

MoS₂ as a Co-Catalyst for Photocatalytic Hydrogen Production: A Mini Review

Sayyar Ali Shah, Iltaf Khan * D and Aihua Yuan *

School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; sayyar786@gmail.com

* Correspondence: 20220000032@just.edu.cn (I.K.); aihua.yuan@just.edu.cn (A.Y.)

Abstract: Molybdenum disulfide (MoS₂), with a two-dimensional (2D) structure, has attracted huge research interest due to its unique electrical, optical, and physicochemical properties. MoS₂ has been used as a co-catalyst for the synthesis of novel heterojunction composites with enhanced photocatalytic hydrogen production under solar light irradiation. In this review, we briefly highlight the atomic-scale structure of MoS₂ nanosheets. The top-down and bottom-up synthetic methods of MoS₂ nanosheets are described. Additionally, we discuss the formation of MoS₂ heterostructures with titanium dioxide (TiO₂), graphitic carbon nitride (g-C₃N₄), and other semiconductors and co-catalysts for enhanced photocatalytic hydrogen generation. This review addresses the challenges and future perspectives for enhancing solar hydrogen production performance in heterojunction materials using MoS₂ as a co-catalyst.

Keywords: photocatalysis; heterojunction; layers structure materials; hydrogen production

Citation: Shah, S.A.; Khan, I.; Yuan, A. MoS₂ as a Co-Catalyst for Photocatalytic Hydrogen Production: A Mini Review. *Molecules* **2022**, *27*, 3289. https://doi.org/10.3390/ molecules27103289

Academic Editor: Muhammad Humayun

Received: 4 April 2022 Accepted: 17 May 2022 Published: 20 May 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Hydrogen is a clean, renewable energy source and alternative to fossil fuels [1] that can be stored at high mass-specific energy density, and its only product on combustion is water [2]. At present, about 96% of hydrogen is industrially produced from coal gasification and steam methane reformation processes [1,2]. However, these processes of hydrogen production also generate secondary pollutants or greenhouse gases, such as CO₂ and N₂O, that affect the environment [2]. Methane pyrolysis produces hydrogen and solid carbon as a byproduct [3]. This process generates CO₂-free hydrogen and has an advantage over conventional steam methane reformation and coal gasification processes. However, methane pyrolysis is a temporary solution and not a sustainable process due to the depletion of natural gas reserves [3].

To overcome energy challenges and environmental problems, hydrogen production from electrochemical water splitting using highly active catalysts is a promising strategy [4,5]. Less than 4% of hydrogen is produced through electrocatalysis at the industrial level [2]. The electrocatalysis of water for hydrogen production is a high-cost technique, which has hindered its large-scale industrialization. As an alternative, photocatalytic hydrogen evolution reaction (HER) from water splitting over a particular semiconductor material has been the most interesting way to address these issues. Generally, the photocatalytic efficiency depends upon three processes, including light absorption in the solar spectrum, charge separation, and surface active sites for catalytic activity [1,2,6].

A photocatalyst that can absorb sunlight across the whole solar spectrum is considered to be an ideal candidate for photocatalysis [6,7]. In 1972, Fujishima et al. reported photo-induced water splitting on TiO₂ electrodes [8]. Since then, much research has been focused on TiO₂ and other related semiconducting materials such as metal oxides, metal sulfides, conjugated polymers, nanosheets, graphitic carbon nitride, metal organic frameworks, and covalent organic frameworks, etc., as photocatalysts for hydrogen production [9–17].

However, the available photocatalysts for hydrogen production are still limited due to low visible light absorption and high electron–hole recombination rates.

Molybdenum disulfide (MoS₂), with a 2D nanostructure, has attracted huge attention due to its outstanding optical and electronic properties and promising applications [18–22]. MoS₂ nanomaterials as co-catalysts are promising photocatalysts for HER [18,23]. It is reported that the exposed edges of layers of MoS₂ contain active sites for catalytic activity while its basal planes are mostly inactive [19,24]. In addition to the active photocatalytic sites, the band gap of MoS₂ nanosheets is an important parameter for photocatalytic HER. The band gap of MoS₂ increases from bulk (1.2 eV) to single layer (1.9 eV) due to quantum confinement [19,24]. As a result, the location of the conduction band (CB) of MoS₂ moves towards a more negative potential than the proton reduction potential (H⁺/H₂), which consequently enhances the reduction in adsorbed H⁺ and photocatalytic hydrogen evolution.

