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On the Morse, Lennard-Jones, and Kratzer Potentials: A Canonical 
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Abstract 

Canonical approaches are applied to classic Morse, Lennard-Jones, and Kratzer potentials. Using 

the canonical transformation generated for the Morse potential as a reference, inverse 

transformations allow the accurate generation of the Born-Oppenheimer potential for H2
+ ion, 

neutral covalently bound H2, van der Waals bound Ar2, and the hydrogen bonded one 

dimensional dissociative coordinate in water dimer. Similar transformations are also generated 

using the Lennard-Jones and Kratzer potentials as references. Following application of inverse 

transformations, vibrational eigenvalues generated from the Born-Oppenheimer potentials give 

significantly improved quantitative comparison with values determined from the original 

accurately known potentials. In addition, an algorithmic strategy based upon a canonical 

transformation to dimensionless form applied to the force distribution associated to a potential is 

presented. The resulting canonical force distribution is employed to construct an algorithm for 

deriving accurate estimates for the dissociation energy, the maximum attractive force, and the 

internuclear separations corresponding to the maximum attractive force and the potential well.  
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I. Introduction 

Despite advances in quantum chemistry calculations for modeling pairwise intramolecular 

and intermolecular interactions,1-3 the use of empirical functional representations involving 

adjustable parameters for the associated model potentials still continue to play a prominent role.4-

6 Over 100 such algebraic potential forms have now been proposed7 involving from 2 to 

significantly larger number of adjustable parameters. The objective has been to enhance the 

effectiveness of the interaction potentials involved and to increase generalized applicability and 

predictability of the chosen algebraic forms. Considerable effort has gone into investigating the 

algebraic forms that have the minimum number of variable parameters and still the most 

widespread applicability.8,9 Extensive studies have also emphasized the issue of determination of 

universal and reduced potentials.7,10 In no small part, the latter endeavors have had the intention 

of giving a fundamentally unifying approach to understanding interatomic interactions. There 

have also been studies to develop a simultaneous relationship among the parameters of the 

generalized version of the Morse, Lennard-Jones, Rydberg, and Buckingham pair potentials.11,12 

Furthermore, there is the potential for reducing computational costs associated with their 

application in molecular calculations for increasingly complex calculations in fields such as 

biochemistry and nanotechnology to name a few.13-17  

Three specific algebraic forms for representing pairwise interactions that were among the 

first introduced and have had a venerated history are the Lennard-Jones18,19 which can be 

regarded as a special case of the Mie potential,20 Kratzer21,22 and Morse23,24 potentials. These 

three potentials have continued popularity for widespread applications, primarily because of 

limited numbers of adjustable parameters and their abilities to account for the most important 

inherent characteristics of the potentials they are chosen to represent. In the cases of the Kratzer 
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and Morse potentials, the availability of exact solutions to their Schrödinger equations have also 

enhanced their applicability.25-29 Generalizations and adaptions of these potentials have also lead 

to more sophisticated applications. 

Recently, canonical transformation approaches have also been applied to provide a different 

but more unifying approach to pairwise potentials.30-33 In such studies, the concept of a pairwise 

canonical potential was defined for a class of molecules referred with extreme accuracy to a 

dimensionless function for each pairwise interatomic interaction. In constructing canonical 

representations of potentials, we developed an approach based upon a method for decomposing a 

1-D dimensional potential curve into a finite number of canonical sections that have the same 

scale invariant ‘shape’ across a broad class of molecules. The notion of scale invariant shape 

utilized in this approach asserted that each designed section of the potential curve for one 

molecule has a unique counterpart in another molecule for which there exists an affine 

transformation to such a single dimensionless curve. Identification of the counterpart sections of 

two given dimensional potentials was found to lie with their associated force distributions. An 

important consequence of these studies, however, was the generation of the inverse canonical 

transformations necessary to provide the corresponding dimensional potentials.  

We shall now demonstrate that unusual benefits can arise from applications of the Morse, 

Lennard-Jones, and Kratzer potentials through applications of canonical approaches.30-33 In this 

work, the Born-Oppenheimer potential are accurate generated for H2
+, H2, Ar2, and water dimer 

along the dissociative coordinate using Morse, Lennard-Jones, and Kratzer potentials as 

references. The generated Born-Oppenheimer potentials by canonical approaches give 

significantly more accurate eigenvalues than those corresponding to direct fitting for these well 

know potentials. Also, an algorithmic strategy based upon a canonical transformation to 
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dimensionless form applied to the force distribution associated to a potential is presented. 

Ramifications associated with utilization of these canonical approaches to the specific potentials 

considered and other algebraic potentials will also be discussed.  

 

II. Methods 

In ref 33, a notion of transformation to canonical form for two one-dimensional potentials 

was introduced and studied for a class of diatomic molecules within the Born-Oppenheimer 

approximation. This transformation involves decomposing the two potential curves into a finite 

number of sections for which there exist affine transformations of corresponding sections to the 

same dimensionless curve. The identification of the corresponding sections of the two potential 

curves is based upon their associated Feynman Force distributions.34 Appealing to the inverses 

of these affine transformations to canonical form, one then can construct a piecewise affine 

representation of one of the potentials in terms of the other. This procedure was expanded to a 

class of diatomic molecules (more than two) by declaring one of their potentials to be reference 

and constructing piecewise affine representations of all other potential curves in the chosen class 

in terms of the reference molecule. In ref 33, H2
+ was chosen as reference with the remaining 

molecules within the class considered being HeH+, LiH and H2 due to the availability of their 

extremely accurate potentials within the Born-Oppenheimer approximation. 

