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Mortality Implications of
Mortality Plateaus∗
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Abstract. This article aims to describe in a unified framework all plateau-generating random effects
models in terms of (i) plausible distributions for the hazard (baseline mortality) and the
random effect (unobserved heterogeneity, frailty) as well as (ii) the impact of frailty on the
baseline hazard. Mortality plateaus result from multiplicative (proportional) and additive
hazards, but not from accelerated failure time models. Frailty can have any distribution
with regularly-varying-at-0 density and the distribution of frailty among survivors to each
subsequent age converges to a gamma distribution. In a multiplicative setting the baseline
cumulative hazard can be represented as the inverse of the negative logarithm of any
completely monotone function. If the plateau is reached, the only meaningful solution at
the plateau is provided by the gamma-Gompertz model.
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1. Introduction. George Udny Yule [1] was intrigued by the findings of “Miss
Chick” [2] that bacteria subjected to the action of a toxin experienced a constant force
of mortality after some length of exposure. Such a mortality plateau puzzled him.
On the one hand, it seemed reasonable that death rates would rise with increasing
exposure. On the other hand, it also seemed plausible that death rates should fall as
the most susceptible individuals died, leaving a more robust population of survivors.
That these alternative processes could exactly balance seemed impossible to Yule,
so he concluded that the population of bacteria was homogeneous, each bacterium
experiencing the same, constant force of mortality.

Beard [3] and Vaupel, Manton, and Stallard [4] introduced a mortality model
for heterogeneous human populations that implied an asymptotic mortality plateau.
If for each individual in the population the hazard of death increases exponentially
according to the Gompertz formula Aebx, where x denotes age, b is the rate of aging
(same for all individuals), and A is a random variable called “frailty” that follows a
gamma distribution across individuals with mean a at the initial age and a squared
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62 TRIFON I. MISSOV AND JAMES W. VAUPEL

coefficient of variation γ at all ages, then μ̄(x), the force of mortality for the population
(i.e., on average for surviving individuals), is given by μ̄(x) = aebx/[1+(aγ/b)(ebx−1)].
As age x increases, this force of mortality approaches a constant b/γ. Statistical
analysis of human mortality data at ages 110+ [5] has found evidence for an actual
leveling-off of the human force of mortality between ages 110 and 114 [6]. Claims of
a mortality decline at advanced ages have been shown to be artifacts of inaccurate
data (see [7, 8, 9]).

Mortality plateaus imply that either individual hazards in a homogeneous pop-
ulation decelerate and level off, or mortality selection of individuals with increasing
hazards causes the hazard of a heterogeneous population to bend over and eventually
flatten. Unobserved heterogeneity can have genetic, environmental, or other origins.
Experiments with nonhuman species were set up to test the effects of genetically
[10, 11, 12] and environmentally [13, 14] induced variation on the existence and for-
mation of mortality plateaus. The unidentifiability of frailty models in the absence
of ancillary information, though, made it impossible to differentiate between the ho-
mogeneous and the heterogeneous models. A recent article by Chen, Zajitschek, and
Maklakov [15] seems to have overcome this obstacle and argues that heterogeneity
explains mortality deceleration in nematodes.

There are three main questions regarding mortality-plateau modeling: (1) how
does frailty affect baseline mortality, i.e., how is the mixture distribution constructed?
(2) what characterizes the distributions of baseline mortality and frailty? and (3) what
meaningful conjugate pairs of baseline mortality and frailty can be used in practice?

2. Modeling Mortality Plateaus. Models in which b is constant for all individ-
uals, but A varies from individual to individual, are known as proportional hazards
(multiplicative) models. Their wide application is to a great extent due to the fact
that the marginal distribution is expressed in terms of the Laplace transform of the
frailty distribution. In this setting, Steinsaltz and Wachter [16] approached question
(2) by applying the Abelian and Tauberian theorems (see Chapter XIII in [17]) for
the Laplace transform of a frailty distribution whose density is equivalent to a gamma
density in a vicinity of zero. The Tauberian theorem returned, though, a much wider
class of frailty distributions, which indicated that “gamma distributions are common
but not generic distributions for frailty among survivors” [16, p. 26].

