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Introduction
◮ Number of CPU cores keeps growing:

4-socket Ivy Bridge EX with 60 cores, 120 threads, 1TB RAM
(50,000$)

◮ These systems support terabytes of NUMA RAM: disk is not a
bottleneck

◮ For analytic workloads intra-query parallelization is necessary
to utilize such systems
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Contributions

◮ We present an architectural blueprint for a query engine
incorporating the following

◮ Morsel-driven query execution (work is distributed between
threads dynamically using work stealing)

◮ Set of fast parallel algorithms for the most important relational
operators

◮ Systematic approach to integrating NUMA-awareness into
database systems

◮ Lots of prior work on algorithms for main-memory databases
◮ Focus on storage, and on individual operations (hash join,

merge join, aggregation, ...)
◮ NUMA has been addressed by quite a few papers
◮ Focus of this paper is on efficiently evaluating a full query, and

on algorithms that support pipelined evaluation
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Related Work: Volcano-Style Parallelism (1)

◮ Encapsulation of Parallelism in the Volcano Query Processing

System, Goetz Graefe, SIGMOD 1990
SIGMOD Test of Time Award 2000

◮ Plan-driven approach:
◮ optimizer statically determines at query compile time how

many threads should run
◮ instantiates one query operator plan for each thread
◮ connects these with exchange operators, which encapsulate

parallelism and manage threads

◮ Elegant model which is used by many systems
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Volcano-Style Parallelism (2)

+ Operators are largely oblivious to parallelism

+ Great for shared-nothing parallel systems

− But can do better for shared memory parallel systems with all
data in-memory

− Static work partitioning can cause load imbalances

− Degree of parallelism cannot easily be changed mid-query

− Not NUMA aware

− Overhead:
◮ Thread oversubscription causes context switching
◮ Hash re-partitioning often does not pay off
◮ Exchange operators create additional copies of the tuples
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Morsel-Driven Query Execution (1)

◮ Break input into constant-sized work units (“morsels”)

◮ Dispatcher assigns morsels to worker threads

◮ # worker threads = # hardware threads

◮ Operators are designed for parallel execution

A

16

18

27

5

7

B

8

33

10

5

23

B

8

33

10

5

23

C

v

x

y

z

u

HT(S)HT(T)

A

16

7

10

27

18

5

7

5

...

...

...

...

...

Z

a

c

i

b

e

j

d

f

...

...

...

...

...

RZ

a

...

...

A

16

...

...

B

8

...

...

C

v

...

...

Result

store
probe(16)

probe(10)

probe(8)

probe(27)store

Z

b

...

...

A

27

...

...

B

10

...

...

C

y

...

...

morsel

morselDispatcher

Viktor Leis 6 / 22



Morsel-Driven Query Execution (2)

◮ Each pipeline is parallelized individually using all threads
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Morsel-Driven Query Execution (2)
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Morsel-Driven Query Execution (2)

◮ Each pipeline is parallelized individually using all threads
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Parallel In-Memory Hash Join

1. Several algorithms proposed earlier for parallel in-memory
hash join

2. Option 1: partition relation and process each partioning in
parallel

3. Option 2: build a global hash table on build relation, but
parallellize both building and probing

4. Earlier work shows Option 2 is better

5. Key issues: maximize locality, minimize synchronization
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NUMA-aware Processing of Build Phase
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Morsel-Wise Processing of Probe Phase
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Hash Table
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◮ Unused bits in pointers act as a cheap bloom filter
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Lock-Free Insertion into Hash Table

1. insert(entry) {

2. // determine slot in hash table

3. slot = entry->hash >> hashTableShift

4. do {

5. old = hashTable[slot]

6. // set next to old entry without tag

7. entry->next = removeTag(old)

8. // add old and new tag

9. new = entry | (old&tagMask) | tag(entry− >hash)

10. // try to set new value, repeat on failure

11. } while (!CAS(hashTable[slot], old, new))

12. }

13. }
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Storage Implementation

1. Use large virtual memory pages (2MB) both for the hash table
and the tuple storage areas.

1.1 The number of TLB misses is reduced, the page table is
guaranteed to fit into L1 cache, and scalability problems from
too many kernel page faults during the build phase are avoided.

2. Allocate the hash table using the Unix mmap system call, if
available.

2.1 Page gets allocated on first write, initialized to 0’s
2.2 Pages located on same NUMA node as thread that first writes

the page, ensuring locality if only single NUMA node is used.

3. May be a good idea to partition table using primary/foreign
key

3.1 e.g. order and lineitem on orderkey
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Morsels

◮ No load imbalances: all workers finish very close in time

◮ Morsels allow to react to workload changes: priority-based
scheduling of dynamic workloads possible
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NUMA Awareness

◮ NUMA awareness at the morsel level

◮ E.g., Table scan:
◮ Relations are partitioned over NUMA nodes
◮ Worker threads ask for NUMA-local morsels
◮ May steal morsels from other sockets to avoid idle workers
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Parallel Aggregation

◮ Aggregation: partitioning-based with cheap pre-aggregation

◮ Stage 1: Fixed size hash table per thread, overflow to
partitions

◮ Stage 2: Final aggregation: thread per partition
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Parallel Merge Sort

◮ Sorting for order by and top-K only, sorting for merge join not
efficient

◮ Local sort in parallel, followed by parallel merge

◮ Key issue: finding exact separators. Median-of-medians algo.
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Evaluation: TPC-H (SF 100), Nehalem EX (32 cores)
TPC-H # time [s] speedup

1 0.28 32.4
2 0.08 22.3
3 0.66 24.7
4 0.38 21.6
5 0.97 21.3
6 0.17 27.5
7 0.53 32.4
8 0.35 31.2
9 2.14 32.0

10 0.60 20.0
11 0.09 37.1

TPC-H # time [s] speedup

12 0.22 42.0
13 1.95 40.0
14 0.19 24.8
15 0.44 19.8
16 0.78 17.3
17 0.44 30.5
18 2.78 24.0
19 0.88 29.5
20 0.18 33.4
21 0.91 28.0
22 0.30 25.7

◮ single threaded: 30x faster than PostgreSQL, 10x faster than
commercial column store, similar speed as Vectorwise

◮ multi threaded: 5x faster than Vectorwise, 50x faster than
Cloudera Impala on 20-node cluster
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Scalability
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Conclusions

◮ Getting good scalability and performance on many-core
systems is challenging but possible

◮ However, it not possible to bolt on parallelism to an existing
query engine, one must redesign it with modern hardware in
mind

◮ With morsel-driven parallelism HyPer can finish ad hoc queries
on hundreds of GBs in seconds

www.hyper-db.com
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