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Morse-Smale Complexes for Piecewise Linear 3-Manifolds �

Herbert Edelsbrunner� John Harer�, Vijay Natarajan� and Valerio Pascucci�

Abstract

We define the Morse-Smale complex of a Morse function

over a 3-manifold as the overlay of the descending and as-

cending manifolds of all critical points. In the generic case,

its 3-dimensional cells are shaped like crystals and are sepa-

rated by quadrangular faces. In this paper, we give a combi-

natorial algorithm for constructing such complexes for piece-

wise linear data.

Keywords. Computational geometry and topology, Morse theory,

densities, triangulations, combinatorial algorithms.

1 Introduction

Morse functions are used by differential topologists to study

the topology of manifolds [12, 13]. We use their results but

pursue a different goal, namely that of studying topological

features in natural phenomena.

Motivation. A three-dimensional Morse function is a

generic smooth map from a 3-manifold to the real line. There

is an abundance of natural phenomena that can be modeled

by such functions. In oceanography, we study the distribu-

tion of temperature and other measurements over the Earth’s

oceans. In medical imaging, we reconstruct the inside of a

living body from density distributions measured by MRI and

other sensing technology. In x-ray crystallography, we deter-

mine the conformations of proteins and other molecules from
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electron densities derived from x-ray diffractions. In each

case, essential information is obtained from variations of the

density over the space. Morse theory offers the basic math-

ematical language to reason qualitatively and quantitatively

about this variation. In oceanography, we might be interested

in the temperature extrema and how they change over time.

In medical imaging, we use sharp changes in density to seg-

ment the body into bone, tissue and other constituents. In

x-ray crystallography, we reconstruct geometric structure by

following ridges connecting maxima in the electron density.

Related work. Three-dimensional densities are commonly

visualized by drawing one or several level sets. In three-

dimensional Euclidean space, such a set is generically a 2-

manifold, often referred to as an iso-surface, which divides

the space into inside and outside. The 1-parameter family of

iso-surfaces sweeps out each cell in the Morse-Smale com-

plex in a predictable manner, starting at the minimum and

proceeding towards the opposite maximum while crossing

the boundary everywhere at a right angle. The most popular

method for computing an iso-surface is the marching cube

algorithm, which assumes the density is given by its values

at the vertices of a regular cubic grid [11]. Extensions and

improvements of this algorithm can be found in [9, 23].

The marching cube algorithm visits the entire grid, which

implies a running time proportional to the number of grid

cells. A significant improvement in performance can be

achieved by limiting the traversal to those cells that have

a non-empty intersection with the constructed iso-surface.

Starting at a ‘seed edge’, the algorithm traverses the cells

following the component of the iso-surface as it is uncov-

ered [2]. A minimal collection of seed edges that touches

each component of every level set is provided by a minimal

covering of the Reeb graph [17], stored for quick access in

a hierarchical data structure referred to as the contour tree

[22]. The Reeb graph is a compressed representation of the

components, but it has no geometric information related to

the gradient flow as expressed by the Morse-Smale complex.

Extensions and improvements of the original algorithm for

constructing contour trees can be found in [3, 16, 21].

Another concept related to Morse-Smale complexes is the



medial axis of a shape in three-dimensional Euclidean space.

As introduced by Blum [1], it is the set of centers of spheres

that touch the boundary of the shape in at least two points

without crossing it. Medial axes are used in a wide variety

of applications, including shape representation [4, 18], mesh

generation [19], geometric modeling [20], motion planning

[10], image processing [15] and computer vision [24]. If

the boundary is an orientable 2-manifold embedded in three-

dimensional Euclidean space, we may define the signed dis-

tance as a function over the space. The medial axis then con-

sists of arcs and quadrangles in the Morse-Smale complex.

Results. A fundamental difficulty in applying Morse theo-

retic ideas to scientific problems is the lack of smoothness in

real data. Most commonly, information is gathered by point

probes, and to turn these probes into a generic smooth func-

tion is a formidable task. We argue that the construction of

such a function is also a questionable step if the goal is to

compute and study topological features in the data, mostly

because understanding the latter seems necessary to success-

fully do the former. Instead, we take a combinatorial ap-

proach and simulate smoothness to the extent necessary to

make things work. The main results of this paper are combi-

natorial and algorithmic in nature:

(i) the introduction of quasi Morse-Smale complexes as

combinatorial analogs of the CW complexes defined

by the descending and ascending manifolds of smooth

functions;

(ii) a combinatorial algorithm for constructing a quasi

Morse-Smale complex with guaranteed structural cor-

rectness.

We believe that these results lay the ground-work for a large-

scale application of Morse theoretic ideas to data sets in the

sciences, engineering and medicine.

Outline. Sections 2 and 3 present the necessary back-

ground from Morse theory and combinatorial topology. Sec-

tions 4 to 7 describe the algorithm for constructing a quasi

Morse-Smale complex for three-dimensional piecewise lin-

ear density data. Section 8 concludes the paper.

2 Smooth 3-Manifolds

In this section, we introduce the Morse theoretic concepts

used in this paper. We refer to [12, 13] for further back-

ground.