Finkelstein and Esaulova [18] independently reached the same (as in [16]) con-
clusion about frailty. However, they considered a general framework incorporating
accelerated failure time, proportional hazards, and additive hazards models. In ac-
celerated failure time models both parameters A and b can vary from individual to
individual. Finkelstein and Esaulova [18] proved that if b follows a continuous dis-
tribution over all positive or nonnegative numbers, then the population’s (marginal)
force of mortality must decline to zero with age. This finding implies that mortality
plateaus cannot be modeled by accelerated failure time models. That is why propor-
tional hazards and additive hazards models are of particular importance for modeling
mortality plateaus.

Missov and Finkelstein [19] extended the findings in [16] and [18] by proving that
frailty at the initial age can have any distribution with density that regularly varies
at zero (the distributions specified in [16] and [18] belong to this family). Conversely,
Missov and Finkelstein [19] proved that if the force of mortality approaches a plateau
at advanced ages, then frailty is characterized by a regularly-varying density. In
addition, Abbring and van den Berg [20] proved that such distributions converge with
age to a gamma distribution. That is, in proportional hazards models a wide range
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MORTALITY IMPLICATIONS OF MORTALITY PLATEAUS 63

of initial frailty distributions (“of regular variation”) approach a gamma distribution
as x→ ∞.

There are numerous discrete-age models for stage-structured populations (e.g.,
[21, 22]) that lead to a plateau. In some of them the force of mortality first rises
and then declines to eventually flatten out, unlike the hazard of death for humans
and bacteria which continuously increases until it levels off. There is at least one
continuous-time stage-based model (by Le Bras [23]) that generates the latter sched-
ule. However, Yashin, Vaupel, and Iachine [24] proved its equivalence to the model
by Vaupel, Manton, and Stallard [4].

In general, individual lifetimes are modeled by two alternative methods, either (A)
by specifying a lifetime distribution accounting for unobserved heterogeneity (frailty
models) or (B) by considering lifetimes as first passage points of a random deteriora-
tion process. The idea for the latter was proposed initially by [25] in terms of “vital-
ity”: death occurs when vitality falls below a threshold, accounting for the magnitude
of incoming “challenges.” Weitz and Fraser [26] use a different name (“viability”)
with a death threshold at 0, while Steinsaltz and Evans [27] consider multidimen-
sional Markov processes (i.e., multiple sources of change in vitality) with an initial
quasi-stationary distribution of states. The conceptual novelty in these models is
the inclusion of changing frailty (the model by Weitz and Fraser is essentially the
same as the one analyzed by Anderson [28] and later extended in [29]). Steinsaltz
and Evans [27] consider both changing frailty and multidimensionality of the under-
lying deterioration process. Wachter [30] studies a class of Markovian evolutionary
demographic models for the genesis of mortality plateaus, and Demetrius [31] studies
mortality plateaus in the context of populations with bounded growth whose evolu-
tionary stable strategy aims at maximizing entropy [32]. All these models present
sufficient conditions for mortality plateaus, while in this article we look for necessary
conditions.

In this article we follow modeling scheme (A) for several reasons. Although in
both (A) and (B) we define a mortality model for the individual, we often work with
aggregate data, i.e., models for the population. For frailty models we have a simple
tool (the Laplace transform) to switch from the individual (conditional on frailty)
model to the one (marginal) for the population. Second, in modeling scheme (A)
the fixed frailty term accounts for all the information that the deterioration process
dynamics in (B) contain. The latter is more interesting to explore if one is interested
in the biology of aging. In this article, though, we have a more modest goal: to
clarify how we should model lifetimes based on the information that mortality rates
level off. Third, in frailty models every parameter has a specific demographic meaning.
Demographers, epidemiologists, and evolutionary biologists compare these parameters
across different populations. This is why we try to keep the model parsimonious, so
that statistical estimation of parameters is feasible. Finally, we assume frailty to be
fixed for a simple reason: models are usually fitted to data starting from some later
(adult) age x0, when all effects of infant, child, adolescent, and young-adult mortality
are no longer present. If frailty (at birth) changes (and it probably does) as one ages,
we can assume that it changes from birth to the initial age x0 at which we start fitting.
After that, we assume that it stays constant.

