holds for any T > 1 and any λ > 0.
Suppose that u is a solution of (2.1) with A satisfying (1.3)-(1.4). Fix a
ball B0 = BR0 and let 4B0 = B4R0. Assume that for some ball Bρ(y) with
ρ ≤ min{r0, 2R0}/16 we have

Bρ(y) ∩B0 ∩ {M(χ4B0 |∇u|) ≤ λ} ∩ {[M1(χ4B0 |µ|)]
1
p−1 ≤ ε(T )λ} 6= ∅,
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where ε(T ) is defined by

(4.3) ε(T ) =

{
T−pθ0+1 if 2 ≤ p ≤ n,
T (−pθ0+1)/(p−1) if 2− 1

n < p < 2.

Then there holds

(4.4) |{x ∈ Rn : M(χ4B0 |∇u|) > ATλ} ∩Bρ(y)| < T−pθ0 |Bρ(y)|.

Proof. By hypothesis, there exists x0 ∈ Bρ(y) ∩B0 such that for any r > 0

(4.5)

 
Br(x0)

χ4B0 |∇u|dz ≤ λ and r

 
Br(x0)

χ4B0d|µ| ≤ [ε(T )λ]p−1.

Moreover, since 8ρ ≤ R0 we have

B23ρ(y) ⊂ B24ρ(x0) ⊂ 4B0.

We first claim that for x ∈ Bρ(y) there holds

(4.6) M(χ4B0 |∇u|)(x) ≤ max
{
M(χB2ρ(y)|∇u|)(x), 3nλ

}
.

Indeed, for r ≤ ρ we have Br(x) ∩ 4B0 ⊂ B2ρ(y) ∩ 4B0 = B2ρ(y) and thus 
Br(x)

χ4B0 |∇u|dz =

 
Br(x)

χB2ρ(y)|∇u|dz,

whereas for r > ρ we have Br(x) ⊂ B3r(x0) from which by (4.5) yields 
Br(x)

χ4B0 |∇u|dz ≤ 3n
 
B3r(x0)

χ4B0 |∇u|dz ≤ 3nλ.

We now restrict A to the range A ≥ 3n. Then in view of (4.6) we see that
to obtain (4.4) it is enough to show that

(4.7) |{x ∈ Rn : M(χB2ρ(y)|∇u|) > ATλ} ∩Bρ(y)| < T−pθ0 |Bρ(y)|.
Moreover, since |∇u| = 0 outside Ω the later inequality trivially holds

provided B4ρ(y) ⊂ Rn \ Ω. Thus it is enough to consider (4.7) for the case
B4ρ(y) ⊂ Ω and the case B4ρ(y) ∩ ∂Ω 6= ∅.

Suppose for now that u ∈ W 1, p
0 (Ω). First we consider the case that

B4ρ(y) ⊂ Ω. Let w ∈ u + W 1, p
0 (B4ρ(y)) be the unique solution to the

Dirichlet problem

(4.8)

{
div A(x,∇w) = 0 in B4ρ(y),

w = u on ∂B4ρ(y).

By the weak type (1, 1) estimate for the maximal function, see (4.2), we
have∣∣{x ∈ Rn : M(χB2ρ(y)|∇u|) > ATλ} ∩Bρ(y)

∣∣
≤

∣∣{x ∈ Rn : M(χB2ρ(y)|∇w|) > ATλ/2} ∩Bρ(y)
∣∣

+
∣∣{x ∈ Rn : M(χB2ρ(y)|∇u−∇w|) > ATλ/2} ∩Bρ(y)

∣∣
≤ C(ATλ)−pθ0

ˆ
B2ρ(y)

|∇w|pθ0dx+ C(ATλ)−1

ˆ
B2ρ(y)

|∇u−∇w|dx.
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Note that by Lemma 3.1 we have( 
B2ρ(y)

|∇w|pθ0dx

) 1
pθ0

≤ C

 
B4ρ(y)

|∇w|dx

≤ C

 
B4ρ(y)

|∇u|dx+ C

 
B4ρ(y)

|∇u−∇w|dx

and thus

∣∣{x ∈ Rn : M(χB2ρ(y)|∇u|) > ATλ} ∩Bρ(y)
∣∣(4.9)

≤ C(ATλ)−pθ0 |Bρ(y)|

( 
B4ρ(y)

|∇u|dx

)pθ0

+C(ATλ)−pθ0 |Bρ(y)|

( 
B4ρ(y)

|∇u−∇w|dx

)pθ0
+C(ATλ)−1|Bρ(y)|

 
B4ρ(y)

|∇u−∇w|dx.

