
Morsel-Driven Parallelism:
A NUMA-Aware Query Evaluation
Framework for the Many-Core Age

Viktor Leis, Peter Boncz*, Alfons Kemper, Thomas Neumann

Technische Universität München *CWI

with some modifications by: S. Sudarshan

Viktor Leis 1 / 22

Introduction
◮ Number of CPU cores keeps growing:

4-socket Ivy Bridge EX with 60 cores, 120 threads, 1TB RAM
(50,000$)

◮ These systems support terabytes of NUMA RAM: disk is not a
bottleneck

◮ For analytic workloads intra-query parallelization is necessary
to utilize such systems

DRAM

socket 0

DRAM

socket 1

socket 3 socket 2

DRAM DRAM

25.6GB/s

12.8GB/s
(bidirec�onal)

8 cores

24MB L3

8 cores

24MB L3

8 cores

24MB L3

8 cores

24MB L3

◮ Number of CPU cores keeps growing:
4-socket Ivy Bridge EX with 60 cores, 120 threads, 1TB RAM
(50,000$)

Viktor Leis 2 / 22

Contributions

◮ We present an architectural blueprint for a query engine
incorporating the following

◮ Morsel-driven query execution (work is distributed between
threads dynamically using work stealing)

◮ Set of fast parallel algorithms for the most important relational
operators

◮ Systematic approach to integrating NUMA-awareness into
database systems

◮ Lots of prior work on algorithms for main-memory databases
◮ Focus on storage, and on individual operations (hash join,

merge join, aggregation, ...)
◮ NUMA has been addressed by quite a few papers
◮ Focus of this paper is on efficiently evaluating a full query, and

on algorithms that support pipelined evaluation

Viktor Leis 3 / 22

Related Work: Volcano-Style Parallelism (1)

◮ Encapsulation of Parallelism in the Volcano Query Processing

System, Goetz Graefe, SIGMOD 1990
SIGMOD Test of Time Award 2000

◮ Plan-driven approach:
◮ optimizer statically determines at query compile time how

many threads should run
◮ instantiates one query operator plan for each thread
◮ connects these with exchange operators, which encapsulate

parallelism and manage threads

◮ Elegant model which is used by many systems

XchgHashSplit(3:3)

v

R1

v

R2

v

R3

r r r

Xchg(3:1)

r

v

R

Viktor Leis 4 / 22

Volcano-Style Parallelism (2)

+ Operators are largely oblivious to parallelism

+ Great for shared-nothing parallel systems

− But can do better for shared memory parallel systems with all
data in-memory

− Static work partitioning can cause load imbalances

− Degree of parallelism cannot easily be changed mid-query

− Not NUMA aware

− Overhead:
◮ Thread oversubscription causes context switching
◮ Hash re-partitioning often does not pay off
◮ Exchange operators create additional copies of the tuples

Viktor Leis 5 / 22

Morsel-Driven Query Execution (1)

◮ Break input into constant-sized work units (“morsels”)

◮ Dispatcher assigns morsels to worker threads

◮ # worker threads = # hardware threads

◮ Operators are designed for parallel execution

A

16

18

27

5

7

B

8

33

10

5

23

B

8

33

10

5

23

C

v

x

y

z

u

HT(S)HT(T)

A

16

7

10

27

18

5

7

5

...

...

...

...

...

Z

a

c

i

b

e

j

d

f

...

...

...

...

...

RZ

a

...

...

A

16

...

...

B

8

...

...

C

v

...

...

Result

store
probe(16)

probe(10)

probe(8)

probe(27)store

Z

b

...

...

A

27

...

...

B

10

...

...

C

y

...