In this article we address the following question: given that mortality eventually
levels off, can we describe the underlying model? In particular, if the underlying
model is given in terms of proportional hazards or additive hazards, what are the
distributions of baseline mortality and frailty? If (i) a population is heterogeneous,
(ii) its force of mortality eventually levels off, and (iii) the underlying model is defined
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64 TRIFON I. MISSOV AND JAMES W. VAUPEL

in terms of proportional hazards or additive hazards, we characterize the class of
baseline mortality distributions. We also show the conditions under which the model
with exponentially increasing baseline and gamma-distributed frailty holds, since the
gamma-Gompertz model seems to be the one of greatest practical importance.

3. General Relationships for Heterogeneous Populations. Let the force of
mortality at age x for an individual with frailty Z = z be denoted by μ(x | z). Frailty
Z is a random variable that measures unobserved individual susceptibility to death.
The population’s force of mortality μ̄(x) at age x is then the weighted average of all
μ(x | z) with respect to the frailty distribution, with density π(x, z), of survivors to x:

μ̄(x) =

∫ ∞

0

μ(x | z)π(x, z)dz .

Without specifying π(x, z) and μ(x | z), we can take advantage of several general
results. Denote

∂μ(x | z)
∂x

= μ̇(x | z) .

Then (see [33, 34])

μ̇(x) = μ̇(x)− σ2
μ(x) ,(3.1)

where

μ̇(x) =

∫ ∞

0

μ̇(x | z)π(x | z)dz

is the average change in μ(x | z) with age x and

σ2
μ(x) =

∫ ∞

0

μ2(x | z)π(x, z)dz − μ̄2(x)

measures the variance of μ(x | z) across all subpopulations with different frailties.
Suppose the force of mortality is asymptotically flat: limx→∞ μ̄(x) = μ̄∗, i.e., for

all ε > 0 there exists age xε such that for x > xε
∣∣μ̇(x)− σ2

μ(x)
∣∣ < ε .(3.2)

Suppose for simplicity that the mortality plateau is reached. This means that there
exists x∗ such that for x > x∗, μ̄(x) = μ̄∗ and, consequently, ˙̄μ(x) = 0. As a result,
for x > x∗ (3.1) is equivalent to

¯̇μ(x) = σ2
μ(x) .(3.3)

This equation can be solved analytically only under strong assumptions about the
frailty distribution or the behavior of μ(x | z) with age. Taking advantage of the fact
that plateaus cannot result from accelerated failure time models (see [18]), we will
first focus on the solution of (3.3) in a proportional hazards setting. Accelerated
failure time and proportional hazards provide the two most widely used frameworks
for analyzing time-to-event data in demography, epidemiology, medicine, biology, and
engineering. That is why the solution of (3.3) in the latter case could be useful.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

06
/0

1/
17

 to
 1

52
.3

.5
9.

18
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



MORTALITY IMPLICATIONS OF MORTALITY PLATEAUS 65

4. Mortality Plateau Inferences for Proportional Hazards. Suppose the force
of mortality μ(x | z) at age x for an individual with frailty z is given by (see [4])

μ(x | z) = zμ(x | 1) .(4.1)

Then

μ̄(x) = z̄(x)μ(x | 1) ,(4.2)

¯̇μ(x) = z̄(x) μ̇(x | 1) ,(4.3)

σ2
μ(x) = μ2(x | 1)σ2

z(x) ,(4.4)

where

z̄(x) =

∫ ∞

0

zπ(x, z)dz(4.5)

is the average frailty of survivors to age x. Dividing both sides of (3.1) by μ̄(x), we
can draw an inference about the relative change in the population’s force of mortality,

˙̄μ(x)

μ̄(x)
=

¯̇μ(x)

μ̄(x)
− σ2

μ(x)

μ̄(x)
.

Taking into account (4.2)–(4.4), we get

˙̄μ(x)

μ̄(x)
=
μ̇(x | 1)
μ(x | 1) −

σ2
z(x)

z̄(x)
μ(x | 1) .