On the other hand, by Lemma 3.2 we have

 
B4ρ(y)

|∇u−∇w|dx ≤ C
[
|µ|(B5ρ(x0))

ρn−1

] 1
p−1

(4.10)

+C

[
|µ|(B5ρ(x0))

ρn−1

]( 
B5ρ(x0)

|∇u|dx

)2−p

,

where the last term should be dropped when p ≥ 2. Thus by (4.5) and the
definition of ε(T ) we get 

B4ρ(y)
|∇u−∇w|dx ≤ CT−pθ0+1λ

if p ≥ 2 and 
B4ρ(y)

|∇u−∇w|dx ≤ CT (−pθ0+1)/(p−1)λ+ CT−pθ0+1λ

if 2− 1
n < p < 2. In any case, since T > 1, we have

(4.11)

 
B4ρ(y)

|∇u−∇w|dx ≤ CT−pθ0+1λ.

At this point combining (4.9),(4.11) and using T > 1 we find∣∣{x ∈ Rn : M(χB2ρ(y)|∇u|) > ATλ} ∩Bρ(y)
∣∣

≤ (CA−pθ0 + CA−1)T−pθ0 |Bρ(y)|.
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We now choose A so that A ≥ 3n and 2CA−1 ≤ 1/2, i.e., A ≥ max{3n, 4C}.
Then we have∣∣{x ∈ Rn : M(χB2ρ(y)|∇u|) > ATλ} ∩Bρ(y)

∣∣ ≤ (1/2)T−pθ0 |Bρ(y)|,

which in view of (4.6) yields (4.4).

Next, also with u ∈W 1, p
0 (Ω), we consider the case that B4ρ(y)∩ ∂Ω 6= ∅.

Let y0 ∈ ∂Ω be a boundary point such that |y − y0| = dist(y, ∂Ω). Define

w ∈ u+W 1, p
0 (Ω16ρ(y0)) as the unique solution to the Dirichlet problem{

div A(x,∇w) = 0 in Ω16ρ(y0),
w = u on ∂Ω16ρ(y0).

Here we also extend u by zero to Rn \ Ω and then extend w by u to Rn \
Ω16ρ(y0). As in (4.9) in this case we have∣∣{x ∈ Rn : M(χΩ2ρ(y)|∇u|) > ATλ} ∩Bρ(y)

∣∣(4.12)

≤ C(ATλ)−pθ0 |Bρ(y)|

( 
B12ρ(y)

|∇u|dx

)pθ0

+C(ATλ)−pθ0 |Bρ(y)|

( 
B12ρ(y)

|∇u−∇w|dx

)pθ0
+C(ATλ)−1|Bρ(y)|

 
B12ρ(y)

|∇u−∇w|dx,

where Lemma 3.5 is used in stead of Lemma 3.1. Since

B12ρ(y) ⊂ B16ρ(y0) ⊂ B20ρ(y) ⊂ B21ρ(x0) ⊂ 4B0

by Lemma 3.6, as in (4.11), we find

(4.13)

 
B12ρ(y)

|∇u−∇w|dx ≤ CT−pθ0+1λ.

Inequalities (4.12)-(4.13) and the fact that T > 1 now yield∣∣{x ∈ Rn : M(χΩ2ρ(y)|∇u|) > ATλ} ∩Bρ(y)
∣∣

≤ (CA−pθ0 + CA−1)T−pθ0 |Bρ(y)|,

and thus we arrive at∣∣{x ∈ Rn : M(χΩ2ρ(y)|∇u|) > ATλ} ∩Bρ(y)
∣∣ ≤ (1/2)T−pθ0 |Bρ(y)|.

provided A ≥ max{3n, 4C}. The last bound and (4.6) yield (4.4) as desired.

Finally, to remove that assumption u ∈ W 1, p
0 (Ω) we argue via approx-

imation as follows. Let uk = Tk(u) for each integer k > 0. Since u is a

renormalized solution we see that uk ∈W 1, p
0 (Ω) solves

(4.14) − divA(x,∇uk) = µk
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for a finite measure µk in Ω. Moreover, if we extend both µ and µk by zero
to Rn \Ω then µk (resp. |µk|) converges to µ (resp. |µ|) weakly as measures
in Rn (see Remark 2.4). This implies in particular that

(4.15) lim sup
k→∞

|µk|(Br(z)) ≤ |µ|(Br(z))

for any ball Br(z) ⊂ Rn. To show (4.7) it is enough to consider the case
B4ρ(y) ⊂ Ω as the case B4ρ(y) ∩ ∂Ω 6= ∅ is just similar. Now by working
with (4.14) then, instead of (4.10), we have

 
B4ρ(y)

|∇uk −∇wk|dx ≤ C

[
|µk|(B5ρ(x0))

ρn−1

] 1
p−1

+C

[
|µk|(B5ρ(x0))

ρn−1

]( 
B5ρ(x0)

|∇uk|dx

)2−p

and the last term should be dropped when p ≥ 2. Here wk is the solution
of (4.8) with uk in place of u. Thus using (4.5) and (4.15) we have the
following analogue of (4.11)

lim sup
k→∞

 
B4ρ(y)

|∇uk −∇wk|dx ≤ CT−pθ0+1λ,

from which we obtain, for large enough A,

lim sup
k→∞

|{x ∈ Rn : M(χB2ρ(y)|∇uk|) > ATλ} ∩Bρ(y)|(4.16)

