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We propose a cross-layer optimization strategy that jointly optimizes the application layer, the data-link layer, and the physical layer
of a wireless protocol stack using an application-oriented objective function. The cross-layer optimization framework provides ef-
ficient allocation of wireless network resources across multiple types of applications run by different users to maximize network
resource usage and user perceived quality of service. We define a novel optimization scheme based on the mean opinion score
(MOS) as the unifying metric over different application classes. Our experiments, applied to scenarios where users simultaneously
run three types of applications, namely voice communication, streaming video and file download, confirm that MOS-based opti-
mization leads to significant improvement in terms of user perceived quality when compared to conventional throughput-based
optimization.
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1. INTRODUCTION

In order to achieve efficient resource usage in a wireless net-
work and to provide high quality of services to the largest
possible number of users, it is necessary to obtain an opti-
mal configuration of the wireless transmission system. Dy-
namic changes of transmission conditions and concurrently
running applications by different users make dynamic op-
timization of resources a complex task. In realistic scenar-
ios, multiple users share the wireless medium and run rather
diverse applications such as video streaming/conferencing,
voice telephony, and file download. Dynamic allocation of
resources across all the users and all the applications provides
an opportunity to achieve increasing network resource usage
and to maximize the user satisfaction at the same time.

Application-driven cross-layer optimization (CLO) has
been studied for systems supporting single applications
[1–4]. However, in reality, the users sharing the wireless
medium, for example, in a cell, usually run different appli-
cations. User satisfaction translates into a different set of re-
quirements for each type of application. Furthermore, the
impact of losses on the user-perceived quality is also very
much application-dependent. Jointly optimizing the system
for different users and applications requires (1) defining a
common metric that quantifies the user perceived quality of

service for the service delivery and (2) mapping network and
application parameters onto this metric.

The challenge of optimization across multiple applica-
tions has been treated mainly in the form of throughput
maximization [5, 6]. Maximizing throughput leads to opti-
mum performance only for applications which are insensi-
tive to delay and packet loss. Multimedia applications such
as video streaming and voice telephony are highly sensitive
to changes in data rate, delay, and packet losses. Even the im-
portance of a packet changes dynamically depending on the
transmission history of previous packets. Due to these rea-
sons, throughput maximization leads to performance which
is usually not optimal with respect to user perceived quality
for multimedia applications.

A possible metric to capture user satisfaction is the mean
opinion score (MOS). MOS was originally proposed for voice
quality assessment and provides a numerical measure of the
quality of human speech at the destination. The scheme uses
subjective tests (opinionated scores) that are mathematically
averaged to obtain a quantitative indicator of the system per-
formance. To determine MOS, a number of listeners rate the
quality of test sentences read aloud over the communication
circuit by a speaker. A listener gives each sentence a rating as
follows: (1) bad; (2) poor; (3) fair; (4) good; (5) excellent.
The MOS is the arithmetic mean of all the individual scores.
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The multiapplication CLO approach proposed in this pa-
per extends the use of MOS as a user-perceived quality metric
to other applications, such as video streaming, web browsing
and file download. This enables us to optimize across appli-
cations using a common optimization metric. The objective
function to be maximized can be chosen, for example, to be
the average MOS of all the users competing for the resources
of the wireless communication system:

F(x̃) =
1

K

K∑

k=1

λk ·MOSk(x̃), (1)

where F(x̃) is the objective function with the cross-layer pa-

rameter tuple. x̃ ∈ X̃·X̃ is the set of all possible parameter tu-
ples abstracted from the protocol layers representing a set of
candidate operation modes. λk are free parameters which can
be chosen in two different ways. For a priority-based scheme,
they can be chosen to provide different relative importance
of the user as determined by the service agreement between
the user and the service provider. For an equal-priority sys-
tem, λk can be chosen to ensure fairness among the users. In
this paper, we take the second approach. Although the MOS
functions for different applications can be different, a linear
combination, as in (1), can be used because the range of the
functions is the same, that is, from 1 to 5. The decision of the
optimizer can be expressed as

x̃opt = arg max
x̃∈X̃

F(x̃), (2)

where x̃opt is the parameter tuple which maximizes the ob-
jective function. Once the optimizer has selected the optimal
values of the parameters, it distributes them to all the indi-
vidual layers which are responsible for translating them back
into actual layer-specific modes of operation.