Denoting μ́(x) = μ̇(x)/μ(x) and using the fact that CV 2
z (x) := σ2

z(x)/z̄
2(x) is the

squared coefficient of variation of the frailty distribution at age x, we finally find

´̄μ(x) = μ́(x | 1)− μ̄(x)CV 2
z (x) .(4.6)

Thus, the relative change ´̄μ(x) in the marginal (population’s) force of mortality μ̄(x)
is equal to the difference between the relative change in the baseline force of mortality
μ(x | 1) and μ̄(x) itself, modulated by the squared coefficient of variation CV 2

z (x) of
the frailty distribution π(x, z) among survivors to age x.

Suppose μ(x | 1) follows a Gompertz curve,

μ(x | 1) = aebx .

Then, if the distribution of frailty at age 0 is gamma Γ(k, λ), i.e., its density π(0, z)
is given by

π(0, z) =
λk

Γ(k)
zk−1e−λz, k, λ > 0 ,

the population’s force of mortality has a logistic shape and levels off with age x (see
[3, 4]), i.e.,

lim
x→∞ μ̄(x) = μ̄∗ ≡ const .

As a result, the assumptions about Gompertz baseline mortality and gamma frailty
distribution at age 0 is a sufficient condition for an eventual mortality plateau.
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66 TRIFON I. MISSOV AND JAMES W. VAUPEL

Formulating necessary conditions for mortality plateaus requires the solution of
equations which are valid only asymptotically. Steinsaltz and Wachter [16] as well
as Missov and Finkelstein [19] derived such conditions, i.e., proved the respective
Tauberian theorems for the multiplicative model and a general model (with the mul-
tiplicative as a special case), respectively. In this article we avoid asymptotic equations
by assuming that the marginal hazard actually reaches the plateau.

Suppose the force of mortality is asymptotically flat and the plateau is reached
for x > x∗. Then ´̄μ(x) = 0 and, for x > x∗, (4.6) is equivalent to

μ́(x | 1) = μ̄∗CV 2
z (x) .(4.7)

When the solution of (4.7) is degenerate, i.e., μ́(x | 1) = CV 2
z (x) = 0, then the pop-

ulation is homogeneous and the baseline hazard is flat. Another interesting special
case is when (4.7) has a trivial solution

μ́(x | 1) = b ≡ const, CV 2
z (x) =

b

μ̄∗ ≡ const .(4.8)

The first relationship in (4.8) implies that for x > x∗ the relative derivative of μ(x | 1) is
constant, which means that μ(x | 1) follows a Gompertz curve. The second relationship
in (4.8) implies that the frailty distribution at age 0 should be such that the resulting
frailty distribution among survivors to age x, x > x∗, has a constant coefficient of
variation.

In general, if no degenerate or trivial solutions are considered, (4.7) implies that
for x > x∗ the relative change in the baseline force of mortality μ́(x | 1) should equal
the adjusted (by a factor μ̄∗) squared coefficient of variation of the frailty distribution
among survivors to age x. Suppose for simplicity μ̄(x) = μ∗ for x > 0. Then marginal
survivorship can be expressed as

s̄(x) = Lπ(0,z)(H(x | 1)) = e−μ∗x ,(4.9)

where Lπ(0,z)(H(x | 1)) is the Laplace transform of the frailty distribution π(0, z)

calculated for the baseline cumulative hazard H(x | 1) =
∫ x

0 μ(t | 1)dt. Reorganizing
(4.9), we get1

x = − 1

μ∗ lnLπ(0,z)(y), y = H(x | 1) .(4.10)

Applying Bernstein’s theorem [35], which characterizes Laplace transforms of positive
Borel measures on [0,∞), we get that Lπ(0,z)(·) is the class of completely monotone
functions with supremum equal to 1 (recognizing that π(0, z) is a pdf). As a re-
sult, H(x | 1) can be any function that is inverse to the adjusted (by 1/μ∗) negative
logarithm of a completely monotone function. How restrictive is this condition?