≤ (1/2)T−pθ0 |Bρ(y)|.
Then inequality (4.7) (with 2A in place of A) follows from (4.16) by first

observing that

|{x ∈ Rn : M(χB2ρ(y)|∇u|) > 2ATλ} ∩Bρ(y)|
≤ |{x ∈ Rn : M(χB2ρ(y)|∇uk|) > ATλ} ∩Bρ(y)|

+ |{x ∈ Rn : M(χB2ρ(y)|∇u−∇uk|) > ATλ} ∩Bρ(y)|
≤ |{x ∈ Rn : M(χB2ρ(y)|∇uk|) > ATλ} ∩Bρ(y)|

+
C(n)

ATλ

ˆ
Ω∩B2ρ(y)

|∇u−∇uk|dx,

and then taking lim supk→∞. �

Proposition 4.2 can be restated as follows.

Proposition 4.3. There exist constants A, θ0 > 1, depending only on n, p,
α, β, c0, so that the following holds for any T > 1 and any λ > 0. Let u be
a solution of (2.1) with A satisfying (1.3)-(1.4). Fix a ball B0 = BR0 and
let 4B0 = B4R0. Suppose that for some ball Bρ(y) with ρ ≤ min{r0, 2R0}/16
we have

|{x ∈ Rn : M(χ4B0 |∇u|) > ATλ} ∩Bρ(y)| ≥ T−pθ0 |Bρ(y)|.
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Then there holds

Bρ(y) ∩B0 ⊂ {M(χ4B0 |∇u|) > λ} ∪ {[M1(χ4B0 |µ|)]
1
p−1 > ε(T )λ},

where ε(T ) is as defined in (4.3).

We can now apply Lemma 4.1 and the last proposition to get the following
result.

Lemma 4.4. There exist constants A, θ0 > 1, depending only on n, p, α,
β, c0, so that the following holds for any T > 1. Let u be a solution of
(2.1) with A satisfying (1.3)-(1.4). Let B0 be a ball of radius R0. Fix a real
number 0 < r ≤ min{r0, 2R0}/16 and suppose that there exists N > 0 such
that

(4.17) |{x ∈ Rn : M(χ4B0 |∇u|) > N}| < T−pθ0 rn|B1|.

Then for any integer k ≥ 0 there holds

|{x ∈ B0 : M(χ4B0 |∇u|) > N(AT )k+1}|
≤ c(n)T−pθ0 |{x ∈ B0 : M(χ4B0 |∇u|) > N(AT )k}|

+ c(n)|{x ∈ B0 : [M1(χ4B0 |µ|)]
1
p−1 > ε(T )N(AT )k}|,

where ε(T ) is as defined in (4.3).

Proof. Let A and θ0 > 1 be as in Proposition 4.3 and set

C = {M(χ4B0 |∇u|) > N(AT )k+1} ∩B0 and D = D1 ∩B0,

where

D1 = {M(χ4B0 |∇u|) > N(AT )k} ∪ {[M1(χ4B0 |µ|)]
1
p−1 > ε(T )N(AT )k}.

with ε(T ) being as defined in (4.3).
Since AT > 1 the assumption (4.17) implies that |C| < T−pθ0 rn|B1|.

Moreover, if x ∈ B0 and ρ ∈ (0, r] such that |C ∩ Bρ(x)| ≥ T−pθ0 |Bρ(x)|,
then using Proposition 4.3 with λ = N(AT )k we have

Bρ(x) ∩B0 ⊂ D.

Thus the hypotheses of Lemma 4.1 are satisfied with A = B0 and ε =
T−pθ0 (note that condition (4.1) holds for all 0 < t ≤ 2R0). Since T > 1,
this yields

|C| ≤ c(n)T−pθ0 |D|
≤ c(n)T−pθ0 |{x ∈ B0 : M(χ4B0 |∇u|) > N(AT )k}|+

+ c(n) |{x ∈ B0 : [M1(χ4B0 |µ|)]
1
p−1 > ε(T )N(AT )k}|.

�
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5. Lorentz and Lorentz-Morrey estimates

Theorem 5.1. Let 2 − 1
n < p ≤ n and suppose that Ω ⊂ Rn is a bounded

domain whose complement satisfies a p-capacity uniform thickness condition
with constants c0, r0 > 0. Then there exists ε = ε(n, p, α, β, c0) > 0 such that
for any 0 < q < p + ε, and 0 < t ≤ ∞ and for any solution u to (2.1) with
a finite measure µ there holds

‖∇u‖Lq, t(B0) ≤ C R
n
q

0 min{R0, r0/2}−n‖∇u‖L1(4B0)(5.1)

+C
∥∥∥[M1(χ4B0 |µ|)]

1
p−1

∥∥∥
Lq, t(B0)

.

Here B0 = BR0(z0) is any ball with z0 ∈ Ω and R0 > 0, and the constant C
depends only on n, p, q, t, c0.