The transformation to canonical form and its associated piecewise affine transformation 

between two different potential curves exploited in ref 33, is distinctly different from the 

traditional process of constructing approximations to potential curves within a specified family 

of functions depending upon a finite number of free parameters.7 In the present work, it is shown 

how the two points of view can be perceived in stark contrast by applying the above 
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transformation to canonical form to three of the simplest classical algebraic potential forms: the 

Kratzer potential,21,22 the Morse potential,23,24 and both a classic18,19 and a generalized Lennard-

Jones potential that are defined as follows. In the following definitions, De = E(Re) denotes the 

well depth (dissociation energy for a diatomic molecule) for the potential, Re denotes the 

equilibrium separation distance of the nuclei for a diatomic molecule, and Ram denotes the 

separation distance of the nuclei at which the attractive (Feynman) force has maximum 

magnitude, i.e. the inflection point of E(R). 

The Kratzer potential is a simple, two-parameter model. The two parameters are customarily 

chosen to be De and Re in which case the potential takes the form 

  

E
K

R( ) :=  D
e

R
e

R

⎛

⎝⎜
⎞

⎠⎟

2

− 2
R

e

R

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.         (1) 

The Morse potential is a three-parameter model. Two of the parameters are customarily 

chosen to be De and Re in which case the potential takes the form 

  
E

M
R( ) := D

e
1− exp −a R − R

e( )( )( )
2

−1
⎛
⎝⎜

⎞
⎠⎟

.       (2) 

Many strategies have been used in the literature for determining a value for the free 

parameter a in eq 2. From the perspective of the transformation to canonical form utilized in ref 

33, it is natural to choose a in eq 2 so that the potential form interpolates the accurate potential at 

R = Ram. In that case, one can show that eq 2 takes the form 

  

E
M

R( ) := D
e

1−
1

2

⎛
⎝⎜

⎞
⎠⎟

R R
e( )−1( ) R

am
R

e( )−1( )⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.       (3) 

A generalized Lennard-Jones potential is defined here to be a four-parameter model of the 

form 
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E
LJ

R;n,α( ) :=
D

e

α −1

R
e

R

⎛

⎝⎜
⎞

⎠⎟

αn

−α
R

e

R

⎛

⎝⎜
⎞

⎠⎟

n⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.       (4) 

It is seen immediately that the Kratzer potential, eq 1, is a special case of the generalized 

Lennard-Jones potential in eq 4. Indeed, one has EK(R) = ELJ(R;1,2). Also, the classical (6,12)-

Lennard-Jones potential has n=6 and α=2. 

A. The Morse Potential as Reference 

In ref 33, the potential for H2
+ was chosen as reference for the class of diatomic molecules 

considered. The inverse canonical transformation was then used to construct approximations to 

the potentials for all molecules in the considered class as piecewise affine scalings of the 

reference potential. The same procedure is employed here except that the Morse potential23,24 is 

chosen as reference and the considered class contains two of the four molecules examined, 

namely H2 (ref 35) and H2
+ (ref 36), plus Ar2 (ref 37) and the water dimer38 complex. The 

derivation of the construction is given in detail in ref 33; only the results required for the key 

formulas are included here. 

1. Identification of Canonical Sections of Potential Curves: The Associated Feynman Force 

Let E(R) be the potential for a molecule in the considered class and 
  
F R( ) := − ′E R( )  be its 

associated (Feynman) force. Let Re and Ram be as defined above, or equivalently, the unique R–

values satisfying 
  
F(R

e
)  = 

  
′F (R

am
)  = 0. Next define 

  
F

m
:=| F(R

am
) | , that is, Fm is the magnitude 

of the maximum attractive value of the (Feynman) force. Then define the (diadic) sequence  

   
…< R

rj
< R

r j−1( )
<…< R

r1
< R

rm
< R

e
< R

am
< R

a1
<…< R

aj
<…      (5) 

by the following formulas: for j = 0,1, …, 

  
F(R

rj
) = F

m
2 j            (6) 
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F(R

aj
) = − F

m
2 j .           (7) 

It is noted that in this notation Rrm = Rr0 and Ram = Ra0. 

Similarly, for the Morse potential eq 2, let 
  
F

M
R( ) := − ′E

M
R( )  denote its associated 

(Feynman) force and construct its (diadic) sequence of separation distances corresponding to eq 

5 

   
…< R

M,rj
< R

M,r j−1( )
<…< R

M,r1
< R

M,rm
< R

M,e
< R

M,am
< R

M,a1
<…< R

M,aj
<…    (8) 

with 

  
F

M
(R

M,rj
) = F

M,m
2 j           (9) 

  
F

M
(R

M,aj
) = − F

M,m
2 j .           (10) 

The Rrj, Raj, RM,rj, and RM,aj values determine the sections of the potential curves E(R) and 

EM(R) for which there exists an affine transformation of each to a common dimensionless 

canonical form. For the application considered here, the following R–values are used to derive 

the piecewise affine transformations given below: Rr5, Rr3, Rr1, Rrm, Re, Ram, Ra1, Ra3, Ra5. Thus, 

the sections of the Morse potential curve defined by RM,r5 < R < RM,r3 and of a target molecule by 

Rr5 < R < Rr3 are canonical, etc. It is noted that by definition RM,e = Re and DM,e = De. Appealing 

to the inverse affine canonical transformation derived in ref 33 one constructs the following 

piecewise affine representation 
   
E

M
(R)  of E(R) in terms of EM(R). 
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⎪
⎪
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(11) 

Analogous expressions are readily constructed for the Lennard-Jones and Kratzer potentials 

as references. In the following section, the representation in eq 11, and its Lennard-Jones and 

Kratzer versions, are applied to the three diatomic molecules H2, H2
+, Ar2 along with the water 

dimer complex. For water dimers, the pairwise interaction is specified with respect to the radial 

dissociative coordinate of the dimer, while frozen all other coordinates to that of the equilibrium 

geometry of the dimer. 

