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MORSE THEORY INDOMITABLE

by RAOUL BOTT1

Dedicated to Rene Thorn.

In the early fifties there were many occasions when Thorn's name and work impinged

on my life, but maybe none quite as dramatic as when some time in 1952-53 I picked

Norman Steenrod up at the Princeton railway station upon his return from Europe.

Steenrod was a great hero of mine and my first real topology teacher. I had taken his

course on Fiber Bundles in '49 and ever since had pursued the poor man with a vengeance.

My strategy was to loiter in parts of Princeton which Norman was known to frequent,

and then greet him with surprise when he duly showed up. For Steenrod was wonderful

to talk to. He really listened! Also he never feigned understanding, and the dreaded
words " of course " never crossed his lips.

In any case on this occasion my rendez-vous was on the up and up, because I
had a new version of my paper on the Steenrod Squares to deliver to him in his editorial

capacity for the Annals. After our greeting he accepted my paper with a quizzical look

and showed me a white, relatively slim, envelope in his jacket pocket. <( This is a paper

of Thorn and Wu dealing with the same subject—but I don't want to show it to you

until yours is all finished and found to be correct", he said. And so it came to be that

the names " Thorn and Wu " haunted rny dreams for several months to come, until my

paper was accepted and I was finally allowed to see their much more professional one.

In one way or another, both Thorn and Wu, and I, came up with intrinsic defi-

nitions of the Steenrod operations in terms of the Smith theory of cyclic products. These

were then gropings towards Steenrod's ultimate definition in terms of equivariant theory.

In any case, I could have slept soundly for Thorn and Wu's paper was never officially

published, but of course I didn't know that at the time, and so it was that I was greatly

relieved when I rnet Thorn in the flesh several years later. For I of course found

him the most delightful and unthreatening of people to meet. This was in the year 1955-56
at the IAS where we overlapped for a term.

i. Lecture delivered at the Conference in honour of Rene Thorn, Paris, September 1988. Research supported
in part by NSF Grant # DMS-86-05482.
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As all of us here know, Thorn does his mathematics with his fingers and hands,

and I still recall the motions of his hands as he taught me that for manifolds with boun-

dary, only half of the critical points on the boundary really " counted ". And the term

" critical point " of course brings me to my topic proper of this morning: " Morse Theory

Indomitable ". I think Morse would have approved the title for when I first met him,

he preached the gospel of (< Critical point theory 59 first, last and forever, to such an

extent, that we youngsters would wink at each other whenever he got started. Actually

in '49 he was not directly involved in critical point theory. He was completely immersed

in delicate questions of lower and upper semi-continuity of quadratic forms on function

spaces. Still the motivation behind this excursion was critical point theory—but in

infinite dimensions—and it would not surprise me if his papers of that period still have

something to teach us. For of course the infinite-dimensional case is very much at the

center of our interest at present.

In any case from 1949-51 when I learned the Morse theory—essentially by fiddling

with it, and trying to read his and Seifert and ThrelfalTs books—Morse was off in Hilbert

Space and more involved in analysis than topology. In fact the only person who seemed

interested in the Morse Theory in Princeton at that time was—of all people—again

Steenrod. By 1950 I had come to understand how the " Thorn isomorphism " fitted

into the Morse Theory and so saw how to (< count" higher dimensional critical sets.

From this point of view the cohomology of the symmetric product of a sphere, for instance,

was very transparent, and I remember that this method pleased Norman.

But it is time to get down to business, and what I would like to do here today is

to try and sort out the various stages of" Morse Theory " that I have now lived through,

and in particular to comment on the new points of view initiated by Thorn (40's),

Smale (60's) and Witten (70's) and Floer (80's).