Morse functions. Let � be a smooth compact 3-manifold

without boundary. Examples are the 3-sphere, which con-

sists of all points at unit distance from the origin in �� , and

the 3-torus, which can be obtained by identifying opposite

square faces of a three-dimensional cube. Let � � � � � be

a smooth map. The differential of � at a point � � � is a lin-

ear map from the tangent space at � to �, ��� � �� � � �.

A point � � � is critical if ��� is the zero map, otherwise it

is regular. Given a local coordinate system, the Hessian at �
is the matrix of second order partial derivatives:
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A critical point � is non-degenerate if the Hessian at � is

non-singular. The function � is called a Morse function if all

critical points are non-degenerate and ���� �� ���� whenever

� �� � are critical. The Morse Lemma states that if � is non-

degenerate we can choose local coordinates and signs such

that

����� ��� ��� � ����� ��� � ��� � ���

in a local neighborhood of �. Note this implies that non-

degenerate critical points are isolated. The number of mi-

nuses is the index of the critical point. It is independent of the

coordinate system and equals the number of negative eigen-

values of ����.

In three dimensions, there are four types of non-degener-

ate critical points: minima have index 0, �-saddles have in-

dex 1, �-saddles have index 2, and maxima have index 3. We

get intuitive local pictures by drawing a small sphere around

the point �. The level curve of points � with ���� � ����
decomposes the sphere into oceans, consisting of points �
with ���� � ����, and continents, consisting of points �
with ���� � ����. Figure 1 shows the local pictures of a

regular point and of the four types of non-degenerate critical

points.

Figure 1: The local pictures with shaded oceans and white conti-

nents of a regular point, a minimum, a 1-saddle, a 2-saddle, and a

maximum. Take notice of the symbols used to mark the different

types of vertices at the centers of the spheres.

Descending and ascending manifolds. Given a Rieman-

nian metric on � and a local coordinate system with or-

2



thonormal tangent vectors �
���

���, the gradient of � at � is
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It is the zero vector iff � is critical. An integral line 
 � � �
� is a maximal path whose velocity vectors agree with the

gradient: ��
��

��� � ���
���� for all � � �. Each integral

line is open at both ends, and we call �	
 
 � ������ 
���
the origin and ���� 
 � ����� 
��� the destination of 
.

Both are necessarily critical points of � . Integral lines are

pairwise disjoint. We consider each critical point as an inte-

gral line by itself, and with this stipulation the integral lines

partition � . We use them to decompose � into regions of

similar flow patterns. The descending and ascending mani-

folds of a critical point � are

���� � ��� � �� � � � � � � 
� ���� 
 � ���

��� � ��� � �� � � � � � � 
� �	
 
 � ���

where � 
 is the image of the path 
 on � . If � and � are

points different from � that belong to the descending and the

ascending manifolds of � then ���� � ���� � ����. This

implies that ���� 	 ��� � �. The descending manifolds

of � are the ascending manifolds of 
� and, symmetrically,

the ascending manifolds of � are the descending manifolds

of 
� . This implies that the two types of manifolds have

the same structural properties. Specifically, the descending

manifold of a critical point � of index � is an open cell of

dimension ������ � �. Since the integral lines partition

� , so do the descending manifolds. Moreover, they form a

complex as the boundary of every cell is the union of lower-

dimensional cells that are its faces. The ascending mani-

folds form a dual complex: for critical points � and � of � ,

������ � � 
 �����, and ���� is a face of ���� iff

��� is a face of ���.

Morse-Smale complexes. A Morse function � is Morse-

Smale if the descending and ascending manifolds intersect

only transversally. Suppose ���� and ��� have non-empty

common intersection. If ������ � � and ����� � �
then the transversality assumption implies ���� 	 ��� �
� � �. In the more interesting case in which both are 2-

manifolds, ��� and ���� are faces of ��� and ���� and,

as illustrated in Figure 2, the common intersection is a sim-

ple path connecting the two critical points. Following [7], we

define the cells of the Morse-Smale complex as the compo-

nents of the sets ���� 	 ���, over all critical points � and �
of � . By definition, each cell of the Morse-Smale complex is

a union of integral lines that all share the same origin � and

the same destination �. The dimension of the cell is then the

difference between the two indices. We call the cells of di-

mension 0 to 3 nodes, arcs, quadrangles, and crystals. Each

two-dimensional cell is indeed a quadrangle, but its bound-

ary may be glued to itself. The prototypical case of a crystal

is a cube, which we imagine standing on its tip, but more

interesting cases are possible.

p q

Figure 2: The dotted line is the common intersection of the de-

scending 2-manifold of � and the ascending 2-manifold of �.

3 Piecewise Linear 3-Manifolds

We are interested in algorithms that work for piecewise lin-

ear functions obtained from point measurements. In this sec-

tion, we introduce the necessary terminology, and we discuss

some of the difficulties that arise when we transport concepts

from the smooth to the piecewise linear category.