In this work, the abstracted parameters for the physical
and data link layers are transmission rate R and packet error
probability (PEP) for all users for all candidate modes of op-
eration. For a detailed description of the principle of parame-
ter abstraction and the formulation of objective functions for
multiuser cross-layer optimization, please refer to [1–3, 7].

The proposed MOS-based optimization approach has
several advantages with respect to previous work. First, com-
pared to traditional techniques for multiuser diversity [8],
it allows us to directly relate network parameters, such
as rate (R) and packet error probability (PEP) to a user-
perceived application quality metric such as MOS. Second,
compared to the application-driven cross-layer optimization
described in [2, 3], it allows us to further maximize the
optimization gain by taking advantage of the diversity not
only across multiple users running the same application, but
also across users running different applications. Our exper-
iments applied to scenarios including multiple concurrent
video streaming, voice telephony, and file download applica-
tions show that MOS-based optimization significantly out-
performs throughput-based optimization.

This paper is arranged as follows. In Section 2, we
describe MOS functions for three different applications,
namely voice telephony, file download, and video streaming.
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Figure 1: Relation between MOS and user satisfaction [9].

In Section 3, we give a detailed description of our multiappli-
cation cross-layer optimization framework. Section 4 gives
an overview of our simulation setup that is used to com-
pare our approach with throughput maximization. Section 5
presents our experimental results and Section 6 concludes
the paper.

2. MEAN OPINION SCORE (MOS)

The objective function of (1) requires the mapping of trans-
mission characteristics (in our case transmission rate and
packet error probability) to MOS for different applications.
We now describe this mapping for voice communication, file
download, and video streaming applications.

2.1. Voice communication

The traditional method of determining voice quality is to
conduct subjective tests with panels of human listeners. The
results of these tests are averaged to give MOS but such tests
are expensive and are not feasible for online voice quality
assessment. For this reason, the ITU-T has standardized a
model, perceptual evaluation of speech quality (PESQ) [10],
an algorithm that predicts with high correlation the quality
scores that would be given in a typical subjective test. This
is done by making an intrusive test and processing the test
signals through PESQ.

PESQ measures one-way voice quality: a signal is injected
into the system under test and the degraded output is com-
pared by PESQ with the input (reference) signal. The output
of the PESQ algorithm is a numerical value that corresponds
to MOS. The mapping between MOS and user satisfaction is
presented in Figure 1.

The PESQ algorithm is computationally too expensive to
be used in real-time scenarios. To solve this problem, we pro-
pose a model to estimate MOS as a function of the trans-
mission rate R and the packet error probability (PEP). The
available rate determines the voice codec that can be used.
In Figure 2 we show experimental curves for MOS estima-
tion as a function of PEP for different voice codecs. The
curves are drawn using an average over a large number of
voice samples and channel realizations (packet loss patterns).
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Figure 2: PESQ-based MOS versus packet error probabilities for
different voice codecs.

These curves can be stored at the optimizer for every codec
that is supported. If transcoding from an unsupported codec
is required, the corresponding curve has to be signaled to the
optimizer as side information. It should be noted that the av-
erage MOS (averaged over a large number of packet loss pat-
terns for a fixed PEP) of individual voice samples may differ
as much as 10% for the highest considered PEP, but the de-
viation from the mean values (averaged over a large number
of voice samples) as shown in Figure 2 is found to be less
than 7%.

Depending on the distortion imposed by the source
codec, every voice codec leads to a different MOS value in
the case of error-free transmission. Also the codecs exhibit
different sensitivities to packet losses. As an example, let us
consider two lower layer parameter tuples (R = 64 kbps,
PEP = 14%), and (R = 6.4 kbps, PEP = 0%) and assume
these two represent possible operating modes of the lower
layers for a particular user. In this example, the second pa-
rameter tuple (R = 6.4 kbps, PEP = 0%) leads to a gain of
0.3 on the MOS scale and the cross-layer optimizer would
select it as its outcome.