Let me first of all remind you what I am talking about, at least in the most ele-

mentary setting, that is: The Nondegenerate Morse Theory on a smooth compact mani-

fold M. In this case we assume as given a smooth function f: M ->-R, whose extrema,

i.e., the points p where the differential df vanishes:

^ - 0,

are non degenerate in the sense that near such a point the determinant of the Hessian

of/ at p

^f II
-' -. l^^l ^«J^-. ^4- ^

^f- \\^—r-l
 x

!
local order at A^ || a ,̂

does not vanish. These data present us with a second order invariant at each point p

which Morse called the <c index 5? of/ at p, notated by Xp, and which he defined as

the number of negative eigenvalues of Hp/ at p. Thus:

^ = number of negative eigenvalue of Hy/.
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This granted, he formed the polynomial

^,(/) = 2 t\ df, = 0,
{»)

and observed that this polynomial is always coefficient by coefficient larger than the

Poincar^ polynomial P((M$ K) of M, taken relative to any field K. Actually, he showed
more, namely that if we write

(*) ^(/) - P,(M; K) = (1 + t) Q^(/; K),

and think of Q,((/ K) as the K-error of/, then this error is always non-negative in the
sense that all the coefficients of Q are nonnegative:

Q.((/K) =S^, with^O.

The (1 + t) term on the right gives this inequality much more power than it would

have without it. The (1 + t) feeds back information from the critical points of/to the
topology of M.

There is no question that in Morse's mind these inequalities expressed the change
in the topology of the half-spaces

M^{meM\f(m)<a}

determined by / and in the terminology of the late forties I liked to summarize his

arguments of the twenties by the following two statements:

Theorem A. — If there is no critical value off in the range [a, b] then M^ and M^ are

dijfeomorphic

M, ̂  M,.

Theorem B. — If there is precisely one nondegenerate critical point off of index \ in the

range [a, b] then the homotopy type of M^ is obtained from M ,̂ by " attaching " a \ -cell:

M,-M,u,^,

by a map a : ̂  -> M^.

Combining these two theorems with the by then well-known exact sequences

associated to an attaching of cells easily yields the Morse inequalities for any cohomo-

logy theory satisfying the Eilenberg-Steenrod axioms. Everett Pitcher also made a

similar translation of the Morse theory, at about the same time, and of course Thorn

used it as well. As I remarked earlier, it was he who a few years later explained to me

how these principles has to be altered when M is a manifold with nontrivial boundary.

I also recall Thorn proving the Lefschetz theorem via Morse Theory—but the details
of his argument eluded me. At infinity his hands and fingers seemed to take over. Still,

these lectures—also never published—were the impetus for the subsequent Andreotti-

Frankel Proof, as well as of my version of the theorem, published roughly at the same time.
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The Theorems A and B, or <c halfspace 5? approach is in my mind still the simplest

ans most straightforward path to the Morse inequalities, and it suffices for purely homo-

topy theoretic applications. These of course were my main motivation, and my insight

was, simply, that what Morse had done for the spheres could be done for the compact

Lie groups. Eventually Samelson and I discovered that it works also for all symmetric

spaces. Indeed the great symmetry of these spaces is to a large extent reflected in the

beautiful properties of the " Energy function "—or free particle " Lagrangian "—

W-J^)2^

on the space of paths L(M) on M which we are still in the process of uncovering. For

Samelson and me the crucial property of € was simply that on every fiber, ^<p of the
mapping TC:

t i^^L^M x M,

which sends a path \L to its endpoints p and q, S restricts to a nondegenerate and Zi^-perfect

Morse Function. Although this situation is a priori infinite-dimensional, it can be treated

purely by finite-dimensional techniques and in that context Zg-perfect simply means

that (1) the critical sets of § occur along manifolds (N) along which H is nondegenerate

in the normal direction, and (2) that the error term Qin (*) vanishes for the field Zg.

By the way, the appropriate generalization of Theorem B in this situation is simply that

M^M,u,E~(N)

with E~(N) the negative bundle of the normal bundle to the critical set N between a

and b. (Thus E~(N) is a maximal subbundle on which H/< 0). In short one now attaches

a disc bundle to M^ along its <( boundary sphere bundle ".)

