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MORSE ESTIMATES FOR TRANSLATED POINTS ON UNIT

TANGENT BUNDLES

SIMON ALLAIS

Abstract. In this article, we study conjectures of Sandon on the minimal number
of translated points in the special case of the unit tangent bundle of a Riemannian
manifold. We restrict ourselves to contactomorphisms of SM that lift diffeomor-
phisms of M homotopic to identity. We prove that there exist sequences (pn, tn)
where pn is a translated point of time-shift tn with tn → +∞ for a large class of
manifolds. We also prove Morse estimates on the number of translated points in
the case of Zoll Riemannian manifolds.

1. Introduction

In this article, we study conjectures essentially due to Sandon on the minimal
number of translated points in the special case of the unit tangent bundle of a Rie-
mannian manifold. Let us recall the definition of translated points. Let (V 2n−1, α)
be an oriented contact manifold with a fixed contact form α (i.e. α ∧ (dα)n−1 does
not vanish). A contactomorphism ϕ ∈ Cont(V, α) is a diffeomorphism of V such
that ϕ∗α = egα for some g : V → R. A point p ∈ V is a discriminant point of ϕ
if and only if it is fixed by ϕ and g(p) = 0 (this definition does not depend on the
choice of the contact form associated with ker α). Let (φα

t ) be the Reeb flow of α.
A point p ∈ V is a translated point of ϕ if and only if it is a discriminant point of
φα

−t ◦ ϕ for some t ∈ R called a time-shift of p. Similarly to the Hamiltonian case,
using a Weinstein neighborhood of the graph of the identity, one can prove that
for every contactomorphism of a closed contact manifold ϕ ∈ Cont(V, α) which is
C1-close to the identity,

#{p ∈ V | p is a translated point of ϕ} ≥ min
f∈C∞(V,R)

# Crit(f), (1)

where Crit(f) denotes the set of critical points of f [24]. Moreover, if the Reeb
flow is periodic, this inequality is sharp (see e.g. the introduction of [3]). In
[24], Sandon proved that this inequality still holds without the “C1-close” assump-
tion, as long as ϕ is isotopic to the identity in the case of the real projective
spaces RP2n−1 = S

2n−1/(z ∼ −z) endowed with the contact form induced by
α0 = 1

2
(xdy − ydx) ∈ Ω1(S2n−1). Therefore, Sandon asked the following question,

where Cont0(V, α) denotes the set of contactomorphisms isotopic to the identity.

Question 1. Given a closed contact manifold endowed with a contact form (V, α),
does every ϕ ∈ Cont0(V, α) satisfy (1)?
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2 S. ALLAIS

Similarly to the Arnol’d conjecture, one can ask weaker estimates on the number
of translated points, using the cup-length estimate or the category estimate of the
Lusternik-Schnirelmann theory. Another variation of Question 1 can be asked for
the non-degenerate contactomorphisms (see below), replacing the estimate on the
minimal number of critical points of any f : M → R by an estimate on the minimal
number of critical points a Morse map can have. As mentioned earlier, Sandon
proved that Question 1 is true for (RP2n−1, α0) [24]. We proved that this is also
the case for every quotient L2n−1

k (w) of (S2n−1, α0) by free Z/kZ-actions of the form
(zj) 7→ (e2iπwj/kzj) (with k ≥ 2) in [3], improving an estimate of Granja-Karshon-
Pabiniak-Sandon [12]. The question was also positively answered by the work of
Albers-Fuchs-Merry [2] completed by Meiwes-Naef [19] in the case of hypertight
contact manifolds (i.e. such that all Reeb orbits are non-contractible for some
contact form supporting the contact structure) for generic contactomorphisms with
a Morse estimate.

This first question seems better suited for contact manifolds all of whose Reeb
orbits are closed: the so-called Besse contact manifolds. A result of Granja-Karshon-
Pabiniak-Sandon suggests a second question that could cover a greater class of con-
tact manifolds.

Question 2. Given a closed contact manifold endowed with a contact form (V, α),
does every ϕ ∈ Cont0(V, α) possess a sequence of couples (pn, tn) ∈ V × R with
tn → +∞ such that pn is a translated point of ϕ with time-shift tn?

Let us remark that the Weinstein conjecture is satisfied by the (V, α)’s satisfying
the conclusion of Question 2 (by taking ϕ = φα

1 ). Let us further remark that a Besse
contact manifold answering Question 1 positively also answers Question 2 positively.
Granja-Karshon-Pabiniak-Sandon answered positively Question 2 for (L2n−1

k (w), α),
α being any contact form supporting the same contact structure as the quotient of
α0.

In this paper, we want to give motivations that Question 1 should be answered
positively for unit tangent bundles of Riemannian manifolds, all of whose geodesics
are closed and of same prime length whereas Question 2 should be answered pos-
itively for every unit tangent bundle. In order to do so, we will prove that this is
indeed the case in a weak sense for a subclass of contactomorphisms of SM : the
contactomorphic lift of the diffeomorphisms of M .