Triangulation. Let � be a simplicial complex that trian-

gulates the 3-manifold � . This means there is a homeo-

morphism between � and the underlying space of �, but to

simplify the discussion, we assume that � is the underlying

space. The complex consists of simplices of dimension 0 to

3, which we refer to as vertices, edges, triangles and tetra-

hedra. The star of a simplex � consists of all simplices that

contain � as a face, including � itself, and the link consists

of all faces of simplices in the star that are disjoint from �:

��� � �� � � � � � ���

��� � �� � � � � � � � ���� � 	 � � ���

For example, if � is a vertex then the link is a triangulation

of the 2-sphere. Let � � � � � be a continuous function

that is linear on every simplex of �. To say this more for-

mally, we note that every point � in a simplex is a unique

convex combination of its vertices ��: � �
�

� ���� with

� �
�

� �� and ��  � for all �. Assuming � is given at the

vertices, we have ���� �
�

� �������. We will refer to � as

a height function and feel free to use relative terms such as

‘higher’ and ‘highest’. It will be convenient to assume that

no two vertices have the same height, which can be justified

computationally by simulating a perturbation, as described

in [6, Section 1.4]. The lower star (upper star) of a vertex

� contains all simplices in the star for which � is the highest

(lowest) vertex, and the lower link (upper link) contains all

simplices in the link that are faces of the lower star (upper

star):

���� � �� � ��� � � � � �� ���� � ������

���� � �� � ��� � � � � �� ����  ������

���� � �� � ��� � � � � � ������

���� � �� � ��� � � � � � ������

As in the smooth case, we draw the level curve of points �
with ���� � ���� to decompose the link into oceans and
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continents. Each ocean retracts to a homotopy equivalent

component of the lower link, and each continent retracts to a

homotopy equivalent component of the upper link.

Critical vertices. Strictly speaking, critical points of � are

not defined, but we may use small bump functions and think

of � as the limit of a series of smooth maps. This is the

intuition we use to transport concepts and results from the

smooth to the piecewise linear category. We use lower links

and their reduced Betti numbers to distinguish regular from

critical vertices and to classify the latter. The reduced Betti

numbers are denoted as ���. They are the same as the com-

mon un-reduced Betti numbers, except that ��� � �� 
 �
for non-empty lower links, and ���� � � for empty lower

links [14]. Since lower links are two-dimensional, only ����
through ��� can be non-zero. As shown in Table 1, the simple

critical points are the ones that have exactly one non-zero re-

duced Betti number, which is equal to one. A multiple saddle

���� ��� ��� ���

regular 0 0 0 0

minimum 1 0 0 0

1-saddle 0 1 0 0

2-saddle 0 0 1 0

maximum 0 0 0 1

Table 1: The classification of regular and simple critical points us-

ing reduced Betti numbers.

is a vertex that falls outside the classification of Table 1 and

therefore satisfies ���� � ��� � � and ��� � ���  �. It can

be unfolded into simple 1-saddles and 2-saddles. One way

to do that is to repeatedly cut the link along a circle that in-

tersects the level curve separating the oceans and continents

in exactly two points. The reduced Betti numbers on the two

sides add up to the original ones: ��� � ���	 � ���
, for

� � �� �. We can always choose the circle such that the sum

of the reduced Betti numbers are non-zero on both sides. It

follows that the reduction ends after ��� � ��� 
 � cuts and

generates ��� 1-saddles and ��� 2-saddles.

Quasi Morse-Smale complex. We construct a complex

that is structurally indistinguishable from the Morse-Smale

complex by taking open manifolds made up of simplices in

�. It is a decomposition of space into crystals in which the

boundary of each crystal is a quadrangulation. The func-

tion � has its critical points at the nodes of this complex and

is monotonic within all the arcs, quadrangles and crystals.

It differs from the Morse-Smale complex because the arcs

and quadrangles may not be those of maximal ascent and de-

scent. Let � , � , � and � be the sets of minima, 1-saddles,

2-saddles and maxima of � , let�, � and � be the sets of arcs

that connect minima to 1-saddles, 1-saddles to 2-saddles, and

2-saddles to maxima respectively, and let  and! be the sets

of quadrangles with nodes from �� ���� � and ���� ���

in that order, respectively, around the boundary. We define

a quasi Morse-Smale complex of � as a decomposition of �

into open cells that satisfies the following properties:

(i) all nodes are from � � � � � � � , all arcs are from

� � � � � , and all quadrangles are from  � !,

(ii) there are no critical points within the arcs, quadrangles

and crystals, and

(iii) each arc in � is on the boundary of four quadrangles,

which in a cyclic order alternate between  and !.

Note that a quasi Morse-Smale complex can be split into

complexes defined by ��  and ��!. These are complexes

that are structurally indistinguishable from those of the de-

scending and ascending manifolds.

Simulating disjointness. Integral lines are not well de-

fined for piecewise linear manifolds. So, following [7], we

construct monotonic curves and surfaces that never cross.

These curves and surfaces can merge together and fork later.

When a curve or surface merges with another curve or sur-

face, we pretend that they remain infinitesimally close to

each other without crossing until they either fork or reach

a common critical point.

4 Algorithm

In this section, we give an overview of the algorithm and

describe some of the fundamental operations. Detailed de-

scriptions of how we construct the descending and ascending

manifolds will be given in Sections 5, 6 and 7.