Morse's Technique for proving his beautiful theorem of the twenties, that two

points p and q on the n sphere in any Riemann structure are joined by an infinite number

of geodesies, was as follows. He first used the " round " metric and its known geodesies

to compute the critical points of € on suitable fibres of LS". He then found € to be

perfect—by purely combinatorial means, that is, the Morse inequalities force actual equality!

In this way he computed the Poincard Series of the space of paths f2y g from p to q, 0-^q^

on S" to be

P.(^,,s»)=^-^r,

for any field K.

From this he then argues—again—using the Morse inequalities, that for any other

metric, the energy function € would still have to have an infinite number of critical

points, and as these correspond to geodesies joining p to q, one finds an infinite number

of them also in the new structure. Q.E.D.
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In my work I used a similar technique. One again uses the " normal" metric on

the symmetric space M to actually compute the critical sets, but my strategy was to

find a pair of points^, q on a given symmetric space M, with the property that the space

of" minimal geodesies " {romp to y, say M', was as large as possible and then to estimate

the indexes of all higher critical points. This led to formulae of the sort

Q ^ M = = M ' u ^ u ..., k>l,

from which we see that 7Ty(M) ^ TCy_i(t2M) ^ 7t:y_i(M') for r <^ /', and applied appro-

priately, this procedure yields all the periodicity theorems as well as homotopy equiva-

lences of the form:

0.0 == 0/U,

Q(0/U) = U/SP, etc.

But enough said here about those old '40's, '50's homotopy aspects of Morse Theory.

It was Smale who refined this < c half-space " approach I have been discussing

ten years later when he subtly recast Theorem B in a greatly strengthened form.

If dim M = n, then the formulation reads:

M,^M,u^ x ^.^

that is, we have attached a (< thickened disc ", ^ X e^_^ , as we cross the critical point,

but now the equivalence is in the " G00 category ", and so allows for a stepwise inductive

procedure for determining diffeomorphism type. This then led him to his handlebody

theory, the generalized Poincar^ Conjecture and the A-cobordism theorem! Not bad.

Smale enhanced our understanding of Morse Theory in two more ways. First of

all he and Palais formulated abstract criteria under which Theorems A and B could

be expected to hold. These are normally referred to as the " condition G " of Palais-

Smale. These conditions hold, for instance, for the Lagrangian S discussed earlier when

the space LM is given in the appropriate topology, but unfortunately they fail for many

of the other geometrically induced Lagrangians, such as those of minimal surface theory

or the Yang-Mills theory.

Secondly Smale saw how to fit Morse Theory into the scheme of dynamical systems

and so to complete a program that really started in a 1949 Comptes Rendus note of

R. Thorn's. It is in this framework that we now also make contact with physics, with

terms like " instantons " and with what I would like to call the " Thom-Smale " and

the (< Witten " complexes.

The starting point of these developments is to pass from / on M, to the gradient

of/, say V/, relative to a smooth Riemann structure g on M. Let's stay in the truly non-

degenerate case so that the vector field \ythen vanishes only at the finite number of critical

points of/. In this way every point q which is not a critical point of/ lies on a unique

1-dimensional integral manifold X^ of \/ which will " start" at some critical point p

and end at some other critical point r (I am assuming that M is compact, as throughout).
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The physicists call such an integral manifold an " instanton " for the following

reason: if we parametrize the q " trajectory " X^, by solving the differential equation

^——V/^)), ^(0)=?,

then u will be defined on all ofR with lim u(t) == p the initial point of the trajectory,

and lim u{t) = r its final point. The path t ->u{t) will furthermore hover near its

initial point for <( most of the time " ^< IQ and near its c< final point" for most of the

time t> ^i. In short, just as in the great scheme of things our lives take only an instant

to live, these " instantons " stay put at p and q most of the time and then whip from p

to q in an instant.

In any case, terminology aside, what Thorn pointed out already in 1949 was that

if we gather together the instantons having a given critical point p as their initial point,

then this set—denoted by Wy—is a cell of dimension \y. This is the " descending cell "

through p.

