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Cellulose nanocrystals (CNCs) and molybdenum disulphide (MoS2) incorporated into ZnO nanorods (NRs)

were synthesized via a chemical precipitation route at room temperature. All concerned samples were

characterized to examine their optical properties, elemental composition, phase formation, surface

morphology and functional group presence. The aim of this research was to enhance the catalytic

properties of ZnO by co-doping with various concentrations of CNCs and MoS2 NRs. It was renowned

that doped ZnO NRs showed superior catalytic activity compared to bare ZnO NRs. Statistically

significant (p < 0.05) inhibition zones for samples were recorded for E. coli and S. aureus at low and high

concentrations, respectively. The in vitro bactericidal potential of ZnO-CNC and ZnO-CNC-MoS2
nanocomposites was further confirmed through in silico molecular docking predictions against the

DHFR and DHPS enzymes of E. coli and S. aureus. Molecular docking studies suggested the inhibition of

these enzyme targets by CNC nanocomposites as a possible mechanism governing their bactericidal

activity.
1. Introduction

Today's technology driven society with a plethora of economic
activities has resulted in rapidly increasing aquatic pollution
that has emerged as a big challenge to scientists and
researchers all over the world.1,2 Moreover, the unwavering
growth of multiple industries including textile, chemical,
plastic and paper sectors releases toxic dyes into water bodies
that can contaminate the whole environment and cause harm to
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plants, animals, and humans.1 Diseases that afflict humanity
including hepatitis, diarrhoea, cryptosporidiosis, encephalitis
and leptospirosis as well as typhoid fever spread worldwide due
to polluted water. Globally, the reported cases for hepatitis A
stand at 1.4 million diagnosed annually with a mortality count
of about 12 800 to 16 100.3 Hazardous pollutants present in
wastewater include both inorganic as well as organic heavy
metals, harmful solvents and compounds, which need to be
essentially decomposed to achieve a sustainable green envi-
ronment.4 Hence, pollutant removal from water has garnered
much attention due to their alarming effects on human health
and the environment.

Multiple methods have been reported for removing
contaminants such as dyes from industrial discharges
including a membrane separation process,5 coagulation,6

adsorption,7 photo-oxidation,8 an electrochemical process,9 an
advanced oxidation process10 and chemical oxidation.11 Among
all, photocatalysis based on a metal oxide semiconductor has
gained the utmost attention for wastewater treatment.11

Recently, metal oxides (MOs) such as SnO2, MnO2, TiO2, MgO,
CeO2, Fe2O3 and CaO2 were used as the prime choice for pho-
tocatalysis due to their low cost, chemical inertness, chemical
stability and nontoxicity, which make them effective for various
applications such as water purication, hydrogen generation
and sterilization.4,12 Among all MOs, ZnO (n-type semi-
conductor) has received the most attention due to greater
surface reactivity, excellent photosensitivity, low price and more
importantly being friendly to the environment.13–15 Upon
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http://crossmark.crossref.org/dialog/?doi=10.1039/d1na00648g&domain=pdf&date_stamp=2021-12-21
http://orcid.org/0000-0001-7741-789X
http://orcid.org/0000-0002-0259-301X
http://orcid.org/0000-0001-9901-862X
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1na00648g
https://pubs.rsc.org/en/journals/journal/NA
https://pubs.rsc.org/en/journals/journal/NA?issueid=NA004001


Nanoscale Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 9

/2
9/

20
23

 7
:0

2:
11

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
exposing ZnO nanoparticles to UV light, the generation of
hydroxyl radicals takes place. They are considered strong
candidates for the oxidation process, which serves to degrade
dye and organic contaminants present in wastewater. However,
there could be some difficulties such as lower stability that
might be attributed to the photo-corrosion phenomenon during
light fall and stretched bandgap energy that permits minerali-
zation under UV light.13,16 Many ways are adopted to enhance
the photocatalytic efficiency of ZnO through linking with an n-
type semiconductor with suitable materials such as carbon
materials, noble metals and lower bandgap semiconductors.

