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MORSE THEORY FOR FIXED POINTS 
OF SYMPLECTIC DIFFEOMORPHISMS 

ANDREAS FLOER 

ABSTRACT. We prove the following special case of the Arnold conjec
ture on the fixed points of an exact deformation <p of a compact closed 
symplectic manifold P: If n2(P) = 0 and all fixed points of <p are non-
degenerate, then their number is greater than or equal to the sum of 
the Betti numbers of P with respect to Z2 coefficients. 

Let P be a symplectic manifold, i.e. P is a smooth manifold equipped with 
a closed and nondegenerate 2-form a;. Then we can assign to each smooth 
function 

(1) H:P X R - + R ; H{x,t) = Ht{x) 

a family Xt of vector fields on P defined by <*;(•, Xt) = dHt. This vector 
field is called the (exact) Hamiltonian vector field associated with the (time-
dependent) Hamiltonian H. If P is compact, then the differential equation 

(2) d ^ H ' t ( x ) = xt(VHM) 

with initial condition <PH,O(X) = x defines a family of smooth difïeomorphisms 
of P, which also preserve the symplectic structure, i.e. for each t € R w e have 
<plu) = uj. In fact, the set 

(3) D = {<pH,t\ teRandHe C°°{P x R)} 

of exact difïeomorphisms turns out to be a subgroup of the group of symplectic 
difïeomorphisms on P. 

Since each <p € D is homotopic to the identity, the Lefschetz fixed point 
theorem implies that if all fixed points x of <p are nondegenerate in the sense 
that 

(4) det(D<p(x) - id) ^ 0, 

then the sum of the signs of (4) over all fixed points of <p is equal to the 
Euler characteristic x(P)- In particular, if all fixed points are nondegenerate, 
their number must be equal to or greater than the absolute value of x(P)-
It has been conjectured by V. Arnold that a stronger result holds for exact 
difïeomorphisms: the number of fixed points of each <p G D should satisfy 
estimates similar to those obtained by Morse theory for the number of critical 
points of a smooth function on P. 
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Results in this direction have been proved in [2] for the standard symplectic 
structure on the even-dimensional torus, in [3 and 7] for surfaces and other 
hyperbolic manifolds and in [4] for the complex projective space. Moreover, 
there has been a perturbation result for general symplectic manifolds, see [8]. 
Recently, Gromov [5] proved the existence of at least one fixed point for any 
exact deformation on P provided that 7T2(P) = 0. In this note, we announce 
the extension of this existence result to a Morse theory of nondegenerate fixed 
points. 

THEOREM 1. Let P be a compact closed symplectic manifold with TT2(P) = 
0. Let <p:P —• P be an exact diffeomorphism all of whose fixed points are 
nondegenerate. Then the number of fixed points is greater than or equal to the 
sum of the Betti numbers of P with respect to Z2-coefficients. 

It is conceivable that the ideas underlying the proof of Theorem 1 also work 
in the case of a general symplectic manifold. The estimate is a consequence 
of the following more precise relation between the fixed point set and the 
cohomology of P. 

THEOREM 2. With P and <p as in Theorem 1, let C* denote the Z^-vector 
space over the set of fixed points of (p. Then there exists a homomorphism 

(5) 6:C*-+C* 

of Z2 -vector spaces so that 66 = 0 and so that 

(6) 1ser6/imS = H*(P,Z2). 

The coboundary operator 6 is constructed as follows. For <p € P, define 

(7) n(p) = {z € C~([0,1], P)\ 2(1) = <p(z(0))}. 

Moreover, choose an almost complex structure J so that the bilinear form 
g = oj(J'r) is a metric, i.e. is symmetric and positive. Then we consider 
formally the flow generated by the "vector field" V{z) = Jz on Q(<p). To 
be more precise, we consider 1-parameter families u: R x [0,1] —• P in Q 
satisfying 

(*\ du{r,t) T,„f„ ^\du{r,t) 
(8) d r + J\M(T, t)) — ^ — = 0. 

Clearly, the fixed points of this "flow" are in 1-1 correspondence with fixed 
points of <p. We are particularly interested in the sets M(x,y) of solutions 
of (8) converging to fixed points x and y for r —• ±00. Applying a small 
perturbation to the almost complex structure J if necessary, we find that 
these sets are smooth finite-dimensional manifolds. Moreover, the group R 
acts freely on M(x, y) by translation in the first variable. We now define 

(9) (x, 6y) = ( #( 'M(X ' y)/R m o d 2 i f d i m •M(x ' y) = X' 
10 otherwise. 

For an analogous construction in finite-dimensional Morse theory, see Mil-
nor [6]. In order for (9) to be well defined, we need a compactness property 
of holomorphic curves, see also [5]. 
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It turns out that (9) defines the matrix elements of an operator 6 satisfying 
66 = 0. In order to show that it also satisfies (6), we show that the quotient 
ker6/im6 is invariant under deformation of <p within D. By the definition of 
D, we can now deform <p into the identity. The relation (6) is then proved by 
a perturbation argument. 

The author wishes to thank M. Gromov, A. Weinstein, and E. Zehnder for 
valuable discussions. 
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