Proof. Let B0 be a ball of radius R0 > 0 and set r = min{r0, 2R0}/16. As
usual we set u and µ to be zero in Rn \Ω. In what follows we consider only
the case t 6= ∞ as for t = ∞ the proof is similar. Moreover, to prove (5.1)
we may assume that

‖∇u‖L1(B0) 6= 0.

For T > 1 to be determined, we claim that there exists N > 0 such that

|{x ∈ Rn : M(χ4B0 |∇u|)(x) > N}| < T−pθ0 rn|B1|.

To see this, we first use the weak type (1, 1) estimate for the maximal
function, see (4.2), to get

|{x ∈ Rn : M(χ4B0 |∇u|)(x) > N}| < C(n)

N

ˆ
4B0

|∇u|dx.

Then we choose N > 0 so that

(5.2)
C(n)

N

ˆ
4B0

|∇u|dx = T−pθ0 [min{r0, 2R0}/16]n|B1|.

Let A, θ0 > 1 be as in Lemma 4.4 and let ε(T ) be as in (4.3). For
0 < t <∞ we now consider the sum

S =

∞∑
k=1

[
(AT )qk|{x ∈ B0 : M(χ4B0 |∇u|)(x) > N(AT )k}|

] t
q
.

Note that we have

(5.3) C−1 S ≤ ‖M(χ4B0 |∇u/N |)‖
t
Lq, t(B0) ≤ C (|B0|

t
q + S).
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By Lemma 4.4 we find

S ≤ C
∞∑
k=1

[
(AT )qkT−pθ0 |{x ∈ B0 : M(χ4B0 |∇u|)(x) > N(AT )k−1}|

] t
q

+C
∞∑
k=1

[
(AT )qk|{x ∈ B0 : [M1(χ4B0 |µ|)]

1
p−1 > ε(T )N(AT )k−1}|

] t
q

≤ C [(AT )qT−pθ0 ]
t
q (S + |B0|

t
q )

+C1

∥∥∥[M1(χ4B0 |µ|/Np−1)]
1
p−1

∥∥∥t
Lq, t(B0)

.

Thus for q < pθ0, i.e., q < p + ε with ε = p(θ0 − 1), and T sufficiently
large we have

S ≤ C
(
|B0|

t
q +

∥∥∥[M1(χ4B0 |µ|/Np−1)]
1
p−1

∥∥∥t
Lq,t(B0)

)
.

By (5.3) this yields

‖∇u/N‖Lq, t(B0) ≤ C
(
|B0|

1
q +

∥∥∥[M1(χ4B0 |µ|/Np−1)]
1
p−1

∥∥∥
Lq, t(B0)

)
,

and thus by (5.2)

‖∇u‖Lq, t(B0) ≤ C

(
|B0|

1
qN +

∥∥∥[M1(χ4B0 |µ|)]
1
p−1

∥∥∥
Lq, t(B0)

)
≤ C |B0|

1
q [min{r0, 2R0}]−n‖∇u‖L1(4B0)

+C
∥∥∥[M1(χ4B0 |µ|)]

1
p−1

∥∥∥
Lq, t(B0)

.

This gives (5.1) as desired and completes the proof of the theorem. �

The rest of this section is devoted to the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ε0 = min{ε, θ
1−β0

− p} where

ε = ε(n, p, α, β, c0) > 0

is as in Theorem 5.1 and β0 is as in Lemmas 3.4 and 3.8. Note that, as
usual, |∇u| and f are zero outside Ω.

Fix a ball B0 = BR0(z0) with z0 ∈ Ω and 0 < R0 ≤ diam(Ω). Then by
Theorem 5.1 we have

‖∇u‖p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

(5.4)

≤ C R
n(θ−γ)
θγ

0 min{r0/2, R0}−n(p−1)‖∇u‖p−1
L1(4B0)

+C
∥∥∥[M1(χ4B0 |f |)]

1
p−1

∥∥∥p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

.
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Thus further restricting R0 ≤ min{r0/8, diam(Ω)} we find

‖∇u‖p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

≤ C R
n(θ−γ)
θγ

−n(p−1)

0 ‖∇u‖p−1
L1(4B0)

(5.5)

+C
∥∥∥[M1(χ4B0 |f |)]

1
p−1

∥∥∥p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

.

With f̃ = χ4B0 |f |, for any t > 0 and x ∈ B0 we have

t1−n
ˆ
Bt(x)

f̃dy =

(
t−n

ˆ
Bt(x)

f̃dy

)1− γ
θ
(
t
−n+ θ

γ

ˆ
Bt(x)

f̃dy

) γ
θ

≤ C[M(f̃)(x)]1−
γ
θ

(
t
θ−n
γ

∥∥∥f̃∥∥∥
Lγ,∞(Bt(x))

) γ
θ

≤ C[M(f̃)(x)]1−
γ
θ

(
t
θ−n
γ

∥∥∥f̃∥∥∥
Lγ, t(Bt(x))

) γ
θ

≤ C[M(f̃)(x)]1−
γ
θ

(
‖f‖Lγ, t; θ(4B0)

) γ
θ
.