 

III. Results and Discussion 

Figures 1-3 give a graphical summary of the key distinction between the classical and 

canonical approaches to utilizing the Morse, Lennard-Jones, and Kratzer potentials to 
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approximate the 1-dimensional potentials for the diatomic molecules H2, H2
+, and Ar2, and the 

water dimer complex. In particular, Figure 1 gives graphical results for the Morse potential. The 

solid line is the accurate potential curve while the dashed line is the classical Morse 

approximation EM(R) as discussed previously. The open red circles correspond to the canonical 

Morse approximation 
   
E

M
(R)  as encapsulated in the representation eq 11.  

The solid red circles on the abscissa denote the Rj values for E(R) used in eq 11, while the 

blue stars denote the corresponding RM,j values for EM(R) used in eq 11. The solid red circles on 

the solid black curve illustrate the segmented decomposition of the accurate potential curve E(R), 

while the blue stars on the dashed curve give the corresponding curve segments on the classical 

Morse approximation EM(R). Thus, a segment on the accurate potential curve E(R) defined by 

two successive solid red circles and its counterpart on the dashed curve between the 

corresponding successive blue stars have canonical shapes in the sense that each has an affine 

mapping to a common dimensionless curve. What the construction eq 11 does is map each 

segment on the dashed curve between two successive blue stars to its counterpart on the solid 

curve between the corresponding solid red circles. It is important to emphasize that the affine 

scalings comprising eq 11 map the blue star segment endpoints to the solid red circle endpoints; 

the open red circles illustrate the sense in which the two segments do indeed have the same 

shape. The first line of Table 1 gives the relative errors between the accurate potential curves 

E(R) (solid black curves in Figure 1) and the canonical Morse potential approximations 
   
E

M
(R)  

(open red circles in Figure 1). It should be remarked that the relative error between the accurate 

potential E(R) and the classical Morse approximation EM(R) is more than two orders of 

magnitude larger than for the canonical Morse approximation 
   
E

M
(R) . The notion of relative 

error used in Table 1 is defined by 
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Relative Error =

E(R)− !E(R) dR

R
r5

R
a 5

∫

E(R) dR

R
r5

R
a 5

∫

.         (12) 

Figures 2 and 3 illustrate the corresponding results for the Lennard-Jones and Kratzer 

potentials. It should be noted that the difference between the classical and canonical approaches 

to approximating a potential is illustrated rather dramatically by the Kratzer potential applied to 

Ar2 and the water dimer complex. In particular, Table 2 shows that for Ar2, Ra3 = 5.91 Å and Ra5 

= 7.1 Å, while for the corresponding classical Kratzer approximation, EK(R), RK,a3 = 25.52 Å and 

RK,a5 = 53.3 Å, yet the segment of the accurate Ar2 curve (solid curve in Figure 3) between Ra3 < 

R < Ra5 and the corresponding classical Kratzer approximation segment (dashed curve in Figure 

3) between RK,a3 < R < RK,a5 have the same canonical shape. More specifically, there is a simple 

affine transformation that takes the latter curve onto the former with relative error less than 

0.001. 

It is important to emphasize that these results imply that for a given molecule, the canonical 

Morse, Lennard-Jones, and Kratzer approximations to the accurate potential are equivalent to 

high order of accuracy. Furthermore, each of the classical Morse, Lennard-Jones, and Kratzer 

potentials can be used in the construction eq 11 to provide canonical approximations of the other 

two to high order of accuracy. 

As a test of the Morse canonical approximation, we calculated all vibrational eigenvalues for 

the accurate, the canonical Morse approximation, and the classical Morse approximation 

potentials for H2, H2
+, Ar2, and water dimer complex. The corresponding eigenvalues are given 

in Tables 3-5, and they were calculated using a modify Numerov-Cooley approach.39 As 

apparent, the canonical Morse approximation potential predicts all vibrational eigenvalues in 
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dramatically closer agreement with the accurate potential than with the classical Morse 

approximation potential. It is noted that a better accuracy in the Morse canonical approximation 

potential can be achieved by using more Rrj and Raj values.33 

There have been extensive investigations of simultaneous relationships among parameters of 

empirical interatomic potential functions to investigate the similarities and differences between 

such potentials.11,12 From a practical perspective, this information is helpful in converting 

parametric data from one function to another, particularly when such functions are utilized in 

software packages. Lennard-Jones potentials are used extensively for describing paired potentials 

of van der Waals interactions in software packages such as CHARM40 and AMBER41 whereas 

the Morse potential is frequently adapted in computational chemistry for CVFF42 and UFF43 

software packages. The currently developed approach should find useful applications in such 

software packages while generalizing and facilitating application of a wide range of empirical 

functional forms, while de-emphasizing the significance of the adjustable parameters.   