As the cumulant generating function ψ(H) of H(x | 1) =: H is given by the left-
hand side of (4.10), we find

x = ψ(H) = κ1H − κ2
2
H2 +

κ3
6
H3 + · · · ,(4.11)

1This idea and most derivations given to the end of this section are from Kenneth W. Wachter
(personal communication).
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MORTALITY IMPLICATIONS OF MORTALITY PLATEAUS 67

where κi, i = 1, 2, . . . , are the cumulants of the frailty distribution at the starting
age. By series reversion we can express the baseline cumulative hazard H as

H =
1

κ1
x+

κ2
2κ31

x2 +
3κ22 − κ1κ3

6κ51
x3 + · · ·(4.12)

and the baseline hazard μ(x | 1) itself (multiplied by κ1) as

κ1 μ(x | 1) = 1 +
κ2
κ21
x+

3κ22 − κ1κ3
2κ41

x2 + · · ·(4.13)

or, on a log-scale, as

ln{κ1 μ(x | 1)} =
κ2
κ21
x+

2κ22 − κ1κ3
2κ41

x2 + · · · .(4.14)

As a result, the baseline hazard can have various shapes, including the Gompertz
shape, that are conjugate to gamma-distributed frailty. The existence of an infinite
number of conjugate pairs producing the same mortality plateau was recognized by
Vaupel and Carey [36]. These shapes, however, are ad hoc and may not be biologically
plausible.

5. The Gamma-Distributed Frailty at the Plateau. Vaupel, Manton, and Stal-
lard [4] introduced Γ(k, λ) as a frailty distribution at age 0 and showed that the
distribution of frailty among survivors to any subsequent age x is also gamma with
the same shape parameter k and a different scale parameter λ(x) = λ+H(x | 1), ac-
counting for the cumulative risk of dying according to the baseline mortality schedule
μ(x | 1). The mean frailty of individuals at age 0 is k/λ, whereas the mean frailty
among survivors to age x is given by k/[λ+H(x | 1)]. The variance of frailty at age
0 is k/λ2, and the variance of frailty at age x is k/[λ + H(x | 1)]2. Thus, for all x,
the frailty distribution among survivors to age x has a constant squared coefficient
of variation CV 2

z (x) equal to 1/k. As a result, the gamma distribution satisfies the
second relationship in (4.8) for all x (not just x > x∗).

The inverse statement holds as well. Suppose a survival model is defined by
(4.1) and CV 2

z (x) is constant. Then we can rewrite the second equation in (4.8) by
taking advantage of the CV 2

z (x) representation via the Laplace transform Lπ(0,z) of
the frailty distribution π(0, z) calculated for the baseline cumulative hazard H(x | 1):

CV 2
z (x) =

Lπ(0,z)(s)L̈π(0,z)(s)

L̇2
π(0,z)(s)

∣∣∣∣∣
s=H(x | 1)

− 1 .(5.1)

If CV 2
z (x) = c− 1 ≡ const for all x, then the following differential equation holds:

yÿ = cẏ2 ,(5.2)

where y = y(s) = Lπ(0,z)(s). Its solution is given by

y(s) =

(
1 +

s

c1

)c2

,(5.3)

where c1 and c2 are constants resulting from indefinite integration. This is the Laplace
transform of the gamma distribution. As every distribution π(0, z) is defined uniquely
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68 TRIFON I. MISSOV AND JAMES W. VAUPEL

by its moment-generating functionMGπ(0,z)(t), which is simply Lπ(0,z)(s) for s = −t,
the gamma frailty distribution at x = 0 is the only one for which the frailty’s coefficient
of variation at any subsequent age x is constant.

The trivial solution of (4.7) suggests that if the coefficient of variation of the
frailty distribution for all x is constant, then the frailty distribution is gamma and,
consequently, the baseline mortality is Gompertz. This follows directly from the first
equation in (4.8) by solving the respective differential equation.