Recently, molybdenum disulphide (MoS2), which has
a structure similar to graphene containing S–Mo–S layers joined
by van der Waals forces, appeared as one of the promising
materials employed for photocatalysis. It exhibits chemical
inertness, high conductivity and unique optical properties,
which make it an ideal substance for a variety of applications
(e.g., catalysis, phototransistors, and sensing).13,17 Due to these
properties, its semiconductor coupling can be undertaken with
materials such as ZnO to produce heterojunctions that possibly
can enhance photocatalytic effectiveness.1 Cellulose (CNC) is
one of the utmost utilized, naturally decomposable and
renewable natural polysaccharide materials, frequently
employed for polymer synthesis and as a stabilizing agent due
to the abundance of hydroxyl groups that enable it to act as
a stabilizing agent.11,18 These hydroxyl groups in the CNC
structure interact efficiently with metal ions, while inorganic
NPs disperse uniformly on the CNC matrix and as a result
improve metal NP reaction capability. Moreover, employing
CNC as a substrate is promising for catalyst recovery, which
exhibits high adsorption capability and boosts the process of
catalytic degradation of pollutants.19

In this work, ZnO, CNC, and ZnO-CNC with various
concentrations of MoS2 (50 and 100 mg)-doped ZnO were syn-
thesised successfully. The optical properties, structures and
morphologies of all relevant samples were studied. This
research aims to evaluate the inuence of co-dopant (CNC/
MoS2) concentration on the catalytic and antibacterial activity of
MoS2/CNC-doped ZnO. Furthermore, molecular docking
predictions of CNC-ZnO and MoS2/CNC-doped ZnO nano-
composites against the DHFR and DHPS enzymes of the folate
biosynthetic pathway were performed to unveil their role as
antibacterial agents.
2. Methods

The current study was aimed to synthesize MoS2 doped into
a xed amount of cellulose-doped ZnO nanorods through a co-
precipitation route to investigate the catalytic activity and the
efficacy of the antibacterial agent against antibiotic-resistant
bacteria with molecular docking.
2.1 Materials and reagents

Sodium hydroxide (NaOH, 98%), zinc nitrate hexahydrate
(Zn(NO3)2$6H2O, 99%), molybdenum disulphide (MoS2,
99.8%), microcrystalline cellulose (C6H10O5, 99.5%) and
212 | Nanoscale Adv., 2022, 4, 211–225
sulfuric acid (H2SO4) were acquired from Sigma Aldrich and
Analar (USA).

2.2 Synthesis of cellulose nanocrystals

Using the hydrolysis method, avicel (10 g) was incorporated into
H2SO4 and deionized water (DI water) solution (50%), to
synthesize cellulose. Under continuous stirring, the solution
was heated for 45 minutes at 70 �C. Aerwards in yellow
brownish solution, 5000 mL of DI water was added to dilute
H2SO4 and centrifuged at 7100 rpm for 6 minutes. The cycles of
washing/centrifugation were repeated until the pH of the solu-
tion approached neutral using NaOH. The resulting solution
was heated at 100 �C to acquire the solid content of cellulose
nanocrystals (CNCs) (Fig. 1(a)).20,21

2.3 Synthesis of MoS2/cellulose-doped ZnO NRs

In the current work, undoped ZnO and MoS2/CNC-doped ZnO
NRs were prepared via a simple co-precipitation technique
using Zn(NO3)$4H2O, deionized water, NaOH and MoS2. Firstly,
Zn(NO3)2$4H2O (0.5 M) was dissolved in a 100 mL deionized
water (DI water) under constant stirring to get the zincates. Aer
that a xed amount (2.5 mL) of as-prepared CNC was incorpo-
rated into the zincate solution. Secondly, different concentra-
tions (50 and 100 mg) of MoS2 were added into the solution
mixture and stirred continuously. Aqueous solution containing
(0.5 M) NaOH was used to maintain the pH of zincate solution
up to 12 under continuous stirring for 30 minutes at 80 �C. The
zincate precipitate was separated via a centrifuge machine at
7100 rpm for 6 minutes, heated at 85 �C for 20 hours (h), and
ground using a mortar and pestle to acquire ne powder. In the
absence of doping products (CNC and MoS2), a similar proce-
dure was adopted to synthesize pristine ZnO NRs (Fig. 1(b)).22

Following samples (ZnO, CNC, CNC-doped ZnO and various
different concentrations (50 and 100mg) of MoS2 doped in ZnO-
CNC named as ZCM1 and ZCM2 were prepared.