This gives

M1(χ4B0 |f |)(x) ≤ C[M(χ4B0 |f |)(x)]1−
γ
θ

(
‖f‖Lγ, t; θ(4B0)

) γ
θ
,

and thus it can be used to estimate the second term on the right-hand side
of (5.5) yielding∥∥∥[M1(χ4B0 |f |)]

1
p−1

∥∥∥p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

= ‖M1(χ4B0 |f |)‖
L

θγ
θ−γ ,

θt
θ−γ (B0)

≤ C
∥∥∥[M(χ4B0 |f |)]1−

γ
θ

∥∥∥
L

θγ
θ−γ ,

θt
θ−γ (B0)

(
‖f‖Lγ, t; θ(4B0)

) γ
θ

≤ C ‖[M(χ4B0 |f |)]‖
1− γ

θ

Lγ, t(B0)

(
‖f‖Lγ, t; θ(4B0)

) γ
θ
.

Therefore, by the boundedness property of the maximal function we find∥∥∥[M1(χ4B0 |f |)]
1
p−1

∥∥∥p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

(5.6)

≤ C ‖f‖1−
γ
θ

Lγ, t(4B0)

(
‖f‖Lγ, t; θ(4B0)

) γ
θ

≤ CR
(n−θ) θ−γ

θγ

0 ‖f‖Lγ, t; θ(4B0)

≤ CR
(n−θ) θ−γ

θγ

0 ‖f‖Lγ, t; θ(Ω) .

We next aim to estimate the first term on the right-hand side of (5.5).

To that end, we assume for the moment that u ∈W 1, p
0 (Ω). If Br0/4(z0) ⊂ Ω
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we let w ∈ u+W 1, p
0 (Br0/5(z0)) be the unique solution to{

div A(x,∇w) = 0 in Br0/5(z0),
w = u on ∂Br0/5(z0).

Otherwise, i.e., Br0/4(z0) ∩ ∂Ω 6= ∅, we let w ∈ u + W 1, p
0 (Ωr0/2(x0)) be

the unique solution to{
div A(x,∇w) = 0 in Ωr0/2(x0),

w = u on ∂Ωr0/2(x0).

Here x0 ∈ ∂Ω∩Br0/4(z0) is chosen so that |z0−x0| = dist(z0, ∂Ω), and thus
it follows that Br0/5(z0) ⊂ Br0/2(x0).

By Lemmas 3.4 and 3.8 we have in any case and for any 0 < ρ ≤ r0/5
there holds ˆ

Bρ(z0)
|∇w|dx ≤ C(ρ/r0)n+β0−1

ˆ
Br0/5(z0)

|∇w|dx.

Thus it follows thatˆ
Bρ(z0)

|∇u|dx ≤
ˆ
Bρ(z0)

|∇w|dx+

ˆ
Bρ(z0)

|∇u−∇w|dx(5.7)

≤ C(ρ/r0)n+β0−1

ˆ
Br0/5(z0)

|∇w|dx+ C

ˆ
Br0/5(z0)

|∇u−∇w|dx

≤ C(ρ/r0)n+β0−1

ˆ
Br0/5(z0)

|∇u|dx+ C

ˆ
Br0/5(z0)

|∇u−∇w|dx.

On the other hand, by Lemmas 3.2 and 3.6, and using Young’s inequality
in the case 2− 1

n < p < 2 we infer that

ˆ
Br0/5(z0)

|∇u−∇w|dx ≤ C1 r
n
0

[´
Br0/2(z0) |f |dx

rn−1
0

] 1
p−1

+ ε

ˆ
Br0/2(z0)

|∇u|dx,

which holds for all ε > 0, with C1 = C1(n, p, α, β, c0, ε).
Therefore, for some C1 = C(n, p, α, β, c0, ε) and C = C(n, p, α, β, c0) we

have ˆ
Br0/5(z0)

|∇u−∇w|dx

≤ C1r
n
0

rn−n/γ0 ‖f‖Lγ,∞(Br0/2(z0))

rn−1
0


1
p−1

+ Cε

ˆ
Br0/2(z0)

|∇u|dx

≤ C1r
n
0

[
r

1−n/γ
0 ‖f‖Lγ, t(Br0/2(z0))

] 1
p−1

+ Cε

ˆ
Br0/2(z0)

|∇u|dx

≤ C1r
n− θ−γ

γ(p−1)

0

[
‖f‖Lγ, t; θ(Br0/2(z0))

] 1
p−1

+ Cε

ˆ
Br0/2(z0)

|∇u|dx,
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which in view of (5.7) yieldsˆ
Bρ(z0)

|∇u|dx ≤ C
[
(ρ/r0)n+β0−1 + ε

]ˆ
Br0/2(z0)

|∇u|dx(5.8)

+C1r
n− θ−γ

γ(p−1)

0

[
‖f‖Lγ, t; θ(Br0/2(z0))

] 1
p−1

.

Inequality (5.8) holds with u ∈ W 1, p
0 (Ω) for all ε > 0 and 0 < ρ ≤ r0/5.