2.2. File download

To estimate user satisfaction for file download applications,
we use the logarithmic MOS-throughput relationship intro-
duced in [11] which results from the assumption that the
utility of an elastic traffic (e.g., FTP service) is an increasing,
strictly concave, and continuously differentiable function of
throughput. We assume that every user has subscribed for a
given data rate and user satisfaction is characterized by the
actual rate the user receives. The MOS is estimated based on
the current rate R offered to the user by the system and packet
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Figure 3: MOS as a function of transmission rate and packet error
probability for file download applications.

error probability PEP:

MOS = a∗ log10

[
b∗R∗(1− PEP)

]
, (3)

where a and b are determined from the maximum and min-
imum user perceived quality. If a user has subscribed for a
specific rate Rservice and receives R = Rservice, then in case of
no packet loss user satisfaction on the MOS scale should be
maximum, that is, 4.5. On the other hand, we define a mini-
mum transmission rate (e.g., 10 kbps in Figure 3) and assign
to it a MOS value of 1. Using the parameters a and b, we fit
the logarithmic curve in (3) for the estimated MOS. Varying
the actual transmission rate R and packet error probability,
PEP, this model results in the MOS surface shown in Figure 3.

2.3. Streaming video

Assessment of video quality is addressed in the literature
with a wide variety of techniques. References [12, 13] are
ITU recommendations to perform subjective assessment of
TV and multimedia quality, respectively. Reference [14] gives
a perceptual quality metric with respect to blockiness in
compressed video. In [15], authors propose a reference-free
method to estimate subjective quality using blurriness of the
reconstructed video. Assuming that human visual perception
is highly adapted for extracting structural information from
a scene, [16] proposes a method of image quality assessment
using degradation of structural information and develops
a structural similarity index (SSIM). Reference [17] gives a
comparison of different computational models of video qual-
ity, carried out by the video quality experts group (VQEG) of
ITU.

Peak signal-to-noise ratio (PSNR) is an objective mea-
surement of video quality which is widely used due to its sim-
plicity and high degree of correlation with subjective quality
[17]. PSNR is based on mean square error (MSE) as follows:

PSNR = 10∗ log10

2552

MSE
. (4)
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Figure 4: Illustration of the source distortion model (left), and the loss distortion model (right) using two test video sequences “Foreman”
and “Mother and Daughter.”
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Figure 5: MOS versus PSNR.

The distortion of a video sequence can be expressed in terms
of MSE. Distortion is assumed to be composed of two com-
ponents, namely the source distortion DS and the loss distor-
tion DL:

D = DS + DL, (5)

DS is due to the compression of the video sequence, while DL

is due to the losses generated in the network. Consequently,
DS depends on the video source rate, R and DL is a func-
tion of packet error probability PEP. In this paper, we apply
the source distortion model as proposed in [18], and the loss
distortion is assumed to be a linear function of PEP [19],

D = DS + DL =
a

exp(R/b)− 1
+ β · PEP, (6)

where a, b, and β are model parameters. The source distor-
tion model requires three pairs of rate and distortion mea-
surements, as illustrated in Figure 4(a) for two test video

sequences. The loss distortion model requires measuring
distortion for different PEP and uses best-fit to compute
β · β is assumed to be independent of the video encoding
rate. The validation of the loss distortion model is shown
in Figure 4(b). Encoding is done with the H.264 reference
encoder, with 30 frames per second in QCIF format. Each
packet is assumed to have a fixed size of 125 bytes. Each video
frame is encapsulated into one or more such packets.

In this work, we assume a simple linear mapping between
PSNR and MOS. We assume that the maximum user satis-
faction is achieved for a PSNR of 40 dB and the minimum
user satisfaction results for PSNR values below 20 dB. The
upper limit comes from the fact that reconstructed video se-
quences with 40 dB PSNR are almost indistinguishable from
the original and below 20 dB very severe degradations distort
the video. Figure 5 shows our assumed relationship between
PSNR and MOS.

3. MULTIAPPLICATION CROSS-LAYER OPTIMIZATION

Based on the MOS framework described above, we are able
to optimize the system taking actual user perceived quality
of service into account. Our optimization scheme is not only
applicable to the application types described in Section 2, but
to any general mix of applications.