Let M be a Riemannian manifold, its unit tangent bundle SM is a contact man-
ifold for the contact form α:

α(x,v) · ξ = 〈v, dπx · ξ〉, ∀(x, v) ∈ SM, ∀ξ ∈ T(x,v)SM,

where π : SM → M is the bundle map and 〈·, ·〉 is the Riemannian metric. Given
a diffeomorphism f : M → M , we denote f̃ : SM → SM the associated contacto-
morphism

f̃(x, v) :=

(
f(x),

df−T
x · v

‖df−T
x · v‖

)
, ∀(x, v) ∈ SM,

where df−T denotes the inverse of the adjoint dfT . We will study the minimal
number of translated points of f̃ for f homotopic to the identity. The notion of
translated points of f̃ with time-shift t can be naturally generalized to smooth maps
f : M → M (and not only diffeomorphisms) in such a way that, in particular, a
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translated point of a diffeomorphism f : M → M with time-shift t is exactly a
translated point of the contactomorphism f̃ with time-shift t.

Definition 1.1. A point (x, v) ∈ SM is a translated point of f : M → M with
time-shift t 6= 0 if their exists a geodesic γ : [0, 1] → R of length |t| such that





γ̇(0) = v‖γ̇(0)‖ and dfT
x · γ̇(1) = γ̇(0) when t > 0,

γ̇(1) = v‖γ̇(1)‖ and dfT
x · γ̇(0) = γ̇(1) when t < 0;

it is a translated point with time-shift t = 0 if dfT
x · v = v (in particular, f(x) = x).

The correspondence between translated points of f̃ and translated points of f is
due to the fact that the Reeb flow of SM is the geodesic flow (see e.g. [22, §1.3.3]).
We give the following partial answer to Question 2.

Theorem 1.2. Let M be a closed Riemannian manifold that has a finite cover M̃ ,
the singular homology group H∗(ΛM̃) of the free loop space of which is not finitely
generated. Every smooth map f : M → M homotopic to the identity admits a
sequence of couples (pn, tn) ∈ SM × (0, +∞) with tn → +∞ such that pn is a
translated point of f with time-shift tn.

The assumption on M that H∗(ΛM̃) is not finitely generated is satisfied by a large
class of closed Riemannian manifolds (in fact, the author does not know if there are
counter-examples). On the one hand, when the number of conjugacy classes of
π1(M) is infinite, the group H0(ΛM) is already not finitely generated. On the other

hand, when π1(M) is finite, Vigué-Poirrier and Sullivan proved that H∗(ΛM̃) is

not finitely generated for the universal cover M̃ [25]. Therefore, the only possible
counter-examples are among the closed manifolds that have an infinite fundamental
group with a finite number of conjugacy classes.

Our most satisfying answer to Question 1 concerns the non-degenerate case. Let
us first discuss the notion of non-degenerate translated points. Let (Gt) be the

geodesic flow of TM and, for a diffeomorphism f : M → M , let f̂ : TM → TM
be its symplectic lift f̂(x, v) = (f(x), df−T · v). In our particular case, a translated
point p ∈ SM of a contactomorphic lift f̃ of a diffeomorphism f : M → M is
non-degenerate for its time-shift t ∈ R if and only if d(G−t ◦ f̂)(p) does not have
1 as an eigenvalue. One can check that this definition coincides with the definition
given by Sandon in the general setting [24]. Similarly to the definition of translated
points, one can extend this notion to any smooth map M → M (for simplicity, we
only give the definition for positive time-shifts).

Definition 1.3. A translated point (x, v) of f : M → M is non-degenerate for the
time-shift t > 0 if the subspace of the Jacobi fields J along the associated geodesic
γ satisfying





J(1) = df · J(0),

(d2f · J(0))T · γ̇(1) = J̇(0) − dfT
x · J̇(1),

is reduced to 0 (the linear morphism d2f · J(0) denotes u 7→ d2f [J(0), u], see Sec-
tion 2.4).
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The equivalence of both definitions in the case of diffeomorphisms is proven in
Proposition 2.8. We give the following partial answer to Question 1 in the non-
degenerate case. Let us recall that a Riemannian manifold M is called Zoll (of
length ℓ) if all its geodesics are closed and of the same prime length (equal to ℓ).

Theorem 1.4. Let M be a closed Zoll Riemannian manifold and let R := Z if
M is orientable and R := Z/2Z otherwise. For every smooth map f : M → M
homotopic to the identity with finitely many translated points in SM all of which
are non-degenerate, the number of translated points is not less than

∑
j βj(SM ; R),

where βj(SM ; R) = rank Hj(SM ; R) denotes the j-th Betti number of SM .

In the degenerate case, our result is less satisfying as it requires a C0-closeness
assumption. Let us recall that the cup-length CL(X; R) ∈ N of a space X is the
maximal k such that u1 ⌣ · · · ⌣ uk 6= 0 for some non-zero uj ∈ H∗(X; R) of positive
degree. By a H1-homotopy (fs) of maps M → M , we will mean that t 7→ ft(x) is in
the Sobolev space H1([0, 1], M) for all x ∈ M . The set of time-shifts of f : M → M
will denote the set of t ∈ R that are time-shifts of a translated point; when M is
Zoll of length ℓ, this set is ℓZ-invariant so it can be seen as a subset of R/ℓZ.

Theorem 1.5. Let M be a closed Zoll Riemannian manifold of length ℓ and let
R := Z if M is orientable and R := Z/2Z otherwise. Let (fs) be a H1-homotopy of
maps M → M such that f0 = id and

∫ 1

0
‖∂tft(x)‖2dt <

(
ℓ

2

)2

, ∀x ∈ M.