By means of approximation and using our notion of solutions, as in the proof
of Proposition 4.2, it holds as well without assuming that u ∈ W 1, p

0 (Ω).
Moreover, inequality (5.8) holds also for r0/5 < ρ ≤ r0/2 by enlarging the
constant C if necessary. Thus letting

φ(t) =

ˆ
Bt(z0)

|∇u|dx, t ∈ (0, r0/2],

we find that

(5.9) φ(ρ) ≤ C
[
(ρ/r0)n+β0−1 + ε

]
φ(r0/2) + C1Ar

n− θ−γ
γ(p−1)

0

for all ρ ∈ (0, r0/2], with

A =
[
‖f‖Lγ, t; θ(Br0/2(z0))

] 1
p−1

.

Next we observe that

γ <
θ(p+ ε0)

θ(p− 1) + p+ ε0
⇐⇒ γ

[
θ(p− 1)

p+ ε0
+ 1

]
< θ,

and

ε0 ≤
θ

1− β0
− p⇐⇒ (1− β0)(p− 1) ≤ θ(p− 1)

p+ ε0
.

Thus we have

γ [(1− β0)(p− 1) + 1] < θ,

which is the same as

(5.10) n− θ − γ
γ(p− 1)

< n+ β0 − 1.

Also, since p > 2− 1
n , θ ≤ n, and γ > 1 we have

(5.11) 0 < n− θ − γ
γ(p− 1)

.

With inequalities (5.9)-(5.11) in hands we can now apply Lemma 3.4 in
[39] (as inequality (5.9) also holds with r in place of r0 for any 0 < ρ ≤
r/2 ≤ r0/2) to get

φ(ρ) ≤ C(ρ/r0)
n− θ−γ

γ(p−1)φ(r0/2) + CAρ
n− θ−γ

γ(p−1)

for all ρ ∈ (0, r0/2]. This gives
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ρ
θ−γ
γ(p−1)

−n
ˆ
Bρ(z0)

|∇u|dx(5.12)

≤ Cr
θ−γ
γ(p−1)

−n
0

ˆ
Br0/2(z0)

|∇u|dx+ C
[
‖f‖Lγ, t; θ(Br0/2(z0))

] 1
p−1

≤ C diam(Ω)
θ−γ
γ(p−1)

−n‖∇u‖L1(Ω) + C
[
‖f‖Lγ, t; θ(Ω)

] 1
p−1

,

where C now also depends on diam(Ω)/r0.
On the other hand, from standard estimates for equations with measure

data (see, e.g., [6, 18]) we have

‖∇u‖L1(Ω) ≤ C |Ω|1−
n−1
n(p−1) ‖f‖

1
p−1

L1(Ω)
(5.13)

≤ C |Ω|1−
n−1
n(p−1) |Ω|(1−

1
γ

) 1
p−1 ‖f‖

1
p−1

Lγ, t(Ω)

≤ C diam(Ω)
n− θ−γ

γ(p−1) ‖f‖
1
p−1

Lγ, t; θ(Ω)
,

where we also use p > 2 − 1
n in the last inequality. Therefore, taking ρ =

4R0 ≤ r0/2 in (5.12) and using (5.13) we arrive at

R
θ−γ
γ(p−1)

−n
0

ˆ
B4R0

(z0)
|∇u|dx ≤ C

[
‖f‖Lγ, t; θ(Ω)

] 1
p−1

,

and thus

(5.14) R
n(θ−γ)
θγ

−n(p−1)

0 ‖∇u‖p−1
L1(4B0)

≤ CR
(n−θ) θ−γ

θγ

0 ‖f‖Lγ, t; θ(Ω) .

At this point, using (5.6) and (5.14) in (5.5) we obtain

(5.15) ‖∇u‖p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

≤ CR
(n−θ) θ−γ

θγ

0 ‖f‖Lγ, t; θ(Ω) ,

which holds for all R0 ≤ min{r0/8,diam(Ω)}, with C depending on n, p, γ, θ,
t, c0, and diam(Ω)/r0. Inequality (5.15) also holds for r0/8 < R0 ≤ diam(Ω).
To see this, we first use (5.4) to obtain

‖∇u‖p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

≤ C diam(Ω)
n(θ−γ)
θγ r

−n(p−1)
0 ‖∇u‖p−1

L1(4B0)

+C ‖[M1(χ4B0 |f |)]‖
p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

≤ C diam(Ω)
n(θ−γ)
θγ

−n(p−1)‖∇u‖p−1
L1(4B0)

+C ‖[M1(χ4B0 |f |)]‖
p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

,
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where the second inequality follows since C is allowed to depend on diam(Ω)/r0.
Thus combining the last inequality with (5.13) and (5.6) we arrive at

‖∇u‖p−1

L
θγ(p−1)
θ−γ ,

θt(p−1)
θ−γ (B0)

≤ C diam(Ω)
(n−θ) θ−γ

θγ ‖f‖Lγ, t; θ(Ω)

+CR
(n−θ) θ−γ

θγ

0 ‖f‖Lγ, t; θ(Ω)

≤ CR
(n−θ) θ−γ

θγ

0 ‖f‖Lγ, t; θ(Ω) ,

since r0/8 < R0 ≤ diam(Ω) and C allows to depend on the ratio diam(Ω)/r0.
Therefore, (5.15) holds for all 0 < R0 ≤ diam(Ω), and this completes the

proof of the theorem. �

6. Quasilinear Riccati type equations

In this section, we provide the proofs of Theorems 1.6 and 1.8. We start
with the proof of Theorem 1.6.