...

morsel

morselDispatcher

Viktor Leis 6 / 22

Morsel-Driven Query Execution (2)

◮ Each pipeline is parallelized individually using all threads

BB

BA

S R

v vT

v

Viktor Leis 7 / 22

Morsel-Driven Query Execution (2)

◮ Each pipeline is parallelized individually using all threads

BB

BA

S R

v vT

v

Build HT(T)

Pipe 1

Scan T

Pipe 1

Scan T

Pipe 1

Scan T

vv
v

Viktor Leis 7 / 22

Morsel-Driven Query Execution (2)

◮ Each pipeline is parallelized individually using all threads

BB

BA

S R

v vT

v

Build HT(S)

Build HT(T)

Pipe 2

Scan S

Pipe 2

Scan S

Pipe 2

Scan S

vv
v

Viktor Leis 7 / 22

Morsel-Driven Query Execution (2)

◮ Each pipeline is parallelized individually using all threads

BB

BA

S R

v vT

v

Build HT(S)

Build HT(T)

Probe HT(T)

Pipe 3

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

Scan R

Probe HT(S)

v

v

v

v

Viktor Leis 7 / 22

Parallel In-Memory Hash Join

1. Several algorithms proposed earlier for parallel in-memory
hash join

2. Option 1: partition relation and process each partioning in
parallel

3. Option 2: build a global hash table on build relation, but
parallellize both building and probing

4. Earlier work shows Option 2 is better

5. Key issues: maximize locality, minimize synchronization

Viktor Leis 8 / 22

NUMA-aware Processing of Build Phase

m
o

rse
l

T

Phase 1: process T morsel-wise and store NUMA-locally

Phase 2: scan NUMA-local storage area

and insert pointers into HT

next morsel

Storage

area of

blue core

scan In
se

rt
 th

e p
oin

te
r

in
to

 H
T

global

Hash Table

Storage

area of

red core

Storage

area of

green core

v

v

v

Viktor Leis 9 / 22

Morsel-Wise Processing of Probe Phase

morsel

R

Storage

area of

red core

HT(T) HT(S)

Storage

area of

green core

Storage

area of

blue core

n
e

x
t

m
o

rs
e

l

...(R)v ...(R)v...(R)v

Viktor Leis 10 / 22

Dispatcher

Dispatcher

(J
1

, M
r1)

A
ssig

n
 P

ip
e

lin
e

-Jo
b

 J
1 o

n

m
o

rse
l M

r to
 C

o
re

0

Pipeline-

Job

J1

Pipeline-

Job

J2

Mr1

Mr2

Mr3

Mg1

Mg2

Mg3

Mb1

Mb2

Mb3

(virtual) lists of morsels to be processed

(colors indicates on what socket/core the morsel is located)

List of pending pipeline-jobs (possibly of different queries)

Core0 Core Core Core

Core Core Core Core

D
R

A
M

Core8 Core Core Core

Core Core Core Core

D
R

A
M

Core Core Core Core

Core Core Core Core

D
R

A
M

Core Core Core Core

Core Core Core Core

D
R

A
M

Socket Socket

inter connect

SocketSocket

Example NUMA Multi-Core Server with 4 Sockets and 32 Cores

Pipeline-

Job

J3

d
isp

atch
(C

o
re0)

Scheduler (beyond the scope of this paper)

prioritize Pipeline Jobs according to Quality of Service constraints

Viktor Leis 11 / 22

Hash Table

d00000100

e10000010

f

hashTable
16 bit tag for early filtering

48 bit pointer

◮ Unused bits in pointers act as a cheap bloom filter

Viktor Leis 12 / 22

Lock-Free Insertion into Hash Table

1. insert(entry) {

2. // determine slot in hash table

3. slot = entry->hash >> hashTableShift

4. do {

5. old = hashTable[slot]

6. // set next to old entry without tag

7. entry->next = removeTag(old)

8. // add old and new tag

9. new = entry | (old&tagMask) | tag(entry− >hash)

10. // try to set new value, repeat on failure

11. } while (!CAS(hashTable[slot], old, new))

12. }

13. }

Viktor Leis 13 / 22

Storage Implementation

1. Use large virtual memory pages (2MB) both for the hash table
and the tuple storage areas.

1.1 The number of TLB misses is reduced, the page table is
guaranteed to fit into L1 cache, and scalability problems from
too many kernel page faults during the build phase are avoided.

2. Allocate the hash table using the Unix mmap system call, if
available.

2.1 Page gets allocated on first write, initialized to 0’s
2.2 Pages located on same NUMA node as thread that first writes

the page, ensuring locality if only single NUMA node is used.