It is clear enough, then, that the cells { Wy }, as p ranges over the critical points

off, decompose M into disjoint sets. Unfortunately, however, this is, in general, not a
<( good cell decomposition " in the usual sense of the word. The closures of the cells can

be complicated and to use this construction per se to derive the Morse inequalities requires

some additional pushing and pulling. I was vaguely aware of Thorn's paper, but only

saw Sarnelson's review which only seemed to give the weaker Morse inequality, that is,

without the feedback term. Also, I am afraid that Comptes Rendus notes—especially by

inspired dreamers like Thorn—did not carry a very high credit rating. All in all then,
I forgot this paper, until in I960, I believe, when at a conference in Zurich, Srnale and

I went to have a swirn at a beautiful pool in the environs of Zurich. There Steve explained to

rne his approach to dynamical systems, which appeared in an A.M.S. Bulletin note of 1959.

By the way, it is interesting to meditate on the relative credit rating of Bulletin

notes by Smale and Comptes Rendus notes by Thorn. Michael Atiyah and I tend to call

communications of this type <( morally correct", and I leave it to you to ponder the

implications of this expression on our morals and the validity of the results in question.

In any case, Smale there introduces the concept of transversality into Thorn's cell-

decomposition and at the same time extends it to integral manifolds of more general

vector fields subject to certain axioms.

In the Morse theoretic context Smale's idea is this:

As we saw, the gradient field V/'decomposes M into the descending cells

M==©W^.
p

If we changer to —f, the new <( descending " cells are called the (< ascending "

cells of/:

M== ©W;
p
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and Smale would call ̂ /transversal, if these two types of cells always meet in as <( generic

a way " as they can. Precisely, this means that for any point q in the intersection Wp n Wy

the tangent spaces T^ W and T^ W should span T^ M.

Thus for each q e Wy n W^ one then has the exact sequence

0->T,X,->T,W,eT,W^T,M^O,

for, of course, the tangent to the trajectory of Vf through q is contained in both Tg Wy

and T^ W;.
The transversality condition is best understood by an example in which it fails.

And perversely enough this is the case for the " prime " example all of us use when

we explain the Morse theory to the uninitiated! That is, of course, the height function -?,

restricted to the torus standing on the x, y plane. The picture is as indicated below,

M

and the height z takes on its maximum at M, minimum at m, and clearly has two saddle

points ,$1 and s^. The gradient of — z, then starts a 2-cell at M, and 1-cells at s^ and s^

which I have also indicated. This decomposition violates Smale's axiom, for the ascen-

ding cell of s^ at q agrees with the descending cell at ^i, so that their tangent spaces do

not span the whole tangent space.

If one perturbs—V/* a little, this phenomenon will disappear, and, in fact, W,^

and W, will then fail to intersect at all!

The cells of a perturbed version of — V/, therefore, will look roughly like:

FIG. 2

14
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Notice by the way that the transversality condition implies that

dim(W^ n W,) = \ - \ + 1

from which it follows that the number of< ( instantons " joining two critical points whose

indexes differ by 1 is finite!

I wish Steve had written a more extended account of his note, for then surely he

would have pointed out that in fact the disposition of these finite numbers of <c proper

instantons 9?, as I will call them, are precisely what one needs to compute the homology

of M! Instead he derives the Morse inequalities and their generalization to more general

flows and hurries on to other things. But certainly implicit in his note is the following

algorithm, which I consciously became aware of only in the early 'SO's when Witten

came to my office one day and asked me whether it was well-known that a procedure

of the sort he was describing yielded the cohomology of M.

The algorithm in question is the following one.

Given a truly nondegenerateywith transversal gradient V/, orient the descending

cells arbitrarily and consider the free group over Z generated by them:

GW={[^]}.

We grade C^M) by the dimension of Wy, and define a boundary operator

9:C^C,_,

by simply counting each fundamental instanton y with a ± 1; thus

a[wj = S.(y) [Wj

with Y a proper instanton from the critical point r of index k — 1, and ^(y) == ± 1
according to whether for some q e y the exact sequence

0->T,X,->T,W^©T,W;^T,M->0

preserves orientation or not.
(For simplicity sake, assume here that M is oriented. Then the orientations on Wy

induce orientations on Wy while Ty X^ is oriented by — V/a, so ^(y) is well-defined).