Proof of Theorem 1.6. We may assume that f 6≡ 0 for otherwise u ≡ 0
is a valid solution. By Theorem 1.1 there is a constant C0 > 0 such that

(6.1)
∥∥|∇u|p−1

∥∥
L
q(1+δ)
p−1 ;

q(1+δ)
q−p+1 (Ω)

≤ C0 ‖f‖
L1+δ;

q(1+δ)
q−p+1 (Ω)

.

With this C0 we let

c =
q − p+ 1

C0q

(
p− 1

C0q

) p−1
q−p+1

,

and assume that
‖f‖

L1+δ;
q(1+δ)
q−p+1 (Ω)

≤ c,

For a number a ∈ (0, c] let g : [0,∞)→ R be a function defined by

g(t) = (C0 t+ C0 a)
q
p−1 − t.

Then we have g(0) > 0 and limt→∞ g(t) = ∞. Moreover, g′(t) = 0 if and
only if

t = t0 =
1

C0

(
p− 1

C0q

) p−1
q−p+1

− a =
qc

q − p+ 1
− a > 0.

Thus the minimum value of g on [0,∞) is

g(t0) =

(
p− 1

C0q

) q
q−p+1

+ a− 1

C0

(
p− 1

C0q

) p−1
q−p+1

≤
(
p− 1

C0q

) q
q−p+1

− p− 1

C0q

(
p− 1

C0q

) p−1
q−p+1

= 0.

This shows that g has exactly one root T in the interval (0, t0]. We now
choose

a = ‖f‖
L1+δ;

q(1+δ)
q−p+1 (Ω)
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and let

E =

{
v ∈W 1, 1

0 (Ω) : v ∈W 1, q(1+δ)
0 with ‖∇v‖

Lq(1+δ),
q(1+δ)
q−p+1 (Ω)

≤ T
1
q

}
.

It is easy to see from Fatou Lemma that E is closed under the strong topol-
ogy of W 1, 1

0 (Ω). Moreover, since q(1 + δ) ≥ 1 we find that E is convex.
We next consider a map S : E → E defined for each v ∈ E by S(v) = u,

where u ∈W 1, 1
0 (Ω) is the unique renormalized solution to{

−divA(x,∇u) = |∇v|q + f in Ω,
u = 0 on ∂Ω.

Note that by (6.1) we have

‖∇u‖p−1

Lq(1+δ);
q(1+δ)
q−p+1 (Ω)

=
∥∥|∇u|p−1

∥∥
L
q(1+δ)
p−1 ;

q(1+δ)
q−p+1 (Ω)

≤ C0 ‖|∇v|q + f‖
L1+δ;

q(1+δ)
q−p+1 (Ω)

≤ C0(T + ‖f‖
L1+δ;

q(1+δ)
q−p+1 (Ω)

)

= T
p−1
q ,

where in the last inequality we used the fact that T is a root of g. Also,
since u ∈ W 1, 1

0 (Ω) and ∇u ∈ Lq(1+δ)(Ω) we have u ∈ W 1, q(1+δ)(Ω). Now if

1 ≤ q(1 + δ) ≤ p then it is easy to see that u ∈ W 1, q(1+δ)
0 (Ω) using the fact

that Tk(u) ∈ W 1, p
0 (Ω) for every k > 0. On the other hand, if q(1 + δ) > p

then by the condition on Ω there holds the pointwise Hardy’s inequality

|u(x)| ≤ cdist(x, ∂Ω)(M(|Du|p)(x))1/p a.e.

(see [46]). Thus using the boundedness of M on L
q(1+δ)
p we see that

u(·)/dist(·, ∂Ω) ∈ Lq(1+δ)(Ω),

which yields that u ∈W 1, q(1+δ)
0 (Ω) (see [26, p. 223] and [46]). We can now

conclude that u = S(v) ∈ E.
Therefore, if we can show that the map S : E → E is continuous and S(E)

is precompact under the strong topology of W 1, 1
0 (Ω) then by Schauder Fixed

Point Theorem (see, e.g., [33, Corollary 11.2]) S has a fixed point in E. This
gives a solution u to problem (1.2) as desired. We will achieve the continuity
and compactness of S in the next lemma, and thus completes the proof of
the theorem. �

Lemma 6.1. The map S : E → E is continuous and S(E) is precompact

under the strong topology of W 1, 1
0 (Ω).