If the number of time-shifts of f1 seen in R/ℓZ is less than 1 + CL(SM ; R), then f1

has infinitely many translated points. In particular, the number of translated points
of f1 is not less than 1 + CL(SM ; R).

The only closed Zoll Riemannian manifolds known by the author are diffeomorphic
to the compact rank-one symmetric spaces: Sn, RPn, CPn, HPn and CaP2 (see
however [5] for examples of manifolds with exotic structures all of whose geodesics
starting from a special point go back to this point at the same length). According
to a result of Bott and Samelson, every Zoll Riemannian manifold has a cohomology
ring isomorphic to the cohomology ring of one of these spaces [7, 23]. Let us refer
to [6] for a comprehensive introduction to the theory of Zoll and Besse Riemannian
manifolds. Let us also point out that the study of Besse Riemannian manifolds and
more generally of Besse contact forms from the variational viewpoint has recently
known significant advances [1, 10, 18].

The proofs of this article are based on a rather classical variational principle that
goes back to Grove [13]. Indeed, we remark in Section 2.1 that geodesics correspond-
ing to translated points of positive time-shift are exactly the critical points of the
restriction of the energy functional to paths γ : [0, 1] → M such that f(γ(0)) = γ(1).
This variational principle was initially applied in the specific case where f is an isom-
etry in order to study isometry-invariant geodesics [13, 14, 16, 17, 4, 15].

Theorem 1.2 is a direct application of Morse theory. Theorems 1.4 and 1.5 are
more subtle consequences of Morse and Lusternik-Schnirelmann theories. In order
to translate the symmetry (p, t) 7→ (p, t + ℓ) of the set of couples (translated point,
associated time-shift), we make use of the Chas-Sullivan product [9]. More precisely,
we apply the results of Goresky-Hingston concerning the product-structure of the
homology groups of the free loop space of Zoll Riemannian manifolds [11].
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Organization of the paper. In Section 2, we study the variational principle satis-
fied by translated points of positive time-shifts and prove Theorem 1.2. In Section 3,
we study the special case of Zoll Riemannian manifolds and prove Theorems 1.4 and
1.5.

Acknowledgment. I am grateful to Margherita Sandon and to my former advisor
Marco Mazzuchelli for their supports and fruitful discussions and suggestions.

2. The variational principle

2.1. The variational principle. Let M be a closed Riemannian manifold. We will
denote P M := H1([0, 1], M) the path space of M endowed with its usual structure
of Hilbert manifold (here H1 denotes the Sobolev space also denoted W 1,2). Given
f : M → M , let

Λ(f) := {γ ∈ P M | γ(1) = f(γ(0))} ;

in particular Λ(id) = ΛM is the free loop space of M . We will also use the notation
Λf for Λ(f) and Λ for ΛM . This space was already introduced in [13] as ΛG(f)M ,
we refer to this article for details in the properties recalled here. The space Λ(f)
is a Hilbert-submanifold as γ 7→ (γ(0), γ(1)) is a submersion. Given γ ∈ Λ(f), a
vector U ∈ TγΛ(f) is a H1-vector field along γ satisfying df · U(0) = U(1). Let us
denote E : P M → R the energy functional,

E(γ) :=
∫ 1

0
‖γ̇‖2dt,

and Ef : Λ(f) → R the restriction to Λ(f) for f : M → M . According to [13,
Theorem 2.4], the functional Ef satisfies the Palais-Smale condition.

Let us denote ∇ the Levi-Civita covariant derivative of M . Taken along a curve
t 7→ c(t), the covariant derivative of the vector field X will be either denoted ∇ċX,
DX
∂t

or Ẋ (this last notation is reserved to the time variable t). By convention, a
geodesic will always mean a geodesic with constant speed: γ ∈ P M is a geodesic if
and only if

∇γ̇ γ̇ = γ̈ = 0.

Proposition 2.1. Given f : M → M , γ ∈ Λ(f) is a critical point of Ef if and only
if γ is a geodesic and df⊥

γ(0) · γ̇(1) = γ̇(0).

Proof. Let γ ∈ Λ(f), let U ∈ TγΛ(f) and let (γu) be a smooth family in Λ(f) such
that U = ∂uγu (the derivative being taken at u = 0). Then

1

2
dE(γ) · U =

∫ 1

0

〈
D

∂u
γ̇u, γ̇

〉
dt =

∫ 1

0

〈
U̇ , γ̇

〉
dt =

[
〈U, γ̇〉

]1
0

−
∫ 1

0
〈U, γ̈〉 dt.

As df · U(0) = U(1), one has
[
〈U, γ̇〉

]1
0

= 〈U(0), dfT · γ̇(1) − γ̇(0)〉.

The identity dEf (γ) · U = 0 for the vector fields along γ such that U(0) = 0 implies
that γ̈ = 0, i.e. γ is a geodesic. The identity dEf (γ) · U = 0 for every U ∈ TγΛ(f)
then implies that dfT · γ̇(1) = γ̇(0) (although we will often write dfT without
mention of the base point of M at which we take the adjoint, we point out that this
notation can be ambiguous as dfT is define on f ∗TM rather than TM). �
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Corollary 2.2. For every diffeomorphism f : M → M , critical points of Ef with

energy value e > 0 are in bijection with translated points (x, v) of f̃ with time-shift√
e.