With this understood one has the following easy consequence of Smale's work:

Theorem. — The complex C^M) defined above, has the property that 82 ̂  0, and

(**) H^Z^H^C^M)}.

This relation of course implies the Morse inequalities because of the purely alge-

braic fact that the counting series,

G( =S^dimG,,

of any finite-dimensional chain complex satisfy the Morse inequalities relative to the

Poincar^ series of its cohomology,

P, ^S^dimH^K),

relative to any field K.
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Whether the complex C^M) should be called the cc Smale complex of/'5 or the

" Smale-Witten" complex or the cc Thom-Smale-Witten '9 complex I leave to you.

In any case, I think of it as the most beautiful formulation of the nondegenerate Morse

theory, with the analysis not only prescribing the dimensions of the cells but even the

attaching maps. This is also the formulation Marston Morse was groping for in his

many later papers with Cairns, for instance. On the other hand, one cannot really call

this procedure practical. In general, it is difficult to find a metric whose gradient flow

for/is transversal (Smale proves that they are dense), and it is then a difficult matter

to actually compute the instantons. On these grounds, Morse might well have found

this formulation wanting. Still, in my view it is a beautiful and simple a statement as

one might wish for. And what I like even more is the road that brought Witten to ask
h s question.

His approach is, as you will see, along quite different lines, and really lines which

are characteristic of the modern physicists' world view. For the grand lesson of quantum

theory is that the Hilbert space of functions on M is in some sense more " real " than

the points of M, and correspondingly, in Witten's view the deformations of M—that

is, the pushing of M along the gradient of/, which underlies both approaches to the

Morse theory outlined so far—are replaced by a quite different deformation which

takes place in the function-space attached to M by the Hodge theory.

But first a little history. In August, 1979, I gave some lectures at Cargese on equi-

variant Morse theory, and its pertinence to the Yang-Mills theory on Riemann surfaces.

I was reporting on joint work with Atiyah to a group of very bright physicists, young

and old, most of whom took a rather detached view of the lectures. <( Beautiful, but

oh so far from Physics " was Wilson's reaction, I remember. On the other hand, Witten

followed the lectures like a hawk, asked questions, and was clearly very interested.

I therefore thought I had done a good job indoctrinating him in the rudiments

of the half-space approach, etc., so that I was rather nonplussed to receive a letter from

him some eight months later, starting with the comment, <( Now I finally understand

Morse theory!59

(This comment was actually very reminiscent ofSmale's comment to me in I960!

For Smale was of course also a student of mine, whom I believed to have taught the

Morse theory in the (< proper way ". It is quite a hardship to have such bright students!)

In any case, let me now explain to you the gist of Witten's approach, at least the

way I understand it.

We start with M, / and a metric g on M just as before. But we now consider the

de Rham complex

^ : a° -> 01 -> ... ^n

ofM, and its <( Hodge theory " relative to g. Thus g induces an adjoint d* to d going the

other way. The resulting Laplacian

A = dd^ + d ^ d
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can then serve to decompose Q" into a direct sum of finite-dimensional eigenspaces:

^=©£2^ ^eR,

with Qj[ = { <p e ̂  | Ay = ^<p }.

The Hodge theory then implies that:

1) Qg s H'(M), and

2) 0 -^ Q; ̂  Q^+1 ̂  ... Q»^ -^ 0 is exact for X> 0.

Here, ^ is the restriction of d to ^ = (B,^. These two conditions trivially
imply that all the finite-dimensional complexes

Q:=-©^, a>0,
A^s 0

have H*(M) as their cohomology.

In particular, then all the counting series

a^==Sdim(^)^

satisfy the Morse inequalities relative to P((M). As we move the metric g on M the
spaces ̂  of course jump about, but they must always respect these inequalities, because
all the complexes 0^ compute H*(M).