 

IV. Applications 

The results discussed above demonstrate that the potential curves for the considered 

molecules (H2, H2
+, Ar2 and water dimer) and the potential curves associated with the classical 

Morse, Lennard-Jones, and Kratzer potentials all have the same canonical shape. Moreover, this 

notion of canonical shape can be exploited to construct through elementary formulas 

approximations to the potential curves for the considered molecules from any one of the classical 

Morse, Lennard-Jones, and Kratzer potential curves to high accuracy. These results give rise to 

two obvious questions. i) Can this idea be exploited to devise a practical tool for constructing 

force and potential curves? ii) How essential is it to know the exact R-values in eq 11 and the 
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accurate potential values at those R-values? The answer to the first question is yes as will be 

shown below. The answer to the second question is that knowing the R-values in eqs 5 and 11 

and the accurate potential values at those R-values was sufficient to demonstrate the asserted 

canonical shape properties and construct highly accurate approximations to the accurate 

potentials for the considered molecules from the classical Morse, Lennard-Jones, and Kratzer 

potential curves, but is not necessary. Below we give a stepwise algorithm for generalizing the 

constructions of the first part of this paper that does not require knowledge of the precise R-

values in eq 5 or a subsequence thereof. The first step in the algorithm makes use of the 

canonical shape property to approximate to high accuracy the four key quantities: Re, De, Ram, 

and Fm.  

A. Stepwise Algorithm 

Step (i) 

As argued in ref 32, the canonical shape property for force is more fundamental than the 

canonical shape property of its associated potential. In particular, exploiting the canonical shape 

property of force to construct accurate approximations to the force curve associated to a 

molecule immediately gives (through integration) an accurate approximation to the associated 

potential but the reverse is, in general, not the case; that is, a highly accurate approximation to a 

potential curve, when differentiated, can yield an approximation to the force with arbitrarily 

large error. 

The property of canonical force curve shape can be used to give highly accurate 

approximations of Re, De, Ram, and Fm for a given molecule from the force curve corresponding 

to any one of the classical Morse, Lennard-Jones, and Kratzer potentials. The construction 

proceeds as follows in which we choose the classical (6,12)-Lennard-Jones potential as reference 
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and any generic target molecule. The procedure is then applied to each of the four molecules 

considered previously.  

1. Canonical Force Curve 

Let ELJ(R) denote the classical (6,12)-Lennard-Jones potential with 
  
F

LJ
(R) = − ′E

LJ
(R)  being 

its associated force. Similarly, let E(R) denote the target potential with associated force 

  F(R) = − ′E (R) . Let RLJ,e and Re denote the R-location of the potential well for the Lennard-

Jones and target potentials, respectively. Analogously, RLJ,am and Ram denote the R-locations 

where the attractive force is maximum (inflection point) and let FLJ,m and Fm denote the 

magnitude of the maximum attractive force. The canonical force curves corresponding to the 

sections of these force curves between the well bottom and the inflection point are defined by 

  
CF

LJ,eam
(x) = F

LJ
(xR

LJ,am
+ (1− x)R

LJ,e
) / F

LJ,m
      (13) 

  
CF

eam
(x) = F(xR

am
+ (1− x)R

e
) / F

m
.       (14) 

From eqs 13 and 14 an approximation for the force curve F(R) over Re ≤ R ≤ Ram in terms the 

canonical force eq 13 for the Lennard-Jones force can be constructed through 

   

!F
eam

(R) = F
m
CF

LJ,eam

R − R
e

R
am
− R

e

⎛

⎝⎜
⎞

⎠⎟
.        (15) 

This is the forward canonical approximation of the target force F(R) by the reference force 

FLJ(R) via the dimensionless canonical shape functions. The idea now is to treat Re, Ram, and Fm 

in eq 15 as unknowns. To find these values, one selects three R-values {R0 < R1 < R2} on the 

open interval Re < R < Ram. Having a rough idea of the accurate values Re and Ram could gives to 

a better estimate of the initial guess values. Next, assuming that good approximate values for the 

accurate force F(Rj), j = 0,1,2 have been obtained (from ab initio calculation or experimental 

data, for example), a three-by-three system of algebraic equations can be formulate 
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F(R
j
) = F

m
CF

LJ,eam

R
j
− R

e

R
am
− R

e

⎛

⎝
⎜

⎞

⎠
⎟ , j = 0,1,2        (16) 

and solves for approximations of Re, Ram, and Fm. The system in eq 16 is readily solved using 

standard numerical software. Table 6 shows the results of applying this algorithm to each of the 

four target molecules H2, H2
+, Ar2, and water dimer obtaining estimates for Re, Ram, and Fm. 

To approximate De the dimensionless canonical potential curves are use 

  

CE
LJ,eam

(x) =
E

LJ
(xR

LJ,am
+ (1− x)R

LJ,e
)+ D

LJ,e

E
LJ

(R
LJ,am

)+ D
LJ,e

      (17) 

  

CE
eam

(x) =
E(xR

am
+ (1− x)R

e
)+ D

e

E(R
am

)+ D
e

,        (18) 

and the associated approximation of the accurate potential E(R) by the canonical transformation 

of the Lennard-Jones potential 
  
CE

LJ,eam
(x)  (eq 17) is given by 

   

!E
eam

(R) = −D
e
+ (E(R

am
)+ D

e
)CE

LJ,eam

R − R
e

R
am
− R

e

⎛

⎝⎜
⎞

⎠⎟
.      (19) 

In eq 19 assumes that a good approximation to the accurate E(Ram) value is know from 

experimental data or ab initio calculation. As before, De is treats as unknown parameter in eq 19. 