2.4 Isolation and characterization of bacteria

Lactating Caprine mastitic uid was obtained from farms and
several private clinics across Punjab, Pakistan, and cultured on
5% blood agar. Aer 24 hours of incubation at 37 �C,23 the
derived colonies were icked in triplicates onMannitol salt agar
(MSA) and MacConkey agar (MA) to harvest pure Escherichia coli
(E. coli) and Staphylococcus aureus (S. aureus) isolates. Rened
colonies were veried by Gram staining for morphological
assessment and biochemical testing (i.e. catalase and
coagulase).24

2.5 Antibacterial activity

All samples were investigated for antimicrobial activities using
the agar well diffusion method by swabbing 1.5 108 CFU mL�1

of S. aureus and E. coli on MA and MSA, respectively. Bacterial
cultures were swabbed onto agar plates, and wells of 6 mm
diameter were created using a sanitized borer.23,24 Distinct
amounts of ZnO, CNC, and MoS2/CNC-doped ZnO (0.5 and 1.0
mg/50 mL) were loaded into each well and sorted with
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Sulfate groups present on the surface of cellulose are depicted in a schematic diagram. (b) Schematic presentation of the preparation
and structure of MoS2/CNC-doped ZnO NTs.
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Ciprooxacin (0.005 mg/50 mL) and DI water (50 mL) as positive
(+ve) and negative (�ve) standards, respectively. Antibacterial
efficacy was determined by monitoring inhibitory zones in
millimetres (mm) using a Vernier calliper aer 24 hours of
incubation of lled agar plates at 37 �C. A one-way variance
analysis (ANOVA) was adapted to determine the antibacterial
viability of the synthesised materials.24,25
2.6 Molecular docking studies

Molecular docking studies were employed to rationalize the
mechanism governing the bactericidal activity of ZnO-CNC and
© 2022 The Author(s). Published by the Royal Society of Chemistry
ZnO-CNC-MoS2 nanocomposites. Recently, the role of metal-
doped CNC nanocomposites as bactericidal agents has been
reported. Identifying interactions responsible for their inhibi-
tion potency against essential enzyme targets is worthy of
further exploration.26 Here, we performed molecular docking
studies of these nanocomposite systems against DHFR and
DHPS enzymes belonging to the folate biosynthetic pathway of
E. coli and S. aureus to unveil the mystery behind their biocidal
potential.

The crystal structure of enzymes were retrieved from the
protein data bank with the accession code 2ANQ (Resolution:
2.13 Å)27 for DHFRE. coli, 5U0W (Resolution: 1.97 Å) for DHPSE.
Nanoscale Adv., 2022, 4, 211–225 | 213
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coli,28 and 4FGG (resolution: 2.30 Å) for DHFRS. aureus.29 The
selected enzyme structures were prepared for docking
predictions using the method reported in our previous
studies.30,31 Docking predictions were performed using ICM
Molso soware,32 where basic steps involved the removal of
the native ligand and water of crystallization followed by the
addition of polar H atoms and energy minimization. The
active pocket was dened within 10 Å of the co-crystalized
ligand to specify the docking position of nanocomposites in
the current study. The monomeric structure of ZnO-CNC and
ZnO-CNC-MoS2 was prepared using the ligedit tool of ICM
and top ranked docking conformations were selected for
further analysis using Pymol soware and ICM Molso
visualizer.

2.7 Catalytic activity

The catalytic activity of ZnO and co-doped ZnO NRs was evalu-
ated against methylene blue (MB) dye in the solution with
a specic quantity of NaBH4 (400 mL and 800 mL). In the present
study, a quartz cell was lled with 400 mL solution of NaBH4 and
3 mL aqueous methylene blue. Upon addition of NRs into the
solution containing NaBH4 and MB, dye degradation was
observed as depicted in Fig. 2.20 In order to acquire absorption
spectra at different intervals, UV-vis spectroscopy was employed
at wavelengths ranging from 200 to 700 nm.

2.8 Characterization of samples

The structure and crystalline behavior of the produced powders
were determined with XRD using a powder diffractometer (PAN
Fig. 2 Catalysis mechanisms of the prepared samples.