It is widely reported that loading a co-catalyst over semiconductors is a promising approach with superior photocatalytic performance due to the photoelectron separation and charge transfer [18,19]. MoS₂-decorated semiconductor materials constitute a promising approach that has shown superior hydrogen production due to their heterojunctions with controllable nanoscale architectures, design for enhanced performance in terms of light absorption, charge separation, and surface catalytic reactions [15,19,23,24].

In this review, we briefly introduce the basic aspects and synthetic methods of MoS_2 nanosheets. Different types of MoS_2 -based heterojunction composites are also discussed. The role of MoS_2 nanomaterials as co-catalysts in heterojunction composites for enhanced HER performance is addressed. Additionally, some important issues are highlighted and useful opinions are discussed to further improve photocatalytic hydrogen production using MoS_2 as a co-catalyst.

2. Atomic-Scale Structure of MoS₂

A single layer of MoS₂ has a sandwich structure of S-Mo-S, where the Mo atoms are covalently bonded with the S atoms (Figure 1). MoS₂ has several polymorphs, including $1T_1$, $1T_2$, 1H, 2T, 2H, $2R_1$, $2R_2$, $3H_a$, $3H_b$, 3R, and 4T [25–29]. Among them the 1T MoS₂, 2H MoS₂, and 3R-MoS₂ polymorphs of MoS₂ have been most investigated for different applications [25,27–29]. A single-layer 1T MoS₂ sheet is metallic and has good electrical properties [30,31], while single-layer 2H MoS₂ and 3R-MoS₂ sheets behave as a semiconductor with a direct band gap [28,32].

Figure 1. (a) Side and (b) top views of MoS₂ single layer.

Generally, MoS_2 sheets are stacked together by weak van der Waals forces and form few-layer MoS_2 nanosheets. As the band gap of MoS_2 nanosheets increases from bulk (1.2 eV) to single layer (1.9 eV) [33], it absorbs the visible region of the solar spectrum. Thus, MoS_2 can play an important role as a co-catalyst during photocatalysis [29]. MoS_2 -based semiconductor composites act as co-catalysts that can significantly enhance the efficiency of photocatalytic hydrogen production [7,34–37].

3. Photochemical Hydrogen Evolution Reaction

As mentioned above, Fujishima and Honda reported on photo-induced water splitting on TiO₂ electrodes. Hydrogen can also be directly produced from photochemical water splitting. Usually, a photoelectrolytic cell is designed to carry out the photochemical water splitting process. A typical photoelectrolytic cell for water splitting is shown in Figure 2a [38]. Using light sources, the photocatalytic water splitting takes place in several steps: the absorption of light by catalyst on electrode; the generation of charges followed by the excitation of electrons in the valence band; the separation of charge as well as the transport of charge carriers; and the oxidation of water and generation of hydrogen during water splitting, which occur at separate electrodes. The pure, overall water splitting process comprises two half-reactions to generate hydrogen and oxygen molecules, as shown in Figure 2b [39]. Water oxidation occurs at the anode to produce oxygen, whereas H⁺ ions are reduced on the cathode into hydrogen gas. For more details of photocatalytic water splitting, see the review of Jeong et al. [39].

Figure 2. (a) Schematic device illustration of photoelectrochemical water splitting. Reprinted with permission from Ref. [38] (Copyright 2019 Elsevier). (b) Schematic representation of the photoelectrochemical water splitting process in a common PEC water splitting system consisting of a photoanode and a metal counterpart. Reprinted from Ref. [39].

4. Synthesis of MoS₂

Nanostructured MoS₂ can be fabricated via both top-down and bottom-up approaches. In the case of the top-down method, the commercially available bulk crystal of MoS₂ is physically downsized into MoS₂ nanomaterials (Figure 3) [29,40,41], while in the bottom-up approach, MoS₂ nanomaterials are synthesized via chemical reaction with small molecules using chemical vapor deposition (CVD) and hydrothermal or solvothermal methods, etc. [42–44]. Single layers, multilayers, nanoparticles, and quantum dots of MoS₂ have also been reported [45–48]. Continued efforts have been reported for the fabrication of MoS₂ nanomaterials via the top-down and bottom-up strategies [16–19,28–31,40–44].

Figure 3. Various synthetic methods for MoS₂ preparation.