Assuming that a good approximation to the accurate value E(R0) is know, an approximation to 

De can be obtained by solving the algebraic equation 

  

E(R
0
) = −D

e
+ (E(R

am
)+ D

e
)CE

LJ,eam

R
0
− R

e

R
am
− R

e

⎛

⎝⎜
⎞

⎠⎟
     (20) 

for the unknown value De. Eqs 19 and 20 used the approximate vales of Re and Ram. In Table 6 

this process produces an approximation to the accurate value of De for each of the four target 

molecules. 
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Step (ii) 

The second step of the algorithm involves constructing a piecewise approximation to the 

force curve for the target molecule from the canonical force curves of the reference potential. 

The algorithm makes use of the approximate values of Re, Ram, and Fm constructed in Step (i) and 

considers the repulsive (0 < R < Re) and attractive (Re < R) sides of the force curve separately.  

2. Repulsive Side  

First an arbitrary R-value Rrm < Re for the target molecule is chosen. This defines a section of 

the target force curve defined for Rrm < R < Re. The issue at hand is how to choose the 

corresponding section of the reference Lennard-Jones force curve FLJ(R), RLJ,rm < R < Re with the 

same canonical shape. Assuming that a good approximation (from ab initio calculations or 

spectroscopic data, for example) for the force F(Rrm) is know, the reference point RLJ,rm is chosen 

as the solution to the algebraic equation 

  

F
LJ

(R
LJ,rm

)

F
LJ,m

=
F(R

rm
)

F
m

         (21) 

where the approximated value of Fm given in Table 6 is used. The target force F(R) can then be 

approximated on Rrm ≤ R ≤ Re by 

   

!F
rme

(R) = F
m
CF

LJ,rme

R − R
e

R
rm
− R

e

⎛

⎝⎜
⎞

⎠⎟
        (22) 

where the approximated value of Fm and Re given in Table 6 are used and the dimensionless 

canonical force function CFLJ,rme(x), 0 ≤ x ≤ 1 is defined by 

  

CF
LJ,rme

(x) =
F

LJ
(xR

LJ,e
+ (1− x)R

LJ,rm
)− F

LJ
(R

LJ,rm
)

F
LJ

(R
LJ,e

)− F
LJ

(R
LJ,rm

)
.      (23) 

An obvious question is how arbitrary is the choice of Rrm? The issue is one of desired 

accuracy in the approximation. The discussions of canonical transformations in the first part of 
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the paper and in ref 33 suggest that good accuracy will be achieved provided |F(Rrm)| ≤ Fm, 

where Fm is given in Table 6. 

Similarly, a second R-value Rr1 < Rrm is chosen with a good approximation of the force F(Rr1) 

for the target force curve and then calculates the corresponding R-value RLJ,r1 < RLJ,rm for the 

reference Lennard-Jones force curve to be the solution of the algebraic equation 

  

F
LJ

(R
LJ,r1

)

F
LJ,m

=
F(R

r1
)

F
m

.          (24) 

The target force F(R) can be approximated on Rr1 ≤ R ≤ Rrm by 

   

!F
r1rm

(R) = F(R
rm

)+ (F(R
r1

)− F(R
rm

))CF
LJ,r1rm

R − R
rm

R
r1
− R

rm

⎛

⎝⎜
⎞

⎠⎟
    (25) 

where the dimensionless canonical force function CFLJ,r1rm(x), 0 ≤ x ≤ 1 is defined by 

  

CF
LJ,r1rm

(x) =
F

LJ
(xR

LJ,rm
+ (1− x)R

LJ,r1
)− F

LJ
(R

LJ,r1
)

F
LJ

(R
LJ,rm

)− F
LJ

(R
LJ,r1

)
.      (26) 

Again the question of how arbitrary the choice of Rr1 is arises. The results in ref 33 suggest that a 

conservative restriction is that |F(RLJ,r1)| ≤ 2.0Fm. 

The algorithm proceeds inductively by choosing as many R-values as desired depending 

upon how much of the repulsive wall need to be cover. For illustrative purposes, only five values 

  
R

r4
<…< R

rm
 were selected for each of the target molecules given in Table 7. As seen in Table 

7, all of the relative errors in the force approximations over Rr4 < R < Re are less than 0.005. A 

measure of how far up the repulsive wall the approximations go is given by the dimensionless 

ratio |F(Rr4)|/Fm. For the four test molecules H2, H2
+, Ar2, and water dimer, this ratio takes the 

values 10.49, 13.42, 43.3 and 85.78, respectively. 
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3. Attractive Side 

For the attractive side, the modified strategy for selecting R-values introduced in ref 44 is 

employed to enhance accuracy. This strategy is based upon the fact that “shape” information 

about a function is encoded in its derivative. Thus, we use   ′F (R)  and 
  
′F

LJ
(R)  to select R-values 

for both the target and reference force curves F(R) and FLJ(R) for R > Re. To that end, we must 

find approximations to Rfm and Ffm, where Ffm is the maximum value of   | ′F (R) | for R > Ram and 

Rfm > Ram satisfies 
  
| ′F (R

fm
) |  = F

fm
. An algorithm for approximating Rfm and Ffm is readily 

constructed in a similar manner to the one used above to approximate Ram, Re, and Fm. 