214 | Nanoscale Adv., 2022, 4, 211–225
Analytical X0 pert PRO type X-ray diffractometer) and mono-
chromatic Cu-Ka radiation (l ¼ 1.5418 Å) at a scan rate of
5� min�1 in the 2q� range of 5� to 80�. On an Excalibur 3100
spectrometer, FTIR spectroscopy was carried out within a spec-
tral range of 4000–400 cm�1. A scanning electron microscope
(SEM), JEOL JSM-6460LV and JEOL JEM-2100F high-resolution
transmission electron microscopes (HR-TEM) were used to
analyze the morphology, particle size and interlayer spacing.
Using a UV-vis spectrophotometer (Genesys 10S) in the range of
180–400 nm, optical properties were investigated. Raman
spectra with a laser wavelength of 532 nm (6mW) were recorded
with a Renishaw through a reex confocal Raman microscope.
The spectra of photoluminescence (PL) were recorded with
a spectrouorometer for the as-prepared and doped samples
(JASCO, FP-8300).
3. Results and discussion

As shown in Fig. 3(a), XRD was conducted to acquire informa-
tion about the crystal structure and phase constitution and
calculate the crystallite size of ZnO nanorods (NRs), ZnO-CNC,
(0.1) MoS2@CNC/ZnO (ZCM1) and (0.2) MoS2@CNC/ZnO
(ZCM2). The pristine ZnO NRs exhibited peaks at 2q� of
31.68�, 34.44�, 36.24�, 47.66�, 56.62�, 62.98� and 67.99�, which
are compatible with (100), (002), (101), (102), (110), (103) and
(112) crystal planes, respectively. These planes are well
synchronized with JCPDS no. 36-1451 and conrm the forma-
tion of a hexagonal wurtzite structure.33 ZnO crystal formation
with an oriented (101) lattice plane is responsible for the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) XRD patterns, (b) FTIR spectra (c–e), and SAED patterns of ZnO, CNC and ZCM2 and (f–h) d-spacing images of ZnO and co-doped ZnO
NRs.
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highest peak at 2q� ¼ 36.24�. For the CNC plane, diffraction
peaks at 13�, 19.5�, 22.4� and 34� are indexed to (101), (101),
(002) and (112) planes revealing its monoclinic structure (JCPDS
card no. 46-0905).34 It can be seen that upon CNC doping in
ZnO, no cellulose peak was detected in the XRD pattern. Two
additional peaks for all prepared samples exing at 2q� ¼ 29.4�

and 39.04� represent the impurities of the zinc carboxyl-
containing compound (marked by a blue arrow). These zinc
traces could have formed as a result of the Zn precursor reacting
with other reactants during the synthesis process.35,36 The peaks
emerging at 26.2� and ascribed to the (411) plane of hexagonal
MoS2 well matched with JCPDS card no. (37-1492).25 We also
found that in MoS2 doped patterns, the intensity of diffraction
peaks increased, which suggested an improved crystalline
quality upon increasing the concentration of MoS2. The crys-
tallite sizes of NRs were calculated from the XRD pattern using
the Scherrer formula. The computed crystallite sizes are 26.2,
10.17, 23.9, 42.6 and 48.5 for ZnO, CNC, ZnO-CNC, ZCM1 and
ZCM2, respectively. As can be seen upon doping of CNC into
ZnO the crystallite size decreased, which might be due to the
© 2022 The Author(s). Published by the Royal Society of Chemistry
replacement of the CNC element for the ZnO element, while
upon incorporation of MoS2 into ZnO, the crystallite size
increased. Furthermore, FTIR spectroscopy was conducted for
the identication of possible functional groups present on the
synthesised samples and corresponding results are shown in
Fig. 3(b).The absorption peak located at�3369 cm�1 ascribed to
the stretching vibration of OH was inuenced by the moisture
content in air.11,37 The band at �829 cm�1 represents the ZnO
lattice vibrational frequency, while the peaks exing at
1329 cm�1 and 669 cm�1 were attributed to ZnO formation.13,38