Overview. A quasi Morse-Smale complex is constructed

during two sweeps over the 3-manifold. The first sweep is in

the order of decreasing function value or height and com-

putes the descending manifolds. The second sweep is in

the order of increasing height, which is the preferred order

for computing the ascending manifolds. However, instead

of computing the two collections independently, we use the

structure provided by the descending manifolds and add the

ascending manifolds accordingly.

Step 1. Construct the complex formed by the descending

manifolds.

Step 2. Construct the ascending manifolds in pieces in-

side the cells formed by the descending manifolds.

Some routing decisions in Step 1 require rudimentary struc-

tural information about the ascending 2-manifolds, so we

compute that already in Step 1. We compute the intersec-

tions between the descending and the ascending 2-manifolds

before we construct the latter. It is in fact easier to com-

pute these intersections first and then widen them into the

ascending 2-manifolds. To streamline our description of the

various steps in the algorithm, we denote the vertices of �
by ��� ��� � � � � �� assuming ����� � ����� � � � � � �����.
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Links and critical vertices. We assume a data structure

for the triangulation � of � that connects neighboring sim-

plices so that a local walk can be performed in constant time

per visited simplex. An example of such a representation is

the edge-facet data structure described in [5]. It stores or-

dered triangles linked into rings around shared edges. To

illustrate the functionality of this data structure, consider the

computation of the link of a vertex � � � �. Letting ��" be

one of the triangles that share that vertex, we use depth-first

search to traverse all triangles in the star. For each visited

triangle ���, the edge �� belongs to the link of � and so do

the triangles that precede and succeed ��� in the ring around

��. Given the initial triangle ��", the search takes time pro-

portional to the number of edges in the link.

With an additional test of the vertex heights, we can iden-

tify the lower link as a subcomplex of the link. As discussed

in Section 3, we use the reduced Betti numbers of the lower

link to classify the vertex � as regular, minimum, 1-saddle,

2-saddle, maximum or multiple saddle. We get the reduced

Betti numbers by keeping track of the components in the

lower link. If there are no components then ���� � � and
��� � � for all � �� 
�, so � is a minimum. If the lower link

is equal to the link then ��� � � and ��� � � for all � �� �, so �
is a maximum. Otherwise, ���� � ��� � � and ��� is one less

than the number of components. We get ��� from ��� and the

Euler characteristic # � �� 
 �� � ��, where �� is the num-

ber of �-simplices in the lower link of �: ��� � ��� � � 
 #.

According to Table 1, � is regular if ��� � ��� � � and it is

a multiple saddle combining ��� 1-saddles and ��� 2-saddles,

otherwise.

Running time. By choice of the data structure represent-

ing the triangulation � of the manifold, the link of � � can

be computed in time proportional to its size. Similarly, the

classification of ��, which reduces to counting the simplices

and the components in the lower link, can be done in time

proportional to that size. By definition, the size of the link is

the number of simplices it contains, and because it is a two-

dimensional sphere, this is �$� � �, where $� is its number

of triangles. Each triangle belongs to only two links, which

implies that the total size of all vertex links is

�	
���

�$� � � � �$%� � �&�

where & is the number of vertices and $ is the number of tri-

angles in �. As we will see later, the above time analysis

applies to most steps taken by our algorithm. Indeed, we

typically work inside a vertex link and compute simple sub-

structures, such as shortest-path trees and circles separating

oceans and continents from each other. We will see that with

the assumption of unit length edges both tasks and miscel-

laneous others can be performed in time proportional to the

size of the link and, in total, proportional to the size of �.

Besides computing vertex links, the algorithm constructs

descending and ascending manifolds, which intersect to form

the quasi Morse-Smale complex. Even though these mani-

folds are made of simplices in �, their total size can exceed

the size of � by any arbitrary amount. This is because the

manifolds may fold onto themselves and onto each other. A

simplex in� can therefore belong to several manifolds and it

can belong several times to a single manifold. Whatever the

situation, the time needed to add simplices to the description

of the quasi Morse-Smale complex is only proportional to

the total size of its description.

In summary, the running time of the algorithm is bounded

from above by a constant times & ��
& (for sorting the ver-

tices) plus the input size (for constructing and analyzing the

vertex links) plus the output size (for describing the quasi

Morse-Smale complex).

5 Descending Manifolds

We compute the descending 1- and 2-manifolds simultane-

ously during one sweep. To simplify the presentation, we

first discuss them separately and restrict our attention to sim-

ple critical points.

Descending 1-manifolds. Each descending 1-manifold is

an open interval that belongs to a 1-saddle � � � �. It con-

sists of two descending arcs and we call � the root of the

1-manifold and of its arcs. As illustrated in Figure 3, the

1-manifold descends from its root on both sides and, by sim-

ulation of the Morse-Smale condition, ends at minima of � .

It is possible that the two arcs end at the same minimum,

but because they do not contain that minimum, their union is

still an open interval and not a closed circle. In the Morse-

Figure 3: The descending 1-manifold rooted at a 1-saddle. The

spheres sketch the links of the root, a regular point, and one of the

two minima.