Specifically, two R-values Ram < R3 < R4 are selected and approximations to 
  
′F (R

3
)  and 

  
′F (R

4
)

are obtained. Next, approximations to Rfm and Ffm are obtained by solving the algebraic system 

  

′F (R
j
) = F

fm
CF

LJ,fm

R
j
− R

am

R
fm
− R

am

⎛

⎝
⎜

⎞

⎠
⎟ , j = 3,4       (27) 

for Rfm and Ffm where CFLJ,fm(x), 0 ≤ x ≤ 1 is the dimensionless canonical function 

  

CF
LJ,fm

(x) =
′F

LJ
(xR

LJ,fm
+ (1− x)R

LJ,am
)

F
LJ,fm

.        (28) 

In eq 28, RLJ,fm and FLJ,fm are defined by 

  
F

LJ,fm
=  | ′F

LJ
(R

LJ,fm
) |  = max | ′F

LJ
(R) |, R > R

am
.      (29) 

Since FLJ(R) is given by a simple algebraic formula, FLJ,fm and RLJ,fm are easily calculated to very 

high accuracy. Table 6 gives the approximate values for Ffm and Rfm obtained from solving the 

system in eq 27 for each of the four considered target molecules, and the values for R3 and R4 

used to that end. 
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The approximation to F(R) for Re < R for a target molecule in terms of the reference 

Lennard-Jones force curve is now constructed as follows. For Re ≤ R ≤ Ram, the approximation is 

given by eq 15. For Ram ≤ R ≤ Rfm, the approximation to F(R) takes the form 

   

!F
amfm

(R) = F
m
+ (F

fm
− F

m
)CF

LJ,amfm

R − R
am

R
fm
− R

am

⎛

⎝⎜
⎞

⎠⎟
      (30) 

where the dimensionless canonical force CFLJ,amfm(x), 0 ≤ x ≤ 1 is defined by 

  

CF
LJ,amfm

(x) =
F

LJ
(xR

LJ,fm
+ (1− x)R

LJ,am
)− F

LJ
(R

LJ,am
)

F
LJ

(R
LJ,fm

)− F
LJ

(R
LJ,am

)
.      (31) 

To approximate F(R) for R > Rfm, first an arbitrary Ra2 > Rfm is chosen for the target molecule 

and an approximate value for 
  
′F (R

a 2
)  (from ab initio calculation or experimental data, for 

example) is obtained. The corresponding R-value RLJ,a2 for the reference force curve is the 

unique solution to the algebraic equation 

  

′F
LJ

(R
LJ,a2

)

F
LJ,fm

=
′F (R

a2
)

F
fm

.          (32) 

The approximation to F(R) for Rfm ≤ R ≤ Ra2 then takes the form 

   

!F
fma2

(R) = F(R
fm

)+ (F(R
a2

)− F(R
fm

))CF
LJ,fma2

R − R
fm

R
a2
− R

fm

⎛

⎝⎜
⎞

⎠⎟
    (33) 

where the dimensionless canonical force CFLJ,fma2(x), 0 ≤ x ≤ 1, for the reference Lennard-Jones 

force curve is defined by 

  

CF
LJ,fma2

(x) =
F

LJ
(xR

LJ,a2
+ (1− x)R

LJ,fm
)− F

LJ
(R

LJ,fm
)

F
LJ

(R
LJ,a2

)− F
LJ

(R
LJ,fm

)
.       (34) 

From the results in the first part of this paper and in ref 33, a conservative choice for Ra2 is one 

for which 
  
| ′F (R

a2
) |  >  (F

fm
/ 2.0) . 
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Proceeding inductively, by choosing additional R-values for the target force curve and 

calculates the associated R-values for the reference force curve according to eq 32 and then 

constructs approximations to F(R) on Raj < R < Raj+1 in a manner analogous to eqs 33 and 34. A 

conservative choice for Raj would be one for which 
  
| ′F (R

aj
) |  >  (F

fm
/ 2 j ) . For the examples 

given in Table 7, j = 3. A measure of how far along the tail of the force distribution to 

approximation goes is given by |F(Ra3)|/Fm. This ratio for the four molecules H2, H2
+, Ar2, and 

water dimer takes the values 0.041, 0.082, 0.035 and 0.077, respectively. 

 

V. Conclusions 

In the first part of this work, adaption of previously developed canonical approaches for 

application to algebraic forms of the classic Morse, Lennard-Jones, and Kratzer potentials have 

been developed. Using the canonical transformation generated for the Morse potential as a 

reference, inverse transformations are generated for potentials including the H2
+ ion, neutral 

covalently bound H2, van der Waals bound Ar2, and the hydrogen bonded one dimensional 

dissociative coordinate in water dimer. Similar constructions have also been developed for 

Lennard-Jones and Kratzer potentials. The methodology developed in this work can also be 

applied to any of the 100 plus currently available algebraic potential functions.7 A benefit of this 

canonical approach, in contrast to classical approaches, to the application of these algebraic 

potential functions has been demonstrated by significantly improved generation of eigenvalues 

for the potentials in the pairwise interactions studied. In particular, these classical algebraic 

functions involve a number of adjustable parameters and in general they do not accurately 

represent the potential curve of a real molecule as they have been traditionally utilized. In the 

present canonical approach to algebraic potentials functions, the adjustable parameters are of 
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limited significance but more accurate representations of the potential curve of a real molecule 

are obtained. 

The second part of this work presents an algorithmic strategy based upon a canonical 

transformation to dimensionless form applied to the force distribution associated to a potential. 