The CNC absorption peak observed at 1110 cm�1 derived from
C–O–C pyranose ring vibration.39 More importantly upon MoS2
doping, two additional peaks at 1638 cm�1 and 2069 cm�1 were
observed, which might be linked with the Mo–S vibration. The
vibration of spectra and the change in peak intensity again
provide evidence for the substitution of MoS2/CNC into ZnO,
successfully. Subsequently, the selected area electron diffrac-
tion (SAED) ring patterns of undoped and doped NRs exhibited
distinct bright spots as shown in Fig. 3(c–e). The observed rings
provided strong evidence for the fact that products were highly
Nanoscale Adv., 2022, 4, 211–225 | 215
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crystalline while ring indexing matched with XRD patterns
nicely. The interlayered spacing (d-spacing) of all prepared
nanocomposites was measured using HR-TEM (10 nm) images
as shown in Fig. 3(f–h). d-Spacing values for ZnO, CNC and
ZCM2 were calculated to be 0.291, 0.281 and 0.296 nm,
respectively. The calculated d-spacing values correlated well
with the XRD patterns.

The optical properties of the concerned materials were
analyzed through UV-vis spectroscopy in the 200–800 nm
range. The absorption spectra of pristine ZnO and CNC with
different concentrations of MoS2 (50 and 100 mg) are depicted
in Fig. 4(a). All prepared samples showed maximum absorp-
tion in the range 250–400 nm. The maximum absorption peak
of ZnO NRs was found at 375 nm,40 and a clear blueshi for
ZnO-CNC, ZCM1 and ZCM2 samples was noticed as compared
to pristine. The observed blueshi indicated a change in the
band structure of host ZnO NRs. The energy band gap (Eg) was
calculated using Tauc's equation; graphs were plotted for
(ahn)2 vs. (hn) and the corresponding results are depicted in
Fig. 4(b). Eg was calculated to be 3.2, 3.3, 3.1, 2.4 and 2.3 eV for
CNC, ZnO, ZnO-CNC and MoS2/CNC-doped ZnO, respectively.
The addition of two types of impurity elements caused lattice
Fig. 4 (a) Uv-Vis spectra, (b) Tauc plots for the band gap, (c) photolumine
NRs.

216 | Nanoscale Adv., 2022, 4, 211–225
strain in the structure of the crystal, which might be a conse-
quence of variation in the energy band structure of doped
samples.41,42

The Raman spectra of ZnO, CNC, ZnO-CNC, ZCM1 and
ZCM2 were recorded at room temperature and are depicted in
Fig. 4(d). The characteristic band of ZnO found at 1179 cm�1

was assigned to the scattering process of the ZnO wurtzite
structure.11,43 a strong band centered at �1005 cm�1 and a weak
band from�1167 to 1194 cm�1 were observed, which conrmed
the presence of CNC in the mapped area. A clear blueshi in
Raman spectra for ZnO-CNC, ZCM1 and ZCM2 was observed, as
shown in Fig. 4(d). It indicated that upon doping of MoS2 into
the ZnO matrix, the original wurtzite structure of pristine was
changed due to introduced vacancies, substitution defects and
reduced crystal symmetry.44 Bands at 964 and 1066 cm�1 were
found in the spectra of ZnO-CNC, ZCM1 and ZCM2 composites
as compared to bare ZnO, suggesting that CNC and MoS2 were
successfully loaded on the ZnO surface.

Photoluminescence spectroscopy (PL) was employed to
further examine the transfer behaviour of electron–hole pairs
(e� – h+) and the rate of recombination and trapping in
semiconductors.13,45 A low PL intensity indicates a lower e� –
scence spectra (PL) and (d) Raman spectra of undoped and doped ZnO

© 2022 The Author(s). Published by the Royal Society of Chemistry
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h+ recombination rate under light irradiation. On the other
hand, a high PL intensity manifests a higher e� – h+ recom-
bination rate, which is detrimental to photocatalytic activity.
The PL spectra of ZnO, CNC, ZnO-CNC, ZCM1 and ZCM2 were
recorded at room temperature and the corresponding results
are shown in Fig. 4(c). For pristine ZnO, the shallow donor
level of oxygen vacancies in the valence band (VB) corresponds
to the blue emission peak at a 408 nm wavelength.13 The PL
spectra of CNC with the peak position at 410 nm could origi-
nate from carbonyl groups and various types of low-molecular
derivatives of CNC destruction.46 Upon loading of MoS2 into
ZnO, the PL intensity was suppressed for the sample ZCM1,
suggesting that the e� – h+ rate was reduced, which increases
the ability of electron immigration. However, the peak inten-
sity in the sample ZCM2 once again increased upon increasing
the concentration of MoS2, which indicated that further
doping of MoS2 into ZnO was not suitable for the
photocatalyst.47