Smale case, all vertices of the 1-manifold except for its root

are regular, but in the piecewise linear case it is also possi-

ble that the 1-manifold passes through a 2-saddle or 1-saddle

� . We have ' � � because � is necessarily lower than the

root. For an arc it makes little difference whether it passes

through a regular or a critical point. However, since �  starts

its own descending manifold, we need to make sure that the
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arcs descending from �� and � are consistent in the sense of

simulated disjointness. In most cases, this consistency will

be automatic because we extend each arc by adding the edge

from the current endpoint to the lowest vertex in its lower

link. This choice of extension implies, for example, that once

two arcs merge, they go together until they both end at the

same minimum.

We distinguish between three operations in the construc-

tion of the descending 1-manifolds: starting, expanding and

gluing. The same three operations also occur in the con-

struction of descending 2-manifolds, and they are processed

within the same logical structure. The starting operation ap-

plies if � is a 1-saddle and starts the two arcs of the corre-

sponding 1-manifold using edges from � to the lowest vertex

in each ocean of the link. The expanding operation continues

all descending arcs ending at � by adding an edge from � to

the lowest vertex in its lower link. An exception to this rule

occurs if � is a 1-saddle. In this case, we (will later) start

an ascending 2-manifold and we extend each descending arc

to the lowest vertex in that ocean that avoids a crossing with

the ascending 2-manifold. The gluing operation applies if �
is a minimum, which it declares a node of the Morse-Smale

complex, and glues the descending arcs ending at � to each

other.

Structure of a 2-manifold. The construction of the de-

scending 2-manifolds is considerably more complicated that

that of 1-manifolds. We begin by discussing their structure

and by formulating an invariant maintained by the algorithm.

Each descending 2-manifold is an open disk that belongs to

a 2-saddle, which we call its root. The disk descends from

the root, which is its highest vertex. Its boundary is a cir-

cle consisting of descending 1-manifolds that meet at shared

minima. The circle might be partially glued to itself along

one or more arcs. Note that this is fundamentally different

from the case in which the disk folds onto itself: the folding

can be simulated away since it does not happen for smooth

functions, while the boundary gluing is an inherent feature of

descending 2-manifolds. It is important that the descending

2-manifold does not contain its boundary, else it would not

necessarily be a disk. In the most extreme case, the bound-

ary circle is a single vertex so that the closure of the disk is a

sphere. This gives the disk the appearance of a pouch.

Beyond being an open disk which descends from its root,

we require that the restriction of � to the descending 2-

manifold has no critical points other than the maximum at

its root � � ��. This property is guaranteed by an invari-

ant maintained during the construction. At any moment, we

have an open disk whose boundary is partially final or frozen

and partially unfrozen. The frozen boundary grows from the

empty set to a collection of open segments, which eventually

merge to form a complete circle. The unfrozen boundary

shrinks from a complete circle to a collection of closed seg-

ments, until it eventually disappears.

DISK INVARIANT. Let � be a vertex in the unfrozen portion

of the boundary of a disk and let �� be an interior edge.

Then � is either an interior vertex or a frozen boundary

vertex, and ���� � ����.

Note that the Disk Invariant prohibits interior edges that con-

nect two unfrozen boundary vertices. This implies that as

long as the entire boundary is unfrozen, there are no interior

edges connecting two boundary vertices, and all edges de-

scend from the interior to the boundary. Figure 4 illustrates

the resulting structure of a descending disk. A regular ver-

tex � in the restriction of � to the disk is characterized by a

non-empty connected lower link. In other words, the edges

in the star change between descending from � to descending

towards � exactly twice around �. The disk is extended at

u

p

q

Figure 4: A portion of the triangulation of a partially constructed

descending 2-manifold. The edges are oriented from the higher to

the lower endpoints.

the highest unfrozen vertex �; it either lies in the interior of

an unfrozen boundary segment or is the endpoint of a frozen

boundary segment. In the former case, all interior edges de-

scend towards �. We maintain the Disk Invariant by extend-

ing the disk such that all newly added edges descend from �.

It follows that the only new interior vertex, which is � itself,

is a regular point of � restricted to the disk. In the latter case,

we maintain the Disk Invariant by again extending the disk

such that all newly added edges descend from �.

Starting a 2-manifold. We start a descending disk at ev-

ery 2-saddle, and we extend descending disks at all unfrozen

boundary vertices. Let � � �� be a 2-saddle, as shown in

Figure 5, and let � be the lowest vertex in its link. By as-

sumption, the lower link is a retract of the belt-like ocean

around the link, and � belongs to that ocean. We start the

corresponding descending disk by constructing a circle in the

lower link, making sure that circle contains � as one of its

vertices. Even though we call it a circle, it may fold onto

itself, and sometimes such folding is unavoidable. There

are many ways to construct such a circle. Our particular al-

gorithm finds a shortest such circle using the shortest-path

tree from � that spans the lower link. Assuming unit edge

lengths, such a circle minimizes the number of edges. After

constructing the tree, we classify non-tree edges in the lower
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p

q

Figure 5: The disk rooted at � starts by connecting � to a circle in

the belt-like ocean that passes through the lowest vertex �.

link depending on whether or not they separate the two con-

tinents. The circle is then defined by the separating non-tree

edge in the lower link whose two endpoints minimize the

sum of distances to �. Returning to the classification, we

note that the tree cuts the link open but keeps it connected.