As the correspondence suggests, we will rather be interested in the values of the

functional Pf :=
√

Ef (which is C1 away from {Ef = 0}) as they correspond to

time-shifts at critical points with positive critical values. For every λ ≥ 0, let Λ<λ
f

and Λ≤λ
f be the respective subsets {Pf < λ} and {Pf ≤ λ} of Λ(f); when λ2 is not

a critical value of Ef , these subsets are submanifolds (with boundary in the second
case).

2.2. The topology of Λ(f). Let us first extend the join of loops defined in [11,
§2.3] to the spaces Λ(f), for f : M → M smooth, in the obvious way. Let us define
the submanifold

P M ×M P M := {(α, β) ∈ P M × P M | α(1) = β(0)}
as well as Λ(f) ×M Λ(g) := (Λ(f) × Λ(g)) ∩ (P M ×M P M). The concatenation
φ : P M ×M P M → P M will denote the following continuous map:

φ(α, β)(t) :=





α( t
s
), t ∈ [0, s]

β( t−s
1−s

), t ∈ [s, 1]
, where s =

√
E(α)

√
E(α) +

√
E(β)

,

in the case E(α) = E(β) = 0, both paths α and β are constant ≡ p and one sets
φ(α, β) ≡ p. This map satisfies

√
E(φ(α, β)) =

√
E(α) +

√
E(β). (2)

The concatenation φ is associative: for every α, β, γ ∈ P M such that α(1) = β(0)
and β(1) = γ(0),

φ(φ(α, β), γ) = φ(α, φ(β, γ)). (3)

By restriction, one gets a continuous map φ : Λ(f) ×M Λ(g) → Λ(g ◦ f) satisfying
Pg◦f(φ(α, β)) = Pf(α) + Pg(β), for every f, g : M → M .

Let (fs)s∈[0,1] be a H1-homotopy of smooth maps M → M , i.e. such that s 7→
fs(x) is in P M for all x ∈ M . It induces the following map τ(fs) : Λ(f0) → Λ(f1),

τ(fs)(α) := φ
(
α, t 7→ ft(α(0))

)
.

Let

δ(fs) := sup
x∈M

√
E(t 7→ ft(x)),

then τ(fs) : Λ≤λ
f0

→ Λ
≤λ+δ(fs)
f1

according to (2). Following the same lines as [13,
Lemma 3.6] for the more usual concatenation of continuous paths, one proves the
following counterpart for φ.

Lemma 2.3 ([13, Lemma 3.6]). Let (fs)s∈[0,1] be a homotopy of smooth maps M →
M such that s 7→ fs(x) is in P M for all x ∈ M . Then τ(fs) and τ(f1−s) are
homotopy inverses.

In particular, when f : M → M is homotopic to identity, Λ(f) is homotopy
equivalent to the free loop space ΛM whereas when f : M → M is homotopic to a
constant, Λ(f) is homotopy equivalent to a point.
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Corollary 2.4. Under the hypothesis of Lemma 2.3, the maps τ(fs) and τ(f1−s)
induce a δ(fs)-interleaving between the persistence modules t 7→ H∗(Λ<t

fj
), j ∈ {0, 1},

i.e., for all t ≥ 0, the induced morphisms




τ(fs)∗ : H∗(Λ
<t
f0

) → H∗(Λ
<t+δ(fs)
f1

),

τ(f1−s)∗ : H∗(Λ
<t
f1

) → H∗(Λ
<t+δ(fs)
f0

),

commute with the inclusion morphisms (the same is true for t 7→ H∗(Λ
≤t
fj

)).

2.3. Proof of Theorem 1.2. The following fact is well-known to the experts when
f = id (and this case will be enough for us).

Lemma 2.5. Given f : M → M , for every λ ≥ 0, the image of the inclusion
morphism H∗(Λ

≤λ
f ) → H∗(Λf ) is finitely generated.

Proof. Let f : M → M . It is enough to prove that for every λ ≥ 0, the inclusion
morphism H∗(Λ

≤λ
f ) → H∗(Λ

≤K
f ) is finitely generated for some K ≥ λ. Let K > 0 be

a regular value of Ef . Using a subspace of broken geodesics, one can retract Λ≤K
f on

a finite-dimensional submanifold N with a retraction r : Λ≤K
f → N by deformation

such that Ef ◦ r ≤ Ef and the critical points of Ef are exactly the critical points of
g := Ef ◦ r (see e.g. [20, §16]). Therefore, the desired result boils down to proving
that the image of the homology morphism induced by {g ≤ λ} →֒ N has a finitely
generated image for g : N → R a map on a finite-dimensional manifold satisfying
the Palais-Smale condition. As this property is C0-open, one can assume that g is a
Morse map satisfying the Palais-Smale condition (one can adapt indeed the proof of
[21, Theorem 2.7] using the fact that the critical set of g in {g ≤ λ} is compact and
the norm of dg is uniformly bounded from below outside any neighborhood of this
set). The Palais-Smale condition then implies that {g ≤ λ} contains only a finite
number m ∈ N of critical points (which are non-degenerate), so H∗({g ≤ λ}) can
be generated by m elements. �

Proof of Theorem 1.2. Let us first prove that one can assume M = M̃ . Let us
assume that the theorem is true for a finite Riemannian cover q : M̃ → M satisfying
the homological hypothesis. Let f = f1 : M → M be homotopic to the id = f0

through (ft). By applying the homotopy lifting property to (ft ◦ q) one gets a

homotopy (f̃t) in M̃ → M̃ from the identity to a map f̃1 commuting with f . If

(p̃n, tn) is a sequence of M̃ ×R satisfying the conclusion of the theorem for f̃1, then
(q(p̃n), tn) is the desired sequence for f .