3.1. Architecture

In [1, 2], we have proposed a cross-layer optimization ar-
chitecture (Figure 6) with a component, called cross-layer
optimizer (CLO), that periodically selects the optimal pa-
rameter settings of the different layers. This architecture is
inspired by the CLO approach presented in [7]. Our CLO
uses abstractions of different layers and optimizes the assign-
ment of resources to each user. In our work, the abstracted
parameters from the lower layers are rate R and packet er-
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Figure 6: CLO architecture.

ror probability PEP for every user for all possible modes of
operation. From the application layer we extract the utility
functions (MOS versus PEP). We assume that the optimizer
is located at the base station, the utility functions are gener-
ated at the sender and are sent as side information along with
the media bitstream.

3.2. Optimization policy

As an example, we consider three types of users: U—
requesting voice service, V—file download, and W—video
streaming. Depending on the type of application, the mo-
bile users require different resources over the wireless chan-
nel. The available transmission rate for each user depends on
the modulation scheme, the channel code rate, and the as-
signed share of the medium access. In our example, a user
requesting voice service may be served with different voice
codecs (G.711, Speex, iLBC, or G.723.1.B), his data may be
encoded with different channel code rates 1/2, 1/3, 1/4, or 1
(uncoded) and DBPSK or DQPSK modulation can be used.
Every transmission policy gives different quality of service to
the user and requires different amount of channel resources.

We create sets of transmission policies for every service.
TU is the set of transmission policies for voice service, TV is
the set of transmission policies for the file download service,
and TW is the set of transmission policies for the video ser-
vice.

3.3. Mean opinion score maximization

The goal of this optimization is to achieve maximum user
satisfaction and fairness among the users. For every user, de-
pending on the service, we define a decision variable for ev-
ery transmission policy—whether this user is served with a
given transmission policy or not. Consequently, these deci-
sion variables are of boolean type, that is, either the user
transmits its information using this policy or not. For the
voice users, we have decision variables ui j , where “i” denotes
the ith user and “ j” refers to the jth transmission policy
available for the voice users.

Mobile users in the wireless network have time-varying
position, which results in variable SNR at the receiver. Based
on the SNR, we compute an estimate of the PEP [20] for dif-

ferent modulation schemes (DBPSK and DQPSK) and differ-
ent channel code rates, that is, for all candidate transmission
policies. A channel realization is generated and the estima-
tion of the PEP is performed for all the transmission policies
given the particular SNR at the receiver.

Our objective function for multiuser multiapplication
cross-layer optimization is defined in (7). A maximization of
the sum of the MOS perceived by every user in our multime-
dia wireless network has to be achieved. The parameter λ is
used to ensure fairness among the users.

Maximize

∑

i∈U

∑

j∈TU

λuiui jE
[
MOSi j

]
+
∑

i∈V

∑

j∈TV

λvivi jE
[
MOSi j

]

+
∑

i∈W

∑

j∈TW

λwiwi jE
[
MOSi j

] (7)

subject to

∑

j∈TU

ui j = 1, ∀i ∈ U ,

∑

j∈TV

vi j = 1, ∀i ∈ V ,

∑

j∈TW

wi j = 1, ∀i ∈W ,

(8)

∑

i∈U

∑

j∈TU

ri jui j +
∑

i∈V

∑

j∈TV

ri jvi j +
∑

i∈W

∑

j∈TW

ri jwi j

≤ total symbol rate.

(9)

In our example, every user must be associated with only
one transmission rate, channel code rate, and modulation
scheme. The decision variables ui j , vi j , and wi j are of boolean
type which leads to the constraints (8). The total available
symbol rate for all the users is constrained to be less than the
total symbol rate of the system. Every transmission policy has
an associated symbol rate ri j and the sum of all the chosen
symbol rates of all the users must be less than or equal to
the total symbol rate. The above problem can be solved with
a full search through the possible parameter space which has
the worst case number of searches of |TU |

KU ·|TV |
KV ·|TW |

KW

where |TU |, |TV | and |TW | are the numbers of transmission
policies and KU , KV , KW are the numbers of users of user
classes U , V , and W , respectively.