If we cut along a non-tree edge, we split the link into two

disks. If the edge does not separate then one of the disks

contains both continents while the other is contained inside

the ocean. The latter disk is triangulated and, by construc-

tion, its triangulation has all vertices on the boundary. We

can therefore remove the triangles from the disks by repeated

collapsing: at each step remove a triangle that has both edges

on the boundary and declare the third edge a new boundary

edge. The classification of non-tree edges in the lower link

thus proceeds by repeated collapsing, which marks all non-

separating edges and leaves all separating edges unmarked.

Expanding a 2-manifold. The interior vertices of a disk

are typically regular points of � , although they can also be

1-saddles and 2-saddles. We first consider a regular point

� � �� and assume it belongs to the boundary of a descend-

ing disk. Since we visit the vertices in the order of decreasing

height, � is the highest boundary vertex adjacent to at least

one unfrozen boundary edge. Figure 6 illustrates the two

possible cases: one in which there are two neighbors, ( and

), connected to � by unfrozen boundary edges, and the other

in which there is only one such neighbor, . The algorithm

treats both cases similarly and simultaneously. Specifically,

it constructs a shortest-path tree from the lowest vertex � in

the lower link of �. The points ( and ) belong to the lower

link and are therefore vertices of the tree. We connect ( to �
along the unique path in the tree and extend the correspond-

ing disk by connecting � to the edges of that path. We do the

same for ) and for all other vertices that are connected to �
by unfrozen boundary edges. It is possible that some paths

fold onto each other or themselves, and we must keep track

of sidedness as before.

There is no essential difference in the computations if � is

a 2-saddle, except that � itself starts an additional descend-

ing disk. By using the same tree for starting disks and for

q

c
b

a

p

Figure 6: Two descending disks that touch � and intersect the link

in a path each. One path starts and ends in the ocean while the other

starts in the continent and ends in the ocean.

expanding disks we avoid intersections, but as usual, fold-

ing on themselves or each other is allowed. The case of a

1-saddle � can be more interesting. If the two neighbors of

� along the boundary of the disk belong to opposite polar

oceans in the link then we do the same computations within

both oceans. The point � remains on the boundary, but its

two neighbors change to the vertices that are adjacent along

the descending 1-manifold rooted at �. Before continuing,

we declare � and the two incident boundary edges frozen for

the descending disk.

6 Simultaneous Construction

As mentioned earlier, the descending arcs and disks are re-

ally constructed simultaneously, in a single sweep over the

3-manifold. To get a flavor of how this is done, we discuss

a multiple saddle � � �� characterized by ��� � ���  �. Its

link has ��� � � oceans and ��� � � continents. We process �
in five steps:

Step 1.1. Start ��� descending disks.

Step 1.2. Prepare ��� ascending disks.

Step 1.3. Extend descending disks that touch �.

Step 1.4. Start ��� descending 1-manifolds.

Step 1.5. Extend descending arcs that touch �.

The main difficulty is the coordination of the descending and

ascending discs and arcs in such a way that they all intersect

in a locally and globally consistent manner.

Families of circles. In Steps 1.1 and 1.2, we start one fam-

ily of disks and prepare the starting of a second family. Each

disk intersects the link of � in a circle, so we need two fam-

ilies of circles, one for the descending and the other for the

ascending disks. The former are contained in the oceans and

separate the continents, while the latter lie on the continents

and separate the oceans, as illustrated in Figure 7. We ex-

tend the algorithm described in Section 5 to construct the first

family of circles. As before, we begin with the shortest-path
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Figure 7: We draw ��� � � (dotted) circles to separate the three

continents and ��� � � (dashed) circle to separate the two oceans.

The descending disks that start at � intersect the link in the dot-

ted circles, and the ascending disk intersects the link in the dashed

circle.

tree from the lowest vertex � in every component of the lower

link, and we classify non-tree edges in the lower link depend-

ing on whether or not they separate the continents into two

non-empty sets. Once we have selected a separating edge,

we add it to the tree of its endpoints (which now is a graph

with one cycle), and we continue using collapses to eliminate

edges that separate the continents in the same way. We re-

peat until we added ��� edges to the collection of trees. These

edges define the ��� circles required in Step 1.1. We then re-

peat the same algorithm in the upper link of �, thus switching

the roles of oceans and continents. This gives the ��� circles

required in Step 1.2. We note, however, that the construction

of the second family is complicated by the presence of paths

at which descending disks started at earlier vertices intersect

the link. We next describe these complications and how we

cope with them.

Transversal intersections. At the time we start descend-

ing disks and prepare ascending disks all rooted at � � � �,

we already have information on descending disks rooted at

vertices � , with ' � �. Among these disks, the ones that

pass through � influence the construction of the circle fam-

ilies. Circles that start descending disks are unproblematic

because the use of the shortest-path tree, both for starting

and for expanding, implies non-crossing descending disks.

We need some precautions to make sure that the prepared

ascending disks either do not cross the descending disks or

cross them transversally. In particular, if a descending disk

meets the link of � in two different oceans then that disk has

got to cross every ascending disk started by a circle that sep-

arates the two oceans. As illustrated in Figure 8, there is

at least one separating continent and thus at least one sepa-

rating circle, but there can be more. We cope with this diffi-

culty by modifying the continents before drawing the circles.