Let us now assume that M = M̃ . Let f : M → M be a smooth map homotopic
to the identity. According to Lemma 2.3, H∗(Λ(f)) is isomorphic to H∗(ΛM) which

is not finitely generated. Therefore, Lemma 2.5 implies that H∗(Λ
≤λ
f ) → H∗(Λf)

is never onto for λ ∈ [0, +∞). According to the Morse deformation lemma, there
exists a sequence (tn) of positive critical values with tn → +∞. The conclusion
follows from Corollary 2.2. �

2.4. Non-degeneracy of a translated point. In this section, we show the equiv-
alence between the non-degeneracy of a translated point in the sense of contact
geometry and the non-degeneracy of the associated critical point of Ef .

Let us denote R the Riemann tensor defined by

R(X, Y ) := [∇X , ∇Y ] − ∇[X,Y ],
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so that a vector field J along γ is a Jacobi field if and only if

J̈ = R(γ̇, J)γ̇.

Let us also recall that the second derivative d2f of a map f : M → N is well-defined
as ∇(df), i.e. by the tensorial expression: for all vector fields X, Y ,

d2f [X, Y ] := X · (Y · f) − df · ∇XY.

Let us recall that the Hessian d2Ef(γ) of the energy functional is well-defined at
a critical point γ (see e.g. [20, §13]).

Proposition 2.6. Let γ ∈ Λ(f) be a critical point of Ef , for every U, V ∈ TγΛ(f),

1

2
d2Ef (γ)[U, V ] =

∫ 1

0

[
R(V, γ̇)U, γ̇) + 〈U̇ , V̇ 〉

]
dt + 〈d2fγ(0)[U(0), V (0)], γ̇(1)〉.

Proof. Let U, V ∈ TγΛ(f) and let (γu,v) be a smooth family of Λ(f) such that
γ0,0 = γ, U = ∂uγu,0, V = ∂vγ0,v (the partial derivatives being taken at 0). Then

1

2
d2Ef(γ)[U, V ] =

∫ 1

0

∂

∂v

〈
D

∂u
γ̇u,v, γ0,v

〉
dt

=
∫ 1

0

[〈
D2

∂v∂u
γ̇u,v, γ̇

〉
+
〈

D

∂u
γ̇u,0,

D

∂v
γ̇0,v

〉]
dt

=
∫ 1

0

[
〈R(V, γ̇)U, γ̇〉 + 〈U̇ , V̇ 〉

]
dt +

[
〈∇V U, γ̇〉

]1
0
.

By derivating the identity f(γu,v(0)) = γu,v(1), one gets

d2fγ(0)[V (0), U(0)] + dfγ(0) · ∇V U(0) = ∇V U(1),

so that, using dfT · γ̇(1) = γ̇(0),
[
〈∇V U, γ̇〉

]1
0

= 〈∇V U(1) − df · ∇V U(0), γ̇(1)〉 = 〈d2f [U(0), V (0)], γ̇(1)〉.

�

Corollary 2.7. Let γ ∈ Λ(f) be a critical point of Ef , a vector field J ∈ TγΛ(f)
belongs to the kernel of the quadratic form d2Ef (γ) if and only if J is a Jacobi field
satisfying

(d2f · J(0))T · γ̇(1) = J̇(0) − dfT · J̇(1),

where d2f · J(0) denotes the linear morphism Tγ(0)M → Tγ(1)M , u 7→ d2f [J(0), u].

In particular, the kernel of d2Ef(γ) has a dimension bounded by 2 dim M − 1.
Indeed, the vector space of Jacobi fields of γ has dimension 2 dim M , and J ∈ TγΛ(f)
implies that J(1) = 0 if J(0) = 0, so, for instance, the Jacobi field J(t) = tγ̇(t) does
not belong to TγΛ(f).

Proof. Let J ∈ ker d2Ef (γ). Applying Proposition 2.6 with U := J and every vector
field V with V (0) = 0, one proves that J is a Jacobi field in a classical manner. The
conclusion now follows from the identity ∀V ∈ TγΛ(f),
∫ 1

0
〈J̇ , V̇ 〉dt = [〈J̇ , V 〉]10 −

∫ 1

0
〈J̈, V 〉dt = 〈dfT · J̇(1) − J̇(0), V (0)〉 −

∫ 1

0
〈J̈ , V 〉dt.

�
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Proposition 2.8. Let f : M → M be a diffeomorphism, a translated point (x, v) ∈
SM of f̃ is non-degenerate for the time-shift t > 0 if and only if the associated
geodesic γ ∈ Λ(f) of length t is a non-degenerate critical point of Ef .

Proof. We will need the following differential identity: for every diffeomorphism
f : M → M and every vector field U of M ,

∇U(df−T ) = −df−T · (∇Udf)T · df−T . (4)

This identity can be derived by taking the covariant derivative of the identity df−T ·
dfT = id (id meaning the section x 7→ idTxM) and using ∇U(dfT ) = (∇Udf)T

(which can be obtained by derivating the definition of the adjoint operator).