In order to acquire information regarding the surface
elemental composition of pristine ZnO NRs, CNC, ZnO-CNC,
ZCM1 and ZCM2 EDS analysis was performed. The forma-
tion of ZnO NRs was conrmed by the presence of Zn and O
peaks as shown in Fig. 5(a), while the peaks of C, Mo and S in
ZCM1 and ZCM2 samples demonstrated the successful
loading of CNC and MoS2 atoms into the lattice. A peak of
sodium (Na) was observed for the synthesized samples, which
emanate from NaOH used to retain the pH of the samples.
Furthermore, the additional elements in Fig. 4(b–e) Ca, Cu and
Fig. 5 EDS spectra of ZnO and co-doped ZnO NRs (a–d) with the MoS

© 2022 The Author(s). Published by the Royal Society of Chemistry
Si might be due to the sample holder, conductive tape or some
contamination.

HR-TEM was carried out to conrm the morphology of ZnO
and MoS2/CNC-doped ZnO NRs. Fig. 6 (a and inset) reveals
nanorods of ZnO synthesized via a one pot co-precipitation
route, while Fig. 6b shows a nanocluster of CNC. The addition
of CNC to NRs causes the agglomeration of nanoclusters with
a small size (Fig. 6c). MoS2/CNC dopants agglomerated on NRs;
increasing the quantity of dopants on NRs resulted in increased
agglomeration, implying a random distribution of CNC and
MoS2 with NRs Fig. 6(d–e).

XPS analysis was used to understand the development of
additional MoS2/CNC-doped ZnO NRs. The surface content
and valence states of the produced NRs are shown in Fig. 7(a,
b). XPS analysis indicates the origin of component elements
with a favourable reaction. The high-resolution spectrum of
Mo 3d in Fig. 7(a) shows two binding energy levels, 229.1 and
232.1 eV for Mo 3d5/2 and Mo 3d3/2, respectively, conrming
the heterostructure's Mo(IV) state.48 Mo 3d5/2 and Mo 3d3/2

binding energies show that the Mo ions in the produced
material are in distinct oxidative states.49 The Zn 2p peaks in
Fig. 7(b) are the typical peaks of the Zn2+ oxidation state in
ZnO at 1021.4 eV and 1044.4 eV, which correspond to
comparable Zn 2p3/2 and Zn 2p1/2 values in pure ZnO,
respectively.50

The in vitro antibacterial effectiveness of pristine ZnO and
MoS2/CNC-doped ZnO NRs was assessed by measuring inhi-
bition zones (mm) via an agar-based diffusion technique
against E. coli and S. aureus and the corresponding results are
2 content (50 and 100 mg).
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Fig. 6 TEM images (a–e) of ZnO and co-doped ZnO NRs; HR-TEM scale bar: 100 nm.

Fig. 7 (a and b) XPS spectra of the prepared NRs: (a) Mo 3d and (b) Zn 2p.
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Table 1 Antibacterial efficacy of ZnO, CNC and MoS2-CNC-doped
ZnO NRs

Sample

Inhibition zonea (mm) Inhibition zoneb (mm)

0.5 mg/50 mL
1.0 mg/50
mL

0.5 mg/50
mL

1.0 mg/50
mL

ZnO 3.35 4.30 0.95 1.25
CNC 3.30 4.45 0.95 1.65
CNC:ZnO 3.75 4.55 4.75 8.90
ZCM1 4.80 5.40 5.45 11.85
ZCM2 6.30 6.5 8.65 12.55
Ciprooxacin 7.15 7.15 11.65 11.65
DIW 0 0 0 0

a Measurements of inhibition areas against G –ve. b Inhibition areas
(mm) for G +ve.
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shown in Table 1. The results showed that the synergistic
effect was directly proportional to the NP concentration and
inhibition zones (mm). Statistically signicant (p < 0.05)
inhibition zones for ZnO, CNC, CNC/ZnO, ZCM1 and ZCM2
were recorded as (3.35–6.30 nm) and (4.30–6.5 nm) for E. coli
and (0.95–8.65 nm) and (1.25–12.55 nm) for S. aureus at low
and high concentrations, respectively. Positive control
ciprooxacin showed 7.15 mm and 11.65 mm inhabitation
zones towards E. coli and S. aureus in contrast to DI water (0
nm), respectively. Overall ZCM2 revealed signicant anti-
bacterial activity for G +ve relative to G �ve at both concen-
trations. The variation in oxidative stress is inuenced by
different variables such as the particle size, morphology and
Fig. 8 Schematic illustration of the proposed antimicrobial mechanism o
the NR inhibitors of the folate biosynthesis pathway.