Each relevant descending disk meets the link of � in a path

connecting the two vertices adjacent to � along its boundary.

Consider a component of the intersection of such a path with

a continent, and let � and � be its endpoints. We distinguish

between four cases:

1
2

3

4

d

5

6

d
d

d

d d

Figure 8: Some of the descending disks passing through � form bar-

riers in our effort to draw circles preparing ascending disks within

the continents. The squares are gateways at which the dashed circle

may cross the paths.

(i) both � and � lie in the continent (e.g. +� in Figure 8);

(ii) � lies in the continent and � lies on its boundary (+�, +�
and +�);

(iii) � and � lie on a common boundary component (+ �);

(iv) � and � lie on different boundary components (+ �).

In each case, we cut the continent open along the interior of

the path from � to �. In other words, we form a barrier that

prohibits a circle in the second family from crossing the path.

Technically, we create this barrier by duplicating each edge

and each vertex in the interior of the path. The two copies

of a duplicated edge or vertex lie on different sides of the

barrier and are connected to the simplices in the star that lie

on the same side. When descending disks share a common

descending arc they meet the link in paths that share a com-

mon endpoint in the continent. An example of this situation

is the vertex shared by the paths +�, +� and +� in Figure 8.

Letting � be the number of such paths, the neighborhood of

the shared vertex is cut into � wedges. We replace the vertex

by � copies, one connected to each wedge. A path of type

(iv) would prohibit any circle going around the continent as

required. We thus designate the highest interior vertex as a

gateway at which a circle may cross the path. We cut the

continent along the rest of the path but not at the gateway.

A similar situation arises when paths of type (ii) connect at

shared endpoints and collectively cut a continent all the way

from one ocean to another. In this case, we designate the

highest vertices of some of the paths as gateways. To de-

cide whether or not to place a gateway determine the ocean a

path enters and the ocean into which the shared descending

arc expands, and place the gateway iff the continent sepa-

rates these two oceans. After modifying the continents as

described, we construct the shortest-path trees and rout the

circles as explained before.

Descending arcs and spikes. For each ascending disk we

start a (dual) descending 1-manifold that crosses the disk at

�. Instead of determining the two oceans separated by that

ascending disk and by no others, we start a descending arc by
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connecting � to the lowest vertex in each ocean and thereafter

pair the arcs to form the descending 1-manifolds.

The starting circles of ascending disks are also used in

an essential way when we extend descending arcs that pass

through �. Each such arc enters � from a continent and we

extend it into the unique ocean that is not separated by any

circle from the entry point. A complication arises when two

or more descending disks share a common descending arc,

such as the disks that meet the link in paths +�, +� and +�
in Figure 8. Let � be the vertex at which the arc meets the

link of �. Each such disk meets the link in a path connect-

ing � to a vertex � on the boundary of some ocean. In the

easy case, the arc gets extended into the same ocean, but if

the vertices � of these descending disks lie on two or more

boundary components, then this cannot be the case for all of

them. To resolve the apparent conflict, we attach a spike to

each descending disk that expands into an ocean separated

from that of the arc. This spike is an infinitesimally thin strip

of the descending 2-manifold that is squeezed between two

infinitesimally close descending 1-manifolds in its boundary.

Note that the disks that get spikes are exactly the ones whose

paths in the link receive gateways.

7 Ascending Manifolds

The construction of the ascending manifolds is similar to that

of the descending manifolds, except for the complications

caused by the fact that the latter already exist. The added

constraints are expressed in terms of barriers formed within

vertex links. We construct the ascending manifolds during a

sweep of the 3-manifold in the direction of increasing func-

tion value. After computing the intersection curves between

the descending and the ascending 2-manifolds and adding

the ascending arcs connecting the 2-saddles with the max-

ima, we fill in the ascending 2-manifolds one quadrangle at

a time.

Intersection curves and ascending arcs. Recall that for

a Morse-Smale function on a 3-manifold, the intersection

between a descending 2-manifold � and an ascending 2-

manifold  is either empty or a curve connecting their two

roots. From �’s point of view, the curve starts at a 1-saddle

on its boundary and monotonically increases until it ends at

its root. The Disk Invariant maintained during the construc-

tion of the descending disks implies that the restriction of

� to � has no critical points other than the maximum at its

root. To construct the curve, we thus start at the 1-saddle and

repeatedly extend the path by connecting its endpoint to the

highest adjacent vertex in the triangulation of �. The curves

started at the various 1-saddles in the boundary may meet but

they never cross and eventually all end at the root of �. Two

curves in different descending 2-manifolds may also meet,

but this intersection will be resolved when the descending

2-manifolds get resolved by simulation of an infinitesimal

separation.

Next we construct the ascending 1-manifolds. Specifi-

cally, we start the two arcs of an ascending 1-manifold at

every 2-saddle. The algorithm is similar to the one for de-

scending 1-manifolds, except that now the primary concern

in starting and expanding a 1-manifold is to avoid cross-

ing any of the already established descending 2-manifolds.