Let f : M → M be a diffeomorphism and let f̂ : TM → TM be its symplectic
lift,

f(x, v) = (f(x), df−T
x · v), ∀(x, v) ∈ TM.

The differential of f̂ at (x, v) ∈ TM is

df̂(x,v) · (ξ1, ξ2) =
(
dfx · ξ1, df−T

x · ξ2 + ∇ξ1
(df−T ) · v

)
, ∀ξ1, ξ2 ∈ TxM,

where the identification T(x,v)TM ≃ TxM × TxM is given by the Levi-Civita con-

nection (see e.g. [22, §1.3.1]). Let (x, v) ∈ SM be a translated point of f̃ for the
time-shift t > 0 and γ ∈ Λ(f) be the associated geodesic of length t. It is non-

degenerate if and only if d(f̂ ◦ G−t)Gt(x,v) does not have 1 as an eigenvalue. We
recall that, for t > 0,

(dG−t)Gt(x,v) ·
(

J(1),
1

t
J̇(1)

)
=
(

J(0),
1

t
J̇(0)

)
,

for every Jacobi field J along γ (the t−1 factor being due to the reparametrization,
see e.g. [22, §1.5]). Since J 7→ (J(1), J̇(1)) is an isomorphism and tv = γ̇(0), (x, v)
is degenerate if and only if there exists a Jacobi field J along γ such that





df · J(0) = J(1),

df−T · J̇(0) + ∇J(0)(df−T ) · γ̇(0) = J̇(1).
(5)

The first equation of (5) means that J ∈ TγΛ(f). Using identity (4) and df−T ·γ̇(0) =
γ̇(1), the second equation of (5) becomes

df−T · J̇(0) − df−T · (∇J(0)df)T · γ̇(1) = J̇(1).

Finally, applying dfT to this last equation, we find the equation of Corollary 2.7. �

3. The Zoll case

3.1. The Chas-Sullivan product. Let us recall and extend in an obvious manner
the filtered Chas-Sullivan product defined in [11]. We refer to [11] for technical
details. For now, we do not need to assume that the closed Riemannian manifold
M is Zoll. Let f, g : M → M be smooth maps, as the space Λ(f) ×M Λ(g) is a
submanifold of Λ(f)×Λ(g) of codimension n := dim M , there is a well-defined Gysin
morphism

H∗(Λ(f) × Λ(g)) → H∗−n(Λ(f) ×M Λ(g))

(see e.g. [11, Proposition B.2]). The Chas-Sullivan product is defined by composing
this morphism with the concatenation φ:

∗ : H∗(Λ(f)) ⊗ H∗(Λ(g)) → H∗−n(Λ(g ◦ f)).
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Let a, b > 0 be regular values of Pf and Pg, then Λ≤a
f , Λ≤b

g are submanifolds with
boundary and one can thus define the Gysin morphism

H∗(Λ
≤a
f × Λ≤b

g ) → H∗−n(Λ≤a
f ×M Λ≤b

g ).

According to (2), one can thus define a filtered Chas-Sullivan product

∗ : H∗(Λ
≤a
f ) ⊗ H∗(Λ

≤b
g ) → H∗−n(Λ≤a+b

g◦f )

commuting with the inclusion morphisms. A relative version of this product is also
available

H∗(Λ
≤a
f , Λ≤a′

f ) ⊗ H∗(Λ≤b
g , Λ≤b′

g ) → H∗−n(Λ≤a+b
g◦f , Λ

≤max(a+b′,a′+b)
g◦f ),

H∗(Λ≤a
f , Λ<a

f ) ⊗ H∗(Λ≤b
g , Λ<b

g ) → H∗−n(Λ≤a+b
g◦f , Λ<a+b

g◦f ),

that commutes with each other through inclusion morphisms.

Lemma 3.1. Let g : M → M be a smooth map, let (fs) be an H1-homotopy of
smooth maps M → M , Let δ := δ(fs) (which is ≥ δ(fs◦g)). For every α ∈ H∗(Λ

≤a
g ),

β ∈ H∗(Λ
≤b
f0

),

α ∗ τ(fs)∗β = τ(fs ◦ g)∗(α ∗ β) ∈ H∗(Λ≤a+b+δ
f1◦g ),

as long as the product ∗ is well-defined.

Proof. Let us consider the following diagram:

Λ≤a
g × Λ≤b

f0

id×τ(fs)
��

Λ≤a
g ×M Λ≤b

f0

?
_oo

id×τ(fs)
��

φ
// Λ≤a+b

f0◦g

τ(fs◦g)
��

Λ≤a
g × Λ≤b+δ

f1
Λ≤a

g ×M Λ≤b+δ
f1

?
_oo

φ
// Λ≤a+b+δ

f1◦g

,

where the unlabeled arrows are inclusion maps. By definition of τ(fs) and τ(fs ◦ g)
and by associativity of φ (3), this diagram commutes. By naturality of the Gysin
morphisms and by definition of the product ∗, the conclusion follows. �

In the same way, one proves that ∗ is associative.
The product structure of the homology group H∗(Λ) was studied by Goresky-

Hingston, especially in the case where all geodesics are closed and of same prime
length ℓ [11, §13-15]. In the sequel, M will satisfy this assumption and the coefficient
ring of the singular homology groups will be Z if M is orientable and Z/2Z otherwise.
In this case, the energy functional Eid is a perfect Morse-Bott functional: it implies
in particular that the following sequences of inclusion morphisms are exact