Proof. We first show the continuity of S. Let {vj} be a sequence in E such

that vj converges strongly in W 1, 1
0 (Ω) to a function v ∈ E. We need to show

that S(vj)→ S(v) strongly in W 1, 1
0 (Ω). With uj = S(vj), we have
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{
−divA(x,∇uj) = |∇vj |q + f in Ω,

uj = 0 on ∂Ω,
(6.2)

with

(6.3) ‖∇vj‖Lq(1+δ)(Ω) ≤ C.

Let {vj′} be a subsequence of {vj} such that ∇vj′ → ∇v almost every-
where. Then by (6.3) and Vitali Convergence Theorem we have ∇vj′ → ∇v
strongly in Lq(Ω). As the limit is independent of the subsequence, we see
that ∇vj → ∇v strongly in Lq(Ω).

Therefore, by the stability result of renormalized solutions [18, Theorem

3.4] there exists a subsequence {uj′} and a function u ∈W 1, 1
0 (Ω) such that

uj′ → u a.e. in Ω, where u is the unique renormalized solution to{
−divA(x,∇u) = |∇v|q + f in Ω,

u = 0 on ∂Ω.

Note that by the proof of Theorem 3.4 in [18] (see also [9, 11]) we also
have

(6.4) ∇uj′ → ∇u a.e. in Ω.

Thus u = S(v) and since

(6.5) ‖∇uj‖
L
n(p−1)
n−1 ,∞

(Ω)
≤ C,

with n(p−1)
n−1 > 1, by Vitali Convergence Theorem uj′ (and hence uj) con-

verges strongly to u in W 1, 1
0 (Ω), which gives the continuity of S.

Similarly, we can show that the set S(E) is precompact under the strong

topology of W 1, 1
0 (Ω). Indeed, if {uj} = {S(vj)} is a sequence in S(E) where

{vj} ⊂ E, then we have (6.2), (6.3), and (6.5). By (6.3) and again arguing
as in the proof of [18, Theorem 3.4] one can find a subsequence {uj′} and a

function u ∈ W 1, 1
0 (Ω) such that the pointwise a.e. convergence (6.4) holds.

Thus (6.5) and Vitali Convergence Theorem yield that uj′ strongly converges

to u in W 1, 1
0 (Ω).

This completes the proof of Lemma 6.1. �

Finally, we prove Theorem 1.8.

Proof of Theorem 1.8. Recall that for each g ∈ Ls,∞(Ω), s > 1, if we set

|||g|||Ls,∞(Ω) := sup{|E|
1−s
s

ˆ
E
|g|dx : E ⊂ Ω, |E| > 0},

then ||| · ||| is a norm on Ls,∞(Ω) with

‖g‖Ls,∞(Ω) ≤ |||g|||Ls,∞(Ω) ≤
s

s− 1
‖g‖Ls,∞(Ω) .
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Thus letting

E =

{
v ∈W 1, 1

0 (Ω) : |||∇v|||
L
n(p−1)
n−1 ,∞

(Ω)
≤ T

1
q

}
,

with T > 0 to be chosen, we see that E is a closed and convex set of W 1, 1
0 (Ω).

Let f now be a finite measure in Ω. We observe that it is enough to prove
the theorem for f ∈ M0(Ω). The general result follows by approximation
and the stability result of [18]. Thus for each v ∈ E there is a unique

renormalized solution u ∈W 1, 1
0 (Ω) to

{
−divA(x,∇u) = |∇v|q + f in Ω,

u = 0 on ∂Ω.

We then let S : E → E be defined by S(v) = u. By Remark (2.5) we have

|||∇u|||p−1

L
n(p−1)
n−1 ,∞

(Ω)

≤ C(‖|∇v|q‖L1(Ω) + |f |(Ω))

≤ A

[
|Ω|1−

q(n−1)
n(p−1) |||∇v|||q

L
n(p−1)
n−1 ,∞

(Ω)

+ |f |(Ω)

]

≤ A

[
|Ω|1−

q(n−1)
n(p−1)T + |f |(Ω)

]
.

Thus if T is the smallest positive root of the equation[
C1 t+ C1 |Ω|

q(n−1)
n(p−1)

−1|f |(Ω)

] q
p−1

− t = 0,

where C1 = A|Ω|1−
q(n−1)
n(p−1) then we find

|||∇u|||
L
n(p−1)
n−1 ,∞

(Ω)
≤ T

1
q .

This justifies that S(v) ∈ E. It is easy to see that the existence of T is
guaranteed if (1.9) holds for some appropriate constant c, and in that case
one has

T ≤ |Ω|
q(n−1)
n(p−1)

− q
n(q−p+1)

[
qc

q − p+ 1
− |Ω|

q
n(q−p+1)

−1|f |(Ω)

]
.

Now arguing as in the proof of Lemma 6.1 we see that S is continuous
and precompact under the strong topology of W 1, 1

0 (Ω). Thus it has a fixed
point in E and the proof is complete. �
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[9] L. Boccardo and T. Gallöuet, Nonlinear elliptic equations with right-hand side mea-
sures, Comm. Partial Differential Equations 17 (1992), 641–655.
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