The parameters λui, λvi, λwi in (7) are inserted to ensure a
fair allocation of resources. The optimizer finds a resource
allocation which maximizes the user satisfaction based on
MOS. In this case, there is a possibility that even though the
system performance is maximized, a given user is not satis-
fied. This could be caused by low receiver SNR and the opti-
mizer can decide to allocate the resources to the other users.
This contradicts with the fairness we are trying to offer to the
users independent of their location. To solve this problem, we
propose to select the scaling coefficients λui, λvi, λwi based on
the history of the user estimated MOS. On every rate alloca-
tion procedure, we find the user with the maximum average
of the estimated MOS from the previous steps. Let us assume
that we are at rate allocation step “N” and we have K users in
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the system. The value of the maximum perceived MOS by a
single user is found by

MaxMOSN

=
1

N−1
max

( N−1∑
n=1

MOS1n;
N−1∑
n=1

MOS2n; . . . ;
N−1∑
n=1

MOSKn

)
.

(10)

The scaling coefficient for every user is calculated with

λkN =
MaxMOSN

(1/(N − 1))
∑N−1

n=1 MOSkn
, k = 1 · · ·K. (11)

The user with the maximum perceived MOS has a scaling
coefficient of one. The other users have scaling coefficients in
the range [1; 4.5], because the denominator is also bounded
in the interval [1; MaxMOSN ]. Since these λ values scale the
estimated MOS for every transmission policy and we maxi-
mize the sum of the MOS of all the users, the optimizer as-
signs transmission policies with high estimated MOS to the
users with higher λ. This ensures fairness by providing higher
resources to the users which have been receiving lower MOS
up to the time of the current optimization step.

3.4. Throughput maximization

A common network performance metric is the throughput
of the system. Traditionally, the goal of the network operator
is to maximize the network throughput. By throughput we
consider the effective rate (goodput) Gi j of a given user i at
time j:

Gi j = Ri j∗
(
1− PEPi j

)
(12)

with Ri j is the actual transmission rate and PEPi j is the packet
error probability. The objective function for such an opti-
mization model is to maximize the sum of the goodput allo-
cated to all the users in the system and is given with (13). The
assumption is that a higher goodput will result in a higher
user satisfaction regardless of the application type.

For throughput maximization, we have the same set of
decision variables as in (7)–(9). The difference is the absence
of the scaling parameter λ. Here we do not need scaling of the
allocated transmission rate, because the transmission rates
required by different applications are not comparable. Addi-
tionally, in order to make a fair comparison with our MOS-
based optimization, we include a constraint on the packet er-
ror probability, PEPmax, for each application type, so that the
real-time applications are assigned a sensible share of the re-
sources.

Maximize

∑

i∈U

∑

j∈TU

ui jGi j +
∑

i∈V

∑

j∈TV

vi jGi j +
∑

i∈W

∑

j∈TW

wi jGi j (13)

subject to

∑

j∈TU

ui j = 1, ∀i ∈ U , (14)

∑

j∈TV

vi j = 1, ∀i ∈ V , (15)

∑

j∈TW

wi j = 1, ∀i ∈W , (16)

∑

i∈U

∑

j∈TU

ri jui j +
∑

i∈V

∑

j∈TV

ri jvi j +
∑

i∈W

∑

j∈TW

ri jwi j

≤ total symbol rate,

(17)

PEPi ≤ PEPmax,i. (18)

3.5. Greedy resource allocation algorithm

The full-search resource allocation described in Sections 3.3
and 3.4 becomes computationally infeasible as the number
of users in the system grows. For example, with three voice
users, two ftp users and two video users, the number of re-
source allocations that have to be considered is 4.845 · 1012.

The greedy allocation algorithm used in this work is sim-
ilar to the work in [19]. It is initialized by assigning equal
amount of resources to every user. In each subsequent step,
a small amount of resources is taken from the user with the
lowest sensitivity to a decrease of resources and assigned to
the user that receives the maximum benefit. This is repeated
until there is no further improvement in the objective func-
tion. The greedy algorithm for the MOS-maximization is de-
scribed below. The throughput maximization is performed
in a similar way.