Now comes Witten's idea. Introduce the operator

d^e^^odoe^

with s e R a real parameter. In short, conjugate d by multiplication with e^. We clearly
have d^ == 0 and hence cohomology groups

H,(M) ==Ker^/Im^.

However, it is an easy matter to see that dim H^(M) is independent of s.

H:(M) ^ H-(M),

because we are just conjugating.

On the other hand, we can also compute H.(M) via the Hodge theory: this leads
to the operator

\==d,d:+d.d:,

and the corresponding decompositions

Q^) == © Q^)

into the eigenspace of A,. Just as before, we also have for every a > 0 the finite-dimen-

sional complex of differential forms Q;(^) spanned by all eigenforms of A, with eigen-
values \ < a and the counting series of all these Q;(J) must for the same reason as before
again satisfy the Morse inequalities relative to P((M).

It is this curve of finite-dimensional chain complexes G^(s) which Witten uses in
his version of the Morse theory!
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Namely, he argues that for s very large the dimensions of this complex become

independent of ^, so that we can denote them by ^(00), say, and that furthermore:

1. dim ^(oo) = number of critical points of index k, and

2. the differential operator induced by d on i^(oo) is carried by the proper instan-

tons from the critical points of index k to those of index k + 1.

But let me spell this all out in greater detail in a simple example.

Consider a function with four critical points on S1, say as depicted below:

and let us plot the spectrum of the laplacian A on H° and H1, respectively:

H1 ————————•———————, _________.________,

H°
0

FIG. 4

By Hodge theory we know that the distribution of eigenspaces must have the disposition

indicated in Fig. 4 with the crosses bearing equal multiplicity in the vertical direction.

Now the idea behind the Witten construction is that for s very large the spectrum
of A, will have moved—in a possibly very complicated way—to a terminal position
of the type described in the next figure.

,_________ At

^-At

FIG. 5
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Thus Q^(+ oo) will be a 2-step chain complex with 2-dimensional components. Further-

more, a basis for ^(oo) will consist of 1-forms which are essentially concentrated at

the maxima A and B, while a basis for tl°(oo) will consist of functions essentially concen-

trated at the minimal C and D. Furthermore, the operator dy, : Q^ — Q^ now describes

the (< tunnelling effect9? between the minima and the maxima, and in the physics lite-

rature this effect is computed precisely by estimating the contribution of the proper

instantons in question. Actually, these effects were first proposed in the much grander

and infinite-dimensional setting of Yang-Mills theory, so that Witten was " coming

down " to the much more mundane mathematical scene when he, as he put it, finally
<c understood" what was going on.

I do not have much more time left, so let me close by trying to give you a little

bit of the flavor of how Witten's assertion comes about at least in this simplest case. He

did not prove it by mathematical standards in his wonderful paper [8]. For that we had

to wait for the quite difficult papers ofHelder and Sjostrand [5], where of course Smale's

transversality condition enters. (In fact, it is nowadays possible to write long Comptes

Rendus notes and publish them in Journals like Differential Geometry^ thanks to the Pio-

neering work in this direction of Dennis Sullivan and Bill Thurston, say, and so you

should really think of Witten's paper [8] as being in a direct line with the notes of Thorn

and Smale.)
The clue to the whole phenomenon is to study the nature of A, in detail near a

critical point of/. Let us assume then that near a maximum, say A, of/, we have

x
2

fW - c- ^

with x a local coordinate centered at A on S1. Assume also that we have given R its flat

Riemann structure. Then in the basis 1, dx for 0° and Q
1 respectively, dy is simply

represented by

^ = ^ - ̂

and hence d\ by

rf; = - ̂  - sx.

It follows that

A°, = d; o d, = (B, + sx) (^ - sx)

== - ^+^^+^ .1 ,

A l ,=^or f ;=-^+^ 2 -^ l .

Thus if H, denotes the quantum mechanical harmonic oscillator — 8^ + sx
2
, then

A ^ = H , + ^ . l ,

while A^H,-.?.!.
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Now the spectrum of H^ is given by

Spec(HJ = | s |, 3 | . |, ...

from which it follows that, for s > 0,

Spec(A^) == 2s, 4s ...

while Spec(A^) == 0, s, ....