In addition to leading to accurate approximations to both the force and potential functions 

corresponding to a particular diatomic molecule in terms of the force distribution associated to an 

algebraic potential function, such as the Lennard-Jones function, this canonical force approach 

also provides a means to deriving accurate approximations to the dissociation energy De, the 

equilibrium nuclear separation distance Re, the maximum attractive force Fm, and the 

internuclear separation Ram at which the maximum force obtains. 
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Table 1. Relative error between E(R) and 
   
E(R) .a  

 Relative 
Error 

 Relative 
Error 

 Relative 
Error 

 Relative 
Error 

H2
+-M 0.00173 H2-M 0.00203 Ar2-M 0.000475 WD-M 0.00131 

H2
+-LJ 0.00183 H2-LJ 0.00227 Ar2-LJ 0.000872 WD-LJ 0.000757 

H2
+-K 0.00186 H2-K 0.00315 Ar2-K 0.0037 WD-K 0.00271 

a M: Morse; LJ: Lennard-Jones; K: Kratzer; WD: water dimer. 

 

 

Table 2. Key internuclear separation distances required in eq 11.a 

 Rr5 Rr3 Rr1 Rrm Re Ram Ra1 Ra3 Ra5 

H2
+ 0.4115 0.6371 0.8507 0.9292 1.0568 1.5967 2.6161 3.7127 4.6464 

H2
+-M 0.1100 0.5169 0.8139 0.9102 1.0568 1.5967 2.5532 3.7307 4.8299 

H2
+-LJ 0.8803 0.9525 1.0086 1.0275 1.0568 1.1717 1.4039 1.7486 2.1424 

H2
+-K 0.5062 0.6972 0.8776 0.9449 1.0568 1.5853 3.1705 7.1711 14.9741 

H2 0.2751 0.4333 0.5898 0.6475 0.7414 1.131 1.788 2.3969 2.8934 
H2-M 0.0582 0.3519 0.5661 0.6356 0.7414 1.131 1.8211 2.6708 3.4639 
H2-LJ 0.6175 0.6682 0.7076 0.7208 0.7414 0.822 0.9848 1.2268 1.503 
H2-K 0.3551 0.4891 0.6156 0.6629 0.7414 1.1121 2.2243 5.0308 10.5051 
Ar2 3.0729 3.3706 3.5859 3.6557 3.7617 4.155 4.8822 5.9103 7.1038 
Ar2-M 3.072 3.3684 3.5847 3.6549 3.7617 4.155 4.8517 5.7095 6.5102 
Ar2-LJ 3.1332 3.3902 3.5901 3.6573 3.7617 4.1705 4.9969 6.2241 7.6258 
Ar2-K 1.8018 2.4816 3.1236 3.3634 3.7617 5.6426 11.2851 25.5247 53.2988 
WD 2.2161 2.5116 2.7372 2.8117 2.9264 3.3648 4.2065 5.4354 7.4378 
WD-M 2.1576 2.488 2.7291 2.8074 2.9264 3.3648 4.1415 5.0977 5.9902 
WD-LJ 2.4375 2.6374 2.7929 2.8452 2.9264 3.2445 3.8874 4.842 5.9325 
WD-K 1.4017 1.9306 2.43 2.6165 2.9264 4.3896 8.7793 19.8569 41.4639 

a All values are in Å. M: Morse; LJ: Lennard-Jones; K: Kratzer; WD: water dimer. 
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Table 3. Vibrational Eigenvalues for H2.  

ν Eν (cm-1) Accurate Eν (cm-1) Canonical Eν (cm-1) Morse 
0 -36112.63 -36130.26 -36305.10 
1 -31949.29 -31983.79 -32488.22 
2 -28021.56 -28046.65 -28883.28 
3 -24324.59 -24332.32 -25490.27 
4 -20855.34 -20845.27 -22309.20 
5 -17612.84 -17591.55 -19340.07 
6 -14598.42 -14575.24 -16582.87 
7 -11816.09 -11798.53 -14037.60 
8 -9273.10 -9262.63 -11704.28 
9 -6980.74 -6970.86 -9582.88 
10 -4955.40 -4940.43 -7673.43 
11 -3220.16 -3209.66 -5975.91 
12 -1807.04 -1803.32 -4490.32 
13 -760.45 -757.19 -3216.67 
14 -141.80 -141.09 -2154.96 
15   -1305.20 
16   -667.95 
17   -249.92 
18   -39.32 
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Table 4. Vibrational Eigenvalues for H2
+.  

ν Eν (cm-1) Accurate Eν (cm-1) Canonical Eν (cm-1) Morse 
0 -21375.95 -21387.60 -21424.69 
1 -19183.93 -19207.10 -19305.42 
2 -17119.24 -17136.83 -17296.50 
3 -15177.66 -15186.92 -15397.93 
4 -13355.62 -13360.06 -13609.69 
5 -11650.20 -11650.66 -11931.80 
6 -10059.10 -10057.15 -10364.26 
7 -8580.67 -8578.11 -8907.06 
8 -7213.92 -7212.25 -7560.20 
9 -5958.50 -5957.66 -6323.69 
10 -4814.81 -4813.33 -5197.52 
11 -3784.00 -3780.30 -4181.70 
12 -2868.09 -2864.38 -3276.22 
13 -2069.99 -2068.40 -2481.09 
14 -1393.73 -1393.92 -1796.29 
15 -844.47 -844.37 -1221.85 
16 -428.69 -428.65 -757.74 
17 -153.72 -153.83 -404.01 
18 -23.86 -24.59 -161.69 
19   -35.79 
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Table 5. Vibrational Eigenvalues for Ar2 and water dimer.  