Let Θi denote the utility function, and αi the share of re-
source (symbol rate) of user i. Then, ∆Θi denotes the change
of utility for user i due to a change of its resource share, ∆αi,

where
∑K

i=1 αi = 1, that is, the sum of resource share over all
the users in the system equals unity. The greedy allocation
can be expressed as an iterative maximization of the incre-
mental utility values of two users i and j:

max
(i, j)∈{1,...,K}

∆Θi

∆Θ j
, i �= j, (19)

where ∆Θi and ∆Θ j are changes of utility due to an increase,
∆αi, and decrease, ∆α j , of resource share for user i and j,
respectively, and K is the total number of users.

3.6. Generalization

Our cross-layer optimization scheme is not limited to a
certain mix of only those application types we described
in Section 2, but it is applicable to any general scenario.
In Section 3.3, we propose the MOS-based optimization
scheme where it is assumed that the application-layer side in-
formation (SI) is provided to the cross-layer optimizer in the
form of MOS-functions. In a more general scenario, we need
to consider the case when some of the streams provide SI and
some do not. For this purpose, we classify the streams into
two categories: SI and non-SI streams. Our strategy for these
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two groups is going to be as follows: MOS-maximization for
the SI streams, and throughput maximization for the non-
SI streams. An initial resource allocation (e.g., symbol rate)
among the two classes would be necessary. This can be as-
signed with the information on QoS requirement for each
class. We regard this as a separate optimization issue. In
our simulations, the resources (symbol rates) among the two
classes are assigned in proportion to the number of streams
belonging to each class. Let KM and KT be the number of SI
and non-SI streams, respectively. Then, for the purpose of
our simulation, optimization problems of Sections 3.3 and
3.4 are modified only in (9) and (17) to incorporate the sym-
bol rate constraints of (20) and (21) respectively, as follows:

∑

i∈U

∑

j∈TU

ri jui j +
∑

i∈V

∑

j∈TV

ri jvi j +
∑

i∈W

∑

j∈TW

ri jwi j

≤ Total Symbol Rate ·
KM

K
,

(20)

∑

i∈U

∑

j∈TU

ri jui j +
∑

i∈V

∑

j∈TV

ri jvi j +
∑

i∈W

∑

j∈TW

ri jwi j

≤ Total Symbol Rate ·
KT

K
,

(21)

where K is the total number of users.

4. SIMULATION

The simulations shown in this paper are performed with the
following parameter settings. We assume a total of seven si-
multaneous users in the wireless network. Three voice users,
one male and two female voices, are used. The voice samples
are 60 seconds long. The voice signal comes from the back-
bone network encoded with G.711 voice codec at 64 kbps.
In the base station, following the optimization output, the
signal could be transcoded to 6.4 kbps with G.723.1 codec,
15.2 kbps with iLBC codec, 24.6 kbps with Speex, or it can be
transmitted without transcoding at 64 kbps.

Two users perform a file download using FTP. Both of
them have subscribed for a service with maximum offered
transmission rate of 192 kbps.

Two users are using video streaming service. The video
sequences used for our simulation are “foreman” and
“mother and daughter,” encoded with the H.264 reference
software encoder. The GOP structure is I-P-P-. . . , encoded at
30 frames per second in QCIF resolution (176× 144 pixels).

The λ values in (7) are all initialized to 1 in our ex-
periments. The total available symbol rate is constant and
we have examined three different cases: 500 Ksymbol/s,
1000 Ksymbol/s, and 1500 Ksymbol/s. The supported mod-
ulation schemes are DBPSK and DQPSK. Channel code rates
of 1/2, 1/3, 1/4, and 1 (uncoded) are supported, using convo-
lutional code.

To reflect user mobility, the receiver SNR for every opti-
mization step is drawn randomly for every user from a uni-
form distribution from 5 dB to 25 dB. The system is active
for 60 seconds and we assume that the average channel char-
acteristics remain constant for 1.2 second periods, which re-
sults in 50 optimization loops. PEPmax is set to be 0.1, 0.2,
and 0.3 for video, voice, and ftp services, respectively.
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Figure 7: Mean opinion score of all seven users for three different
total symbol rates (500, 1000, and 1500 Ksymbol/s) and two differ-
ent optimization techniques, MOS maximization and throughput
maximization.