4.1. Top-Down Approach

 $Exfoliation \ of \ MoS_2$

Due to the layered structure and van der Waals interactions, MoS_2 nanosheets can be easily prepared through the exfoliation method. Mechanical, chemical, electrochemical, and liquid-phase exfoliation processes have been reported for the synthesis of MoS₂ nanosheets [39–52]. For example, in the mechanical exfoliation technique, the suitable MoS_2 flakes are peeled off from the bulk crystal of MoS₂ using adhesive tape and shifted onto a specific substrate [46,53]. When the scotch tape is detached, some parts of MoS_2 remain on the substrate. As result, single- or few-layer MoS₂ nanosheets with random shapes and sizes are obtained. The 2D materials prepared by the exfoliation method have good quality and allow to study the pristine properties of materials and device performance. However, during this process, the thickness and size of the MoS₂ are difficult to control, and the resulting materials are inappropriate for large-scale production and scaled-up applications [53,54]. Li et al., mechanically exfoliated single- and multilayer MoS₂ nanosheets from SiO_2/Si with the adhesive tape method [41]. The flakes of MoS_2 were mechanically stripped on Si/SiO₂ substrate. The obtained single-layer and multilayer MoS₂ materials were characterized using a bright-field optical microscope and an atomic force microscope (AFM). From the AFM measurements, the height of a single MoS_2 sheet was found to be 0.8 nm, while the thickness of two, three, and four layers of MoS₂ nanosheets was 1.5, 2.1, and 2.9 nm, respectively (Figure 4). The MoS₂ nanosheet monolayers showed an enhanced optical performance, especially single-layer MoS₂ nanosheets. It was observed that the van der Waals interactions between MoS₂ to SiO₂ were much weaker. For this purpose, gold can be used as a substrate to exfoliate the MoS_2 nanosheets due to its strong affinity for sulfur. It can exfoliate the MoS_2 monolayer from the bulk because of the strong van der Waals interactions between Au and MoS₂ layers [55–57]. Huang et al. prepared large-area MoS₂ nanosheets using a Au-assisted exfoliation strategy [50]. In a typical synthesis, a Au thin layer was deposited on a Ti or Cr adhesion-covered substrate. To develop good contact between a MoS₂ bulk crystal on tape and a Au-covered substrate, it should be passed under high pressure. The monolayer sheets with a large area were collected from the surface of the Au after peeling off the tape.

Figure 4. Mechanically exfoliated single- and multilayer MoS_2 nanosheets on Si/SiO₂. (**A**–**D**) Optical microscope and (**E**–**H**) AFM images of MoS_2 nanosheets. The single MoS_2 sheet thickness is 0.8 nm (**E**), while the thickness of two (**F**), three (**G**), and four (**H**) layers of MoS_2 nanosheets is 1.5, 2.1, and 2.9 nm, respectively. Reprinted with permission from Ref. [41]. Copyright 2012 Wiley-VCH Verlag GmbH & Co.

In the top-down approaches, single- and multilayer MoS_2 nanosheets are prepared, which have been used to study some fundamental properties of MoS_2 nanosheets.

4.2. Bottom-Down Approach

4.2.1. Chemical Vapor Deposition

The CVD technique has a long history and is commonly used for the synthesis of high-quality semiconductor materials. In a typical CVD process of MoS₂ nanosheets, the Mo sources are solid precursors of Mo or MoO₃ powder, and the S sources are H₂S gas or solid S powder [58–61]. The solid MoO₃ and vaporized S react with each other in a low-pressure chamber, forming nuclei for the growth of MoS₂ [58]. Then, MoS₂ slowly grows and enlarges its size on the substrates under carrier gas flow. The temperatures at which MoS₂ grows during the CVD process are usually between 700 and 1000 °C, with a metal catalyst such as Au [61]. Plasma-enhanced CVD requires a low temperature (150–300 °C) for the growth of MoS₂ nanosheets, and MoS₂ can even be directly deposited on the plastic substrate [62]. Recently, metal organic CVD has been reported for the synthesis of MoS₂ nanosheets [63,64], where organometallic precursors were used as starting materials.

4.2.2. Physical Vapor Deposition

Advanced technology such as molecular beam epitaxy (MBE) can be used to prepare single-crystal semiconductor thin films. However, its applications are limited to the synthesis of 2D materials [