ν Eν (cm-1) Accurate Eν (cm-1) Canonical Eν (cm-1) Morse 
  Ar2  
0 -84.63 -84.64 -83.98 
1 -58.93 -58.95 -56.93 
2 -38.42 -38.44 -35.12 
3 -22.90 -22.92 -18.55 
4 -12.01 -12.04 -7.23 
5 -5.19 -5.21 -1.14 
6 -1.60 -1.60  
  Water Dimer  
0 -1657.91 -1658.16 -1652.67 
1 -1497.73 -1498.22 -1481.46 
2 -1347.38 -1347.75 -1319.62 
3 -1206.68 -1207.03 -1167.13 
4 -1075.46 -1075.96 -1024.01 
5 -953.54 -954.04 -890.24 
6 -840.74 -841.17 -765.83 
7 -736.88 -737.16 -650.78 
8 -641.75 -641.96 -545.09 
9 -555.18 -555.48 -448.76 
10 -476.94 -477.68 -361.79 
11 -406.79 -407.95 -284.17 
12 -344.45 -345.58 -215.92 
13 -289.58 -290.46 -157.03 
14 -241.74 -242.26 -107.49 
15 -200.40 -200.76 -67.31 
16 -164.90 -165.53 -36.50 
17 -134.50 -135.30 -15.04 
18 -108.46 -108.99 -2.94 
19 -86.09 -86.29  
20 -66.83 -66.81  
21 -50.25 -50.23  
22 -36.03 -36.09  
23 -23.96 -23.98  
24 -13.87 -13.92  
25 -5.69 -5.73  
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Table 6. Approximations of De, Re, Ram, and Fm using the Lennard-Jones canonical 

transformation.a 

 H2 H2
+ Water Dimer Ar2 

R0/Å 0.8 1.07 3.0 3.8 
R1/Å 1.0 1.65 3.2 4.0 
R2/Å 1.1 1.3 3.3 4.2 
R3/Å 1.2 1.65 3.5 4.25 
R4/Å 1.5 2.0 3.7 4.4 

De/cm-1 38304.9 (38293.0) 22528.6 (22525.7) 1741.67 (1741.78) 99.474 (99.465) 
Re/Å 07497 (0.741) 1.0564 (1.0568) 2.927 (2.964) 3.763 (3.762) 

Ram/Å 1.131 (1.131) 1.588 (1.597) 3.368 (3.365) 4.159 (4.155) 
Fm/(cm-1/Å) 37485.3 (37488.6) 14220.5 (14196.6) 1187.74 (1186.9) 80.147 (80.254) 

Rfm/Å 1.616 (1.606) 2.22 (2.223) 3.7996 (3.806) 4.547 (4.537) 
Ffm/(cm-1/Å) 36085.59 (36066.1) 8513.65 (8514.46) 858.51 (861.33) 67.97 (67.94) 
a The numbers in parentheses are the accurate values of the indicated parameters. The indicated 
values for R0, R1, and R2 are those chosen for use in solving the algebraic systems in eqs 16 and 
20, and R3, and R4 are those chosen for use in solving the algebraic systems in eq 27. 
 

 

Table 7. Approximation of F(R) using the Lennard-Jones canonical transformation and the 

associated approximation of E(R) by integration of the F(R) approximation.a  

 H2 H2
+ Water Dimer Ar2 

Rr4/Å 0.4 (0.659) 0.55 (0.927) 2.0 (2.285) 3.0 (3.074) 
Rr3/Å 0.48 (0.681) 0.65 (0.956) 2.2 (2.427) 3.15 (3.198) 
Rr2/Å 0.52 (0.691) 0.75 (0.983) 2.4 (2.562) 3.35 (3.422) 
Rr1/Å 0.58 (0.705) 0.88 (1.0157) 2.6 (2.698) 3.55 (3.556) 
Rrm/Å 0.65 (0.721) 0.95 (1.0324) 2.8 (2.837) 3.65 (3.652) 
Ra2/Å 2.2 (1.0528) 3.0 (1.446) 4.8 (4.336) 5.5 (5.698) 
Ra3/Å 2.8 (1.294) 4.0 (1.724) 6.0 (5.393) 7.0 (7.518) 

F(R) Relative 
Error 

0.00256 
(0.00421) 

0.00192 
(0.00447) 

0.00131 
(0.00408) 

0.00173 
(0.00346) 

E(R) Relative 
Error 

0.00473 
(0.00156) 

0.00272 
(0.00224) 

0.000573 
(0.00224) 

0.00292 
(0.00496) 

a The R-values in parentheses are the corresponding values for the reference Lennard-Jones force 
curve. The F(R) and E(R) relative errors in parentheses are for the repulsive-side of the curves R 
< Re while the values not in parentheses are for the attractive-side Re < R. 
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Figure 1. Graphs of E(R), EM(R) and 
   
E

M
(R)  for H2, H2

+, Ar2 and the water dimer complex. The 

units of the ordinate are in cm-1. 
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Figure 2. Graphs of E(R), ELJ(R) and 
   
E

LJ
(R)  for H2, H2

+, Ar2 and the water dimer complex. The 

units of the ordinate are in cm-1. 
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Figure 3. Graphs of E(R), EK(R) and 
   
E

K
(R)  for H2, H2

+, Ar2 and the water dimer complex. The 

units of the ordinate are in cm-1. 
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