The wireless system we have implemented in this work
does not refer to any particular physical layer interface. We
kept it intentionally simple, as the main goal of our work
is to demonstrate the potential gain for any wireless system
considering joint optimization across multiple different ap-
plications.

For the voice users, the signal samples are partitioned
into 1.2 seconds and every sample is encoded using the voice
codec determined by the optimization algorithm. At the end
of the optimization loops, these voice samples are assembled
into a single file and the perceived quality (MOS) is com-
puted by comparing the original signal and the distorted one
using PESQ.

For the video user, if a slice (packet) is lost, it is not writ-
ten in the bit stream, which tells the decoder to invoke the
error concealment algorithm. The PSNR of every frame and
the resulting average PSNR are computed. The average PSNR
is converted to an MOS value using the relationship shown in
Figure 5. For file download we compute the MOS using the
relationship given in (3).

5. RESULTS

5.1. Comparison between MOS-based and
throughput-based optimization

In this section, a comparison between the two investigated
optimization approaches (MOS maximization and through-
put maximization) is performed. We use the setup described
in the previous section and the results are based on 600 runs.

Figure 7 shows the cumulative density function (CDF)
of mean opinion score over all the users for the two
optimization approaches and three different total system
rates: 500 Ksymbol/s (overloaded system), 1000 Ksymbol/s
(moderately loaded system), and 1500 Ksymbol/s (lightly
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Figure 8: MOS gain per user, system symbol rate of 500 Ksymbol/s.
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Figure 9: MOS gain per user, system symbol rate of 1000 Ksym-
bol/s.

loaded system). The average gain in MOS for the three sys-
tems is 0.26, 0.30, and 0.34, respectively.

Figures 8–10 present the gain per user in the system.
The curves are produced as a difference between the mean
MOS computed with MOS maximization and through-
put maximization. Starting with a system symbol rate of
500 Ksymbol/s (Figure 8), in 50% of the simulations, the av-
erage gain for all users is 0.26. The video and FTP users are
benefited with a little penalty on the voice users. In Figures
9 and 10, we observe increasingly higher gain for the video
users, with little noticeable loss of quality for the voice users.
The quality of voice and video services are very sensitive to
packet losses. In our throughput maximization approach we
set a maximum allowable packet error probability, PEPmax

of 0.2 for voice and 0.1 for video service. This turns out to
be a reasonable choice for the voice users and the second
video user “(mother and daughter),” but is too high for the
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Figure 10: MOS gain per user, system symbol rate of 1500 Ksym-
bol/s.
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Figure 11: Bar plot showing the average MOS over a 30-second
simulation run.

first video user “(foreman),” because of its dynamic content
which is highly sensitive to packet loss. In our MOS-based
cross-layer optimization approach, application requirements
are taken care of individually for each user, which results in
optimum allocation of resources in terms of user perceived
quality.

Figure 11 shows the average MOS of the seven users over
a 30-second simulation run. Figure 12(a) shows the receiver
SNR which was fixed during the simulation and Figure 12(b)
shows the resource shares, α. Video1 receives a very low
SNR, which results in poor received video quality for both
optimization approaches. However, our MOS maximization
approach, being aware of the utility function of the ap-
plications, does not assign any resource to this user, and
distributes the saved resources to other users which results
in higher mean MOS.
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Figure 12: (a) Mean receiver SNR of seven users, (b) resource shares.
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Figure 13: Mean MOS versus the number of users for the greedy
algorithm and the full search algorithm.