© 2022 The Author(s). Published by the Royal Society of Chemistry
surface to mass ratios. Small sized particles contain reactive
oxygen species (ROS), which encircle the bacterial cell
membrane and cause bacterial death by the inhibition of the
folate biosynthesis pathway enzymes DHFR and DHPS (Fig. 8
and 9).24

The role of in silico molecular docking in solving mysteries
behind various biological activities is well documented.
Enzymes belonging to the folate biosynthetic pathway have
been reported as attractive targets for antibiotic discovery, for
instance DHFR and DHPS (i.e. trimethoprim antibiotic).51,52

Previously, Arularasu et al. reported cellulose/TiO2 nano-
composites as anti-bacterial agents and identied possible
interaction patterns with active site residues.26 Here, we
attempted to unveil the interactions of nanocomposites inside
the active pocket of DHFR and DHPS enzymes from E. coli and
S. aureus, which suggest these nanocomposites as possible
inhibitors of these enzymes.

In the case of ZnO-CNC nanocomposites against the active
site of DHFRE. coli, the best docked conformation (binding score
�9.671 kcal mol�1) showed a H-bond with Asp27 (2.7 Å), Ile94
(2.1, 2.4 Å) and ALA (1.8 Å), where interacting residues are
represented as sticks in Fig. 10(a), while the best binding score
observed for ZnO-CNC-MoS2 was �7.883 kcal mol�1 revealing
H-bond interaction with Ile94 along with Pi–sulfur interaction
with Phe31 as depicted in Fig. 10(b). The docked complexes with
both nanocomposites with DHFRE. coli are depicted in Fig. 10(c)
as superimposed structures showed their residence inside the
pocket.
f MoS2@CNC/ZnO NRs as in silicomolecular docking studies revealed

Nanoscale Adv., 2022, 4, 211–225 | 219
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Fig. 10 Binding interaction pattern inside the active pocket of DHFR from E. coli (a) ZnO-CNC NPs and (b) ZnO-CNC-MoS2 NPs and (c) 3D-
structure representation of ZnO-CNC and ZnO-CNC-MoS2-DHFR complexes (superimposed).

Fig. 9 Schematic illustration of the antimicrobial mechanism of MoS2@CNC/ZnO NRs.
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Fig. 11 Binding interaction pattern inside the active pocket of DHPS from E. coli (a) ZnO-CNC NPs and (b) ZnO-CNC-MoS2 NPs and (c) 3D-
structure representation of ZnO-CNC and ZnO-CNC-MoS2-DHPS complexes (superimposed).
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The best docked complex of ZnO-CNC against DHPSE. coli

revealed H-bonding interaction with three amino acid residues
of the active pocket i.e. Lys221 (2.1 Å), Asn115 (1.7 and 2.8 Å)
and Asp96 (2.7 Å) with an overall binding score of
�10.152 kcal mol�1 (Fig. 11(a)). Similarly, ZnO-CNC-MoS2
showed a binding score of �9.773 kcal mol�1 having H-bond
involvement with Asn115 (2.3 and 3.0 Å), Asp185 (2.9 Å), and
Lys221 (1.8 and 2.5 Å) as shown in Fig. 11(b), while super-
imposed complexes are depicted in Fig. 11(c).

Furthermore, the docking predictions of ZnO-CNC NPs
against the active pocket of DHFR S. aureus also revealed a good
binding tendency (binding score: �6.779 kcal mol�1) and
interaction pattern, representing the involvement of Asp27 (H-
bond: 2.5 Å) and ALA7 (H-bond: 1.8 and 2.8 Å). A similar
trend was observed for ZnO-CNC-MoS2 (binding score:
�5.639 kcal mol�1) showing interaction with ALA7 (1.7 and 2.7
Å) and Asp27 (2.7 Å) through H-bonds as depicted in Fig. 12(a)
© 2022 The Author(s). Published by the Royal Society of Chemistry
and b, while superimposed complexes for both nanocomposites
are shown in Fig. 12(c).