To understand these constraints consider the components of

the link of a vertex � that are cut out by the descending 2-

manifolds passing through �. Call these components the

slabs of � and their intersections with the oceans and the

continents the lower and upper slabs, respectively. When we

start the ascending arcs at �, we connect � with the highest

vertices in the upper slabs. When we extend an ascending

arc at �, we add the edge connecting � to the highest vertex

in the slab from which the arc approached �.

Ascending disks. The intersection curves and ascending

arcs decompose the ascending 2-manifolds into quadrangles.

The lowest point of a quadrangle is the 1-saddle at which the

2-manifold is rooted. This 1-saddle is connected to 2-saddles

by two continuous intersection curves emanating from the 1-

saddle, and the 2-saddles are connected to a common maxi-

mum along ascending arcs. We now construct the individual

quadrangles, which then fit together to form the ascending 2-

manifold. Each quadrangle is constructed in a process sim-

ilar to that for the descending disks. In this case, the frozen

part of the boundary occurs when the boundary of the quad-

rangle meets either an intersecting curve or an ascending arc.

Edges and vertices on these curves and arcs are frozen, ex-

cept for the vertices where we transition from frozen to un-

frozen edges, which are considered unfrozen. The process

also maintains a property similar to the Disk Invariant with

the inequality reversed.

The starting of an ascending quadrangle has already been

prepared in the descending step. Let � � �� be a 1-saddle.

The ascending disk at � meets the continent in a circle, this

circle is cut into a collection of segments by the descending

disks that pass through �, and the cone of � over each seg-

ment is the initial portion of a quadrangle. The endpoints

of these segments lie on intersection curves. To discuss the

expansion of an ascending quadrangle, suppose that � is the

lowest point on its unfrozen boundary. In this case, the pic-

ture is dual to that of Figure 6: the two adjacent points on

the boundary of the quadrangle either both lie in the conti-

nent of � or one lies in the continent and the other is frozen

in the ocean. These points all lie in a single slab. In the first

case, connect both points to the highest point in the slab that

contains them, using the same algorithm that we used in the

descending case. In the latter case, connect the single point

to the point of the slab where the ascending arc or intersec-

tion curve emerges in the continent. Clearly, for this to be

possible, we have to choose the ascending curves and arcs

carefully. We discuss this next.
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Simultaneous construction. As in the descending case,

we may actually construct intersection curves, ascending

arcs and ascending quadrangles all in a single pass from bot-

tom to top without resolving multiple saddles into simple

ones. To see how this goes, consider a multiple saddle � � � �

with ��� � � oceans and ��� � � continents. We process � in

six steps:

Step 2.1. Start ��� ascending 1-manifolds.

Step 2.2. Start intersection curves.

Step 2.3. Start ��� ascending disks.

Step 2.4. Extend ascending arcs that touch �.

Step 2.5. Extend intersection curves that touch �.

Step 2.6. Extend ascending quadrangles that touch �.

In Step 2.1, we choose one arc for each continent and pair

these ensuring that each pair of arcs is dual to a unique de-

scending disk that we started at �. In Step 2,2, we start as-

cending intersection curves by connecting � to the gateways

in its link. Due to paths and circles folding onto each other,

several paths may cross several circles at one and the same

gateway, and we start an intersection curve for each pair.

Two contiguous gateways along a circle delimit the starting

segment of an ascending quadrangle. In Step 2.3, we start

the quadrangle by forming the cone of � over the segment.

To do Step 2.4, we note that each ascending arc that passes

through � enters the lower link in either a single slab or on

the boundary between two slabs, which is necessarily part

of a descending disk. We continue the arc by choosing the

highest point in the corresponding slab or the highest point in

the boundary between the two slabs. In the former case, we

maintain simulated disjointness from the descending disks

and in the latter we maintain tangency. To do Step 2.5, we

continue the intersection curve by choosing the highest point

in the upper link of � that lies on the correct descending disk.

If there is more than one such, then two descending disks are

dividing as we go up so a point must be chosen for each

and the intersection curve doubled into two. Step 2.6 is now

clear, following the procedure for expanding an ascending

quadrangle described above.

8 Discussion

This paper introduces the Morse-Smale complex for a func-

tion over a 3-manifold as a decomposition of the 3-manifold

into crystals with quadrangular faces. It also gives an algo-

rithm to construct a quasi Morse-Smale complex for a piece-

wise linear function that guarantees structural correctness.

Letting & be the number of vertices in the input triangulation,

the running time is proportional to & ��
& plus the size of the

input triangulation plus the total size of the output manifolds

describing the quasi Morse-Smale complex. Many interest-

ing issues still remain open.

We can transform the quasi Morse-Smale complex into the

Morse-Smale complex by applying a sequence of operations

called handle slides. As described for 2-manifolds in [7],

using this approach we obtain a Morse-Smale complex that

is numerically as accurate as the local rerouting operations

used to control handle slides. For 3-manifolds, it is unclear

how to find and order the handle slides that bring us closer

to the Morse-Smale complex. It is also useful to have a hi-

erarchical representation of the Morse-Smale complex while

working with large data sets. We can create such a hierarchy

by performing a sequence of cancellations of pairs of critical

points ordered by persistence [8]. The details of this simpli-

fication process as applied to a quasi Morse-Smale complex

still have to be investigated.
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