Similarly, near a minimum these two spectra are reversed:

Spec(A°.) = (U . . .

Spec(A1,) =2^4j ....

The global consequence of these estimates is that if/is an eigenfunction of A^ with small

eigenvalue (as s -^ + oo) then it must be concentrated near the minima, and vice-versa

for 1-forms. Inversely, if we start with the "vacuum state" of A(), 0 of a minimum

in L2^) and smooth it out to give a global function 0, say by cutting its support to a

compact region, then, for large j, A, 0 will involve only small eigenvalues for arbitrary
large s.

These heuristic are of course second nature to physicists and led Witten to the
conclusion stated above.

To recapitulate: the curve of elliptic differential operators A, = d, i\ + d^ d,

has, for large s, the property of dividing the spectrum into a low-lying sector, and a large

sector. For very large s the low-lying sector has eigenvalues > 0 and arbitrarily close to 0

and this low-lying sector Q^ constitutes the <( Witten complex". Because it com-

putes H*(M) and on the other hand has a basis given in terms of the critical points of/
this complex in particular proves the Morse inequalities. Q.E.D.

Witten's paper on Morse theory and super-symmetry is a gold mine also in other

respects, and teaches us how the physicist's (< thinking in terms of harmonic oscillators "

enters profitably into many questions. For instance, it teaches us that a similar technique

gives beautiful and transparent proofs of the fixed point theorems Atiyah and I proved

in the sixties, and in general points the way to a more <( hands on " approach of all the

classical index and equivariant index problems. The work of Bismuth, Getzler, Vergne

and others all fall under this heading: pointwise formulae for indexes and pushforwards,

which we previously only understood in cohomology. In this paper we also first learn

about the pertinence of S^equivariant theory to these questions, and the free loopspace

as the crucial instance of an S^space. In short, Witten's approach not only taught us

to (( recall "—in the platonic sense—the most satisfying version of the nondegenerate

Morse theory, but also taught us to relate the quantum mechanical concept of <( tun-
nelling " to topology.

But let me turn to a different development of the late seventies when for me the

Morse theory suddenly illuminated a completely new field. I am speaking of the relation

of Morse theory to symplectic geometry. However, as my time is up I must now really
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(< change scale " altogether if I am to give you at least a glimpse of Morse theory on the

more contemporary scene.

In fact, it is quite depressing to see how long it is taking us collectively to truly

sort out symplectic geometry. I became aware of this especially when one fine afternoon

in 1980, Michael Atiyah and I were trying to work in my office at Harvard. I say trying,

because the noise in the neighboring office made by Sternberg and Guillemin made

it difficult. So we went next door to arrange a truce and in the process discovered that

we were grosso modo doing the same thing. Later Mumford joined us, and before the

afternoon was over we saw how Mumford's (c stability theory 5) fitted with the Morse

theory.

The important link here is the concept of a moment map, which in turn is the

mathematical expression of the relation between symmetries ofLagrangians and conserved

quantities; in short, what the physicists call " Noether's theorem " and which is one of

their great paradigms.

Precisely, let X be a vector field preserving the symplectic form o on the symplectic

manifold M.
Thus, by my favorite formula, we have

jS?^ (o === di^ <o + t'x ̂  = O?

whence i^ co is a closed 1-form. Now, if we can find a function ̂  on M such that

df^ == ̂  ̂

we call /x a moment function for X, and these functions are endowed with especially
miraculous properties—provided X generates a compact group of symplectic diffeomor-

phisms. Indeed, under these assumptions,

W f-s.
 wln ^e a perfect Morse function on M. Furthermore

(2) the pushforward f^ of the measure co" on M, is piecewise polynomial on R,

or, quite equivalently,

f,..2"__Ls^-',
J n\ W p ., 5

where the sum is taken over the fixed points of X.
The first property was noted long ago by Frankel in the cc Kaehler case ", the second

is in a theory ofDuistermaat-Heckman [3] of the seventies, and the proof of their theorem

via the formulation above was noted by Atiyah and myself [2].