5.2. Performance of the greedy search algorithm

The full-search algorithm described in Sections 3.3 and 3.4
is computationally too expensive to be implemented. In or-
der to use our cross-layer optimization scheme in a real-time
scenario, we also developed a greedy search algorithm, as de-
scribed in Section 3.5. The resource that is allocated among
the users is the time-share, which translates to a particular
symbol-rate for a user, as the total symbol-rate of the sys-
tem is fixed. Figure 13 shows the mean MOS versus the num-
ber of users using the greedy search approach for K = 7
to 200 while the total symbol rate of the system is fixed
at 1000 Ksymbol/s. In the simulations when we use varying
number of user, we keep the number of video and ftp user
fixed at two and two, respectively, and increase only the num-

ber of voice user. At K = 7 and K = 8, we also compute the
mean MOS using the full-search approach, and we observe
little difference between the two approaches. For K > 8, the
computation for the full-search approach becomes infeasible,
while the greedy search remains fast enough to be used in on-
line optimizations. As the number of user increases, the gap
between the MOS-based and throughput-based approaches
gradually decreases. Please note that for satisfied users, the
MOS should stay above 3.5. At this level, we see significant
improvements when using the MOS-based optimization.

The convergence speed of the greedy algorithm can be
measured in terms of the number of iterations. The number
of iterations tends to be dependent on the resource alloca-
tion step size ∆αi and a minimum threshold of utility im-
provement at each iteration, ∆Θth. The improvement of util-
ity at each iteration, ∆Θincr = ∆Θi − ∆Θ j is compared with
the threshold, ∆Θth. The algorithm is assumed to converge
when ∆Θincr ≤ ∆Θth. For a comparison of the number of it-
erations required for different number of users with a wide
range of channel conditions, we keep these two parameters
fixed, ∆αi = 0.0001 and ∆Θth = 0.00005 (MOS).

Figure 14 shows the CDF of the number of iterations for
5, 10, and 50 users. The worst-case number of iterations is
found to be in the range of 3000 to 4000 iterations. It is inter-
esting to find that the 5-user case may take more iterations to
converge than what we observe for the case of 50 users, the
reason being the use of equal step size for both cases. Fur-
ther fine-tuning is possible by choosing a step-size that is a
function of the number of users. Also, for those applications,
which have a limit on the rate (e.g., voice communication
applications with at most 64 kbps), we can speed up the
greedy algorithm by using this fact during initialization.

The time to complete each iteration, however, increases
with the number of users. The convergence speed of the
greedy algorithm in terms of time is shown in Figure 15.
The measurements are taken from the Matlab-based simu-
lation environment, with an Intel dual-core T2300 1.66 GHz
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Figure 14: CDF of number of iterations with greedy algorithm.
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Figure 15: CDF of convergence time with greedy algorithm.

processor. Using dedicated software and hardware environ-
ments, the convergence speed is expected to be much faster.

Figure 16 shows the worst-case performance gap between
full-search and greedy algorithm. The performance gap is
computed as the difference between the MOS values ob-
tained by using the full-search and the greedy algorithm. We
find that the gap is reasonable.

5.3. Optimization with and without side information

In this section, we consider the more general case when
some of the streams provide application-layer side informa-
tion (MOS functions) and some do not. As discussed in
Section 3.6, we perform MOS-based optimization for the SI
streams, and throughput-based optimization for the non-SI
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Figure 16: Worst-case difference in MOS (deltaMOS) between full-
search and greedy algorithm.
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Figure 17: CDF of mean PSNR (in dB) for a five-user video stream-
ing scenario.

streams. In this section, we consider a five-user video stream-
ing scenario. Figure 17 shows the CDF of mean PSNR over
five users for all possible cases of with and without SI. For
this scenario, we use the same video sequence (“foreman”
sequence) for all five users with a wide variety of channel
conditions. For the case “SI for all user” MOS-based opti-
mization is used, while for the case of “no SI,” throughput-
based optimization is performed. For the other cases, both
approaches are used in combination. Figure 17 shows that
we have an average gain of 1 dB PSNR for each additional
stream with SI. It is easy to extend this strategy to a system
having different application types, although the results will
be more involved due to the different quality metrics for dif-
ferent applications.
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6. CONCLUSION

In this paper, we propose a novel multiuser cross-layer opti-
mization approach across multiple applications using MOS
as a common application layer performance metric. With
this approach we are able to dynamically optimize the wire-
less transmission system resource usage and the user per-
ceived quality of service in a multiuser environment. We
compare our approach to a traditional approach where allo-
cation is done with the goal of maximizing overall through-
put. Our simulation results show significant improvements
in terms of user perceived quality for a variety of circum-
stances.
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