6. Discussion. When studying human mortality, the Gompertz assumption be-
low age 30 fails to capture either the observed high level of infant mortality or the peak
at young adult ages. The latter is mostly due to accident-related mortality resulting
from risky behavior. On the other hand, the popularity of the gamma distribution for
modeling frailty is mainly associated with computational convenience. Moreover, the
gamma-Gompertz model can be reparametrized in such a way that the resulting mix-
ture of distributions does not change [24]. It is a general result that univariate frailty
models are unidentifiable unless one of the underlying distributions is specified [37].
This means that the gamma-Gompertz model is not the only one that captures the
logistic shape of the force of mortality. A wide class of plausible models is described in
[16, 18, 19]. However, when it comes to modeling (in a proportional hazards setting),
the simplest and perhaps the only meaningful pair is the gamma-Gompertz, which,
as we have illustrated in the previous section, arises from the trivial solution (4.8).

The Gompertz distribution results from truncation at zero of a type I general-
ized extreme value (the Gumbel) distribution. That is why, along with the Weibull
(type III generalized extreme value) distribution, it is the most widely used para-
metric model to capture aging processes. From a biological perspective, the death
of an organism occurs when the first regulatory system fails. If the failure times
of these systems are identically distributed (no matter whether correlated or not)
random variables, then the limiting distribution of minimal failure times will be a
generalized extreme value distribution. If the baseline is Weibull, then the marginal
hazard eventually drops down to zero. As a result, the Gompertz distribution is the
only meaningful candidate from the generalized extreme value distribution family that
generates mortality plateaus.

Γ(k, λ) provides one of the possible frailty distributions at age 0 that yields a
mortality plateau. In general, in a proportional hazards setting the eventual leveling-
off of the marginal force of mortality can result from any frailty distribution with
a density π(0, z) such that π(0, z) = zαG(z), where G(z) is a function of regular
variation at 0 with power α > −1 (see [19]). Regularly varying (with α > −1)
densities π(0, z) converge in distribution to a gamma for x → ∞ (see [20]), which
means that the resulting frailty distribution π(x, z) among survivors to age x has a
constant coefficient of variation. Thus, regularly varying densities π(0, z) do generate
mortality plateaus in a proportional hazards setting.

We have considered multiplicative models for two reasons. First, Finkelstein and
Esaulova [18] proved that the population’s force of mortality in accelerated failure
time models always tends to zero and, thus, never levels off at a positive constant
level. Second, apart from proportional hazards and accelerated failure time, there
are hardly any other mixture survival models that offer a reasonable interpretation of
the underlying aging and selection processes. One of the possible plateau-generating
mechanisms outside the proportional hazards framework is given by an additive haz-
ards model

μ(x | z) = zaebx + c(x) ,(6.1)
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MORTALITY IMPLICATIONS OF MORTALITY PLATEAUS 69

where c(x) ≥ 0, limx→∞ c(x) = c ≡ const, and frailty is “regularly varying” in the
sense described in the previous paragraph. When c(x) = c, this is the standard
gamma-Gompertz–Makeham model. It is easy to see that (6.1) satisfies (4.6) if μ̄(x)
levels off. Moreover, the baseline force of mortality is asymptotically equivalent to the
Gompertz curve aebx + c(x) ∼ aebx for x → ∞. Note that this is the only plateau-
generating additive hazards model, which follows directly from Theorem 1 in [18].

7. Conclusion. The observed leveling-off of human mortality rates at ages 110+
has four major implications for the generating mechanism. First, plateaus can be mod-
eled in the framework of multiplicative (proportional) or additive hazards, but not by
accelerated failure time models. Second, the distribution of unobserved heterogeneity
has a regularly-varying-at-zero density at the starting age and converges subsequently
to the gamma distribution. Third, in a proportional hazards setting the baseline cu-
mulative hazard is the inverse of the negative logarithm of any completely positive
function, and the well-known gamma-Gompertz pair can be derived as a special mean-
ingful case. Fourth, in an additive hazards setting plateaus are generated by taking
the latter proportional hazards pattern and adding a frailty-independent term that
levels off with age. Many conjugate pairs, i.e., pairs of baseline mortality and frailty
distributions, can produce the same mortality pattern. The only demographically
meaningful multiplicative model that holds at the plateau is the gamma-Gompertz.
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