3. May be a good idea to partition table using primary/foreign
key

3.1 e.g. order and lineitem on orderkey

Viktor Leis 14 / 22

Morsels

◮ No load imbalances: all workers finish very close in time

◮ Morsels allow to react to workload changes: priority-based
scheduling of dynamic workloads possible

worker 0

worker 1

worker 2

worker 3

q13 arrives q14 finishesq14 arrives q13 finishes
�me

Viktor Leis 15 / 22

NUMA Awareness

◮ NUMA awareness at the morsel level

◮ E.g., Table scan:
◮ Relations are partitioned over NUMA nodes
◮ Worker threads ask for NUMA-local morsels
◮ May steal morsels from other sockets to avoid idle workers

DRAM

socket 0

DRAM

socket 1

socket 3 socket 2

DRAM DRAM

DRAM

socket 0

DRAM

socket 1

socket 3 socket 2

DRAM DRAM

Nehalem EX Sandy Bridge EP

25.6GB/s 51.2GB/s

12.8GB/s
(bidirec�onal)

8 cores

24MB L3

8 cores

24MB L3

8 cores

24MB L3

8 cores

24MB L3

8 cores

20MB L3

8 cores

20MB L3

8 cores

20MB L3

8 cores

20MB L3

16.0GB/s
(bidirec�onal)

Viktor Leis 16 / 22

Parallel Aggregation

◮ Aggregation: partitioning-based with cheap pre-aggregation

◮ Stage 1: Fixed size hash table per thread, overflow to
partitions

◮ Stage 2: Final aggregation: thread per partition

K

8

13

3

V

9

7

10

ht
K

8

3

13

3

3

10

33

4

33

8

...

V

9

2

7

8

4

7

22

17

4

7

...

K

4

33

10

3

V

17

22

7

4

ht

group

group

m
o

rs
e

l
m

o
rs

e
l

(12,7) (8,3)

(8,9) (4,30)

spill when ht becomes full

n
e

x
t

re
d

m
o

rs
e

l

K

12

8

4

V

...

...

...

HT

K

13

33

V

...

...

HT

(41,4) (13,7)

(13,14) (33,5)

group

gro
up

group

gro
u
p

Result ptn 0

Result ptn 1

Phase 1: local pre-aggregation

Phase 2: aggregate partition-wise

Partition 0

Partition 0

...Partition 3 ...

...Partition 3 ...

Viktor Leis 17 / 22

Parallel Merge Sort

◮ Sorting for order by and top-K only, sorting for merge join not
efficient

◮ Local sort in parallel, followed by parallel merge

◮ Key issue: finding exact separators. Median-of-medians algo.

Viktor Leis 18 / 22

Evaluation: TPC-H (SF 100), Nehalem EX (32 cores)
TPC-H # time [s] speedup

1 0.28 32.4
2 0.08 22.3
3 0.66 24.7
4 0.38 21.6
5 0.97 21.3
6 0.17 27.5
7 0.53 32.4
8 0.35 31.2
9 2.14 32.0

10 0.60 20.0
11 0.09 37.1

TPC-H # time [s] speedup

12 0.22 42.0
13 1.95 40.0
14 0.19 24.8
15 0.44 19.8
16 0.78 17.3
17 0.44 30.5
18 2.78 24.0
19 0.88 29.5
20 0.18 33.4
21 0.91 28.0
22 0.30 25.7

◮ single threaded: 30x faster than PostgreSQL, 10x faster than
commercial column store, similar speed as Vectorwise

◮ multi threaded: 5x faster than Vectorwise, 50x faster than
Cloudera Impala on 20-node cluster

Viktor Leis 19 / 22

Scalability

 1 2 3 4 5 6

 7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

1 16 32 48 64 1 16 32 48 64 1 16 32 48 64 1 16 32 48 64

threads

s
p

e
e

d
u

p
 o

v
e

r
H

y
P

e
r

System

HyPer (full-fledged)

HyPer (not NUMA aware)

HyPer (non-adaptive)

Vectorwise

Viktor Leis 20 / 22

Conclusions

◮ Getting good scalability and performance on many-core
systems is challenging but possible

◮ However, it not possible to bolt on parallelism to an existing
query engine, one must redesign it with modern hardware in
mind

◮ With morsel-driven parallelism HyPer can finish ad hoc queries
on hundreds of GBs in seconds

www.hyper-db.com

Viktor Leis 21 / 22

www.hyper-db.com