This recipe for constructing perfect functions gives all my earlier examples on

homogeneous spaces such as K/T (T a maximal torus of the compact Lie group K)

and the Bruhat cells of these spaces agree with the Thom-Smale cells relative to the

invariant metric of certain f^s.

In the infinite-dimensional context the recipe recreates the energy function <^,

discussed early on the loop space on K, and its (< cells " give the Bruhat decomposition

on loop groups!
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To fit these concepts into the Mumford theory, recall that the problem there is to

define a suitable algebrogeometric notion of quotient " M/G " in the algebraic cate-
gory. If K C G is the maximal compact subgroup of G and co e Q2(M) a Kaehler form

on M preserved by K, then the moment map for this situation becomes an equivariant
map

M-^k*

and its norm |[/[|2 is the pertinent function for Mumford's stability theory. Grosso

modo—the c( stable points 9? of Mumford's theory correspond to the big open cell ascen-

ding from the minimum of ||/||2, and the algebraic quotient <( M/G 59 is to be taken to
be ||/2 ||-1 (minimum)/K. Thus

^M/G^II^II-^mmVK.

In the infinite-dimensional case Atiyah and I were discussing at the time, \\f\\^

could be interpreted as the Yang-Mills functional on the space of connections ^ of a
principal bundle P over a Riemann surface M,

YM:A-.Jj|FJ|2,

and this YM turned out to be equivariantly perfect, thereby enabling us to compute the

cohomological properties of the minimum of YM—that is, the space of flat bundles
over M [1].

These then were the directions in which the interaction between symplectic struc-

ture and the Morse theory arose in our work. They all spring from the duality X rv/x>
which of course identifies the fixed points of X with critical points of f^.

The attempt to " integrate " this duality from symplectic vector fields to symplectic

diffeomorphisms of course brings us into the mainstream of the symplectic school going

back to Poincard and Birkhoff and it is in this area that the work of Arnold, Gromov,

Zehnder, Gonley, Ghaperon, and many others has recently been beautifully extended

by Floer [4]. I have just one minute left to comment on it. Note first that the symplectic

structure <x) on M induces a new function on the space of paths LM we encountered

earlier. Indeed, the endpoint projection LM "> M X M induces an evaluation map

LM x I -^ M x M

defined by e{^ t) = (Ji(^), so that the pullback of the symplectic form <x/ == 1 ® co — co ® 1

under e gives rise to a 2-form on LM X I, and hence, by integration over the integral I,
to a 1-form

6 = f e* <o

on LM. Now let V C M X M be a Lagrangian submanifold of M (e.g., the graph of a

symplectic diffeomorphism 9), and let Ly M C LM be the subspace TC'^V) in LM.

Then it is easy to see that restricted to Ly M, 6 becomes closed and hence at least locally df.

15
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The <c Morse theory " of this closed 1-fbrm now leads Floer to an infinite-dimensional

analogue of the Thom-Smale-Witten complex G, whose cohomology is of interest in

several contexts [4]. The crucial remark here is that in infinite-dimensional situations,

where the Hessian of a functionyat a critical point p might well have an infinite number

of negative and positive eigenvalues so that it is meaningless to speak of an index Xp,

it is still possible to make sense of the " relative index " of two critical points^ and y, by

measuring the (< spectral How of Hf" along a curve joining p and q. Thus G/ can be

given a relative grading, proper instantons can be defined, and so the boundary ope-

rator 8 carried by these is again given meaning.

But my time is up and I must stop even though I have in no way exhausted my

topic. There is, for instance, no mention of the c< beyond condition C " work of Uhlen-

beck and Taubes and others and not a word about the achievements of surgery theory.

Still, I hope to have convinced you a little that Morse theory is indeed indomitable,

and hopefully this rehearsal will also underscore for you Thorn's dictum that the simple

ideas are the ones that yield the greatest power.
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