To check the catalytic performance of ZnO, CNC, ZnO-CNC
and MoS2/CNC-doped ZnO NRs, UV-vis spectra were attained
using methylene blue (Mb) dye as the contaminant to be
degraded in the presence of each sample. Pure and MoS2/CNC-
doped ZnO NRs showed a maximum dye degradation of 10.2,
67.6, 69.36 and 69.44% in an acidic medium (pH¼ 4) and 30.2,
8.29, 32.4, 35.08 and 44.55 in a neutral medium (pH ¼ 7),
respectively, as expressed in Fig. 13(a and b). The maximum
catalytic performance was observed in acidic solution with
higher doping of MoS2/CNC into ZnO NRs within 15 minutes.
Catalytic activity was inuenced by the surface area,
morphology and crystallinity of the nanoparticles. In the
present work, the consequent improvement perceived in the
catalytic performance is ascribed to a change in the
morphology (nanorods) (Table 2).
Nanoscale Adv., 2022, 4, 211–225 | 221
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Fig. 12 Binding interaction pattern inside the active pocket of DHPS from S. aureus (a) ZnO-CNC NPs and (b) ZnO-CNC-MoS2 NPs and (c) 3D-
structure representation of ZnO-CNC and ZnO-CNC-MoS2-DHPS complexes (superimposed).

Fig. 13 Catalysis of ZnO, CNC, ZnO-CNC, ZCM1 and ZCM2 in (a) acidic and (b) neutral media.
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Table 2 Comparison of results for the degradation of methylene blue: ciprofloxacin by NaBH4 in the presence of catalysts

Catalyst Dye
Reaction
time Catalyst amount

Degradation
result References

CuO/TiO2/ZnO NCs Crystal violet 360 s 5 mg L�1 82.18% 53
GO-doped MgO NSc Methylene blue: ciprooxacin 80 s 3 mg L�1 45% 54
Cu/ZnO NCs Malachite green and rhodamine B 180 s 10 mg L�1 52% 55
CuO NPs/clinoptilolite Methylene blue and rhodamine B 15 s 7 mg L�1 60% 56
ZCM2 NRs Methylene blue 15 min 3 mg L�1 69.44% Present study
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4. Conclusion

In the current study, MoS2/CNC-doped ZnO NRs were synthe-
sized successfully to achieve an enhanced bactericidal effect
and catalytic performance. According to experimental results,
ZnO exhibited a hexagonal wurtzite phase and the crystalline
size was found to be increased (26.2–48.5 nm) upon co-doping,
while the presence of Mo–S vibration and the formation of ZnO
NRs were conrmed by FTIR and EDS. The rod-like morphology,
d-spacing and agglomeration upon CNC and MoS2 doping in
ZnO NRs were conrmed by HR-TEM. UV spectra revealed
a blueshi due to the doping of MoS2/CNC, causing the band
gap to narrow in comparison to the undoped (3.3–2.3 eV). When
MoS2/CNC was doped into ZnO, the PL intensity decreased,
resulting in a reduced electron–hole pair recombination rate.
The dye degradation effectiveness of NRs against MB dye was
determined in acidic and neutral media. A maximum degra-
dation of 68.44% was observed for ZCM2. Overall the experi-
mental outcomes revealed MoS2@ZnO/CNC-0.2 (ZCM2) as
a signicant bactericidal agent for G +ve relative to G �ve at
both concentrations. In silico molecular docking investigations
suggested ZnO-CNC and ZnO-CNC-MoS2 nanocomposites as
possible inhibitors of DHFR and DHPS enzymes of the folate
biosynthetic pathway. According to the results of this study, the
synthesised ZnO and MoS2/CNC-doped NRs have demonstrated
excellent antibacterial and catalytic effectiveness for the treat-
ment of industrially contaminated wastewater and for usage in
biomedical applications.
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Bielińska, P. Stepnowski and A. Pieczyńska, Cytostatic drug
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