0 → H∗(Λ
≤a) → H∗(Λ≤b) → H∗(Λ

≤b, Λ≤a) → 0,

0 → H∗(Λ≤b, Λ≤a) → H∗(Λ≤b) → H∗(Λ≤a) → 0,
(6)

for every 0 ≤ a ≤ b ≤ c ≤ +∞, with Λ≤+∞ := Λ, the same being true replacing
Λ≤λ with Λ<λ. Moreover, the filtered product ∗ can be defined for all values. The
critical values of Pf correspond to the positive multiples of ℓ with associated critical
submanifolds diffeomorphic to SM via γ 7→ γ̇(0)/‖γ̇(0)‖. Let λ1 ≥ 0 be the Morse
index of the critical submanifold Σ1 associated with the critical value ℓ. The manifold
Σ1 can be oriented and one defines

Θ ∈ H2n−1+λ1
(Λ≤ℓ)
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the image of the fundamental class of Σ1 under the canonical isomorphism

H∗(Λ
≤ℓ) ≃ H∗(Λ≤0) ⊕ H∗−λ1

(Σ1) (7)

resulting from the splitting of the exact sequence (6) for the pair (Λ≤ℓ, Λ≤0) induced
by ev : Λ → Λ≤0, ev(γ) ≡ γ(0), and the Morse-Bott isomorphism H∗(Λ

≤ℓ, Λ≤0) ≃
H∗−λ1

(Σ1). Let us set b := λ1 + n − 1.

Theorem 3.2 ([11, Theorem 13.4]). Let M be an n-dimensional closed Zoll Rie-
mannian manifold of length ℓ. The product

Θ ∗ · : H∗(Λ, Λ≤0) → H∗+b(Λ, Λ≤0)

with the class Θ is injective and induces an isomorphism

H∗(Λ
≤rℓ, Λ<rℓ) → H∗+b(Λ

≤(r+1)ℓ, Λ<(r+1)ℓ)

for every positive integer r.

3.2. Min-max critical values. Given f : M → M , let us define min-max critical
values of Pf associated with homology classes of Λ(f). Given α ∈ H∗(Λ(f)), let us
define

c(α, f) := inf
{
λ ≥ 0 | α ∈ im

(
H∗(Λ

≤λ
f ) → H∗(Λf)

)}
.

By the Morse deformation lemma, if c(α, f) > 0 then it is a critical value of Pf .
A consequence of Theorem 3.2 and the perfectness of Eid in the Zoll case is the
following corollary.

Corollary 3.3. Let M be a Zoll Riemannian manifold with prime length ℓ. For
every α ∈ H∗(Λ), one has c(α, id) ∈ Nℓ and if c(α, id) > 0, then

c(Θk ∗ α, id) = c(α, id) + kℓ, ∀k ∈ N.

Proof. Since the c(α, id) are either 0 or critical values of Pid, one has c(α, id) ∈ Nℓ
for all α ∈ H∗(Λ). Let α ∈ H∗(Λ) be such that c(α, id) > 0, so c(α, id) = rℓ
with r ∈ N∗ and there exists β ∈ H∗(Λ

≤rℓ) the image of which is α under the
inclusion morphism. Since Θk ∗ · commutes with inclusion morphisms, the image of
Θk ∗ β ∈ H∗+kb(Λ

≤(r+k)ℓ) in H∗(Λ) is Θk ∗ α, so c(Θk ∗ α, id) ≤ (r + k)ℓ.
The image γ of β under the inclusion morphism H∗(Λ

≤rℓ) → H∗(Λ
≤rℓ, Λ<rℓ) is

non-zero since c(α, id) ≥ rℓ (by looking at the long exact sequence of the couple
(Λ≤rℓ, Λ<rℓ)). Let us consider the commuting diagram:

H∗(Λ
≤rℓ)

��

Θk∗·
// H∗+kb(Λ

≤(r+k)ℓ)

��

H∗(Λ≤rℓ, Λ<rℓ)
Θk∗·

≃
// H∗+kb(Λ

≤(r+k)ℓ, Λ<(r+k)ℓ)

,

where the vertical arrows are inclusion morphisms. Since the bottom arrow is an
isomorphism according to Theorem 3.2, the image of γ is non-zero and so is the
image of Θk ∗ β under the right vertical arrow. This implies that Θk ∗ β is not in the
image of H∗+kb(Λ

<(r+k)ℓ) under the inclusion morphism so c(Θk∗α, id) ≥ (r+k)ℓ. �

Proposition 3.4. Let M be a Zoll Riemannian manifold with prime length ℓ and
let (fs) be a H1-homotopy from id to f and let us set τ := τ(fs) and δ := δ(fs).

(1) For every α ∈ H∗(Λ), |c(α, id) − c(τ∗α, f)| ≤ δ.
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(2) For every α ∈ H∗(Λ),

c(Θk+1 ∗ τ∗α, f) = c(Θk ∗ τ∗α, f) + ℓ − εk(α), ∀k ∈ N,

where (εk(α)) is a sequence of non-negative reals that converges to 0 when
c(α, id) > 0.

Proof. The first statement is a direct consequence of the fact that τ(fs) and τ(f1−s)
induce a δ-interleaving in the sense of Corollary 2.4. Let us consider the commuting
diagram

H∗(Λ
≤λ
f )

Θ∗·
//

��

H∗+b(Λ
≤λ+ℓ
f )

��

H∗(Λf)
Θ∗·

// H∗+b(Λf)

,

where the vertical arrows are inclusion morphisms and λ ≥ 0. It implies that if
c(α, f) < λ then c(Θ ∗ α, f) < λ + ℓ. In particular, for every α ∈ H∗(Λ),

c(Θk+1 ∗ τ∗α, f) = c(Θk ∗ τ∗α, f) + ℓ − εk(α), ∀k ∈ N,

for some non-negative sequence (εk(α)). According to the first statement of this
proposition, for every k ∈ N,

k−1∑

i=0

εi(α) = c(τ∗α, f) − c(Θk ∗ τ∗α, f) + kℓ ≤ 2δ + c(α, id) − c(Θk ∗ α, id) + kℓ,

where we have used that Θk∗τ∗α = τ∗(Θk∗α) (Lemma 3.1). Therefore, Corollary 3.3
implies that the series

∑
i εi(α) is bounded by 2δ when c(α, id) > 0, bringing the

conclusion. �

3.3. Proof of Theorems 1.4 and 1.5.

Proof of Theorem 1.4. Let N :=
∑

i βi(SM) and let α1, . . . , αN ∈ H∗(Λ) be an
independent family satisfying c(αi, id) = ℓ for all i. Such a family can be ob-
tained as follows: one takes the image in H∗(Λ

≤ℓ) of an independent family of
0⊕H∗(Σ1) ≃ H∗(SM) under the isomorphism (7), then takes the image of this fam-
ily under the inclusion morphism H∗(Λ

≤ℓ) → H∗(Λ) (this last morphism is injective
by exactness of (6)). The exactness of (6) together with Theorem 3.2 implies that
the family (Θk ∗ αi)k,i, k ∈ N, 1 ≤ i ≤ N , is independent in H∗(Λ).

Let (fs) be a H1-homotopy from id to f : M → M and let τ := τ(fs). Applying
the isomorphism τ∗ : H∗(Λ) → H∗(Λ(f)), the family (Θk ∗ τ∗αi)k,i is independent
in H∗(Λ(f)) (we have used Lemma 3.1). Let us assume that f has finitely many
translated points in SM . Since M is a Zoll Riemannian manifold, the set of positive
time-shifts of a translated point of f is t +Nℓ for some t ∈ (0, ℓ]. Therefore, the set
of (positive) critical values of Pf is invariant by t 7→ t + ℓ, discrete such that any
interval (a, a + ℓ], a ≥ 0, contains a fixed finite number of them. Let us study the
sequences (ci

k) := (c(Θk ∗ τ∗αi, f)) for 1 ≤ i ≤ N , the image of which is contained
in this discrete set. Since ci

k+1 = ci
k + ℓ − εi

k with εi
k → 0 (Proposition 3.4), by

discreetness of the Nℓ-invariant set of critical value, εi
k = 0 for large k’s. We deduce

that for A > 0 large, for each i, there exists a unique ki such that ci
ki

∈ (A, A + ℓ].
By non-degeneracy of the critical points of Pf , the Morse inequalities in the window
of values (A, A + ℓ] imply that the number of critical points in P −1

f (A, A + ℓ] is not
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less than the cardinal of (Θki ∗ τ∗αi)i, which is N . For each translated point, only
one time-shift belongs to (A, A + ℓ], which brings the conclusion. �

Proof of Theorem 1.5. Let N := CL(SM) and let u1, . . . , uN ∈ H∗(Λ) be non-zero
classes of positive degree such that

c(Θ ⌢ (u1 ⌣ · · · ⌣ uN), id) = ℓ.

Such a family can be obtained as follows: let v1, . . . , vN ∈ H∗(SM) be non-zero
classes of positive degree such that v1 ⌣ · · · ⌣ vN 6= 0 (which exist by definition of
CL(SM)), then [SM ] ⌢ (v1 ⌣ · · · ⌣ vN ) 6= 0 and we apply (7) together with the
exactness of (6) to send [SM ] to Θ (by definition of Θ) and the vi’s to the ui’s.

Let α0, . . . , αN ∈ H∗(Λ) be the subordinated classes αi := Θ ⌢ (u1 ⌣ · · · ⌣ ui)
such that c(αi, id) = ℓ for all i (as by subordination, c(αi+1, id) ≤ c(αi, id) and
c(Θ, id) = ℓ). Let (fs) be a H1-homotopy as in the statement of Theorem 1.5, so
that δ(fs) < ℓ/2, and let τ := τ(fs). By subordination, c(τ∗αi, f) is non-increasing
with i and by the first point of Proposition 3.4,

ℓ

2
< c(τ∗αN , f) ≤ c(τ∗αN−1, f) ≤ · · · ≤ c(τ∗α0, f) <

3ℓ

2
.

According to the Lusternik-Schnirelmann theorem (see e.g. [8, §II.3.2]), if Pf has a
finite number of critical points in the window (ℓ/2, 3ℓ/2) then c(τ∗αi, f) is decreasing.
Since the c(τ∗αi, f)’s are critical values of Pf , the conclusion follows by Corollary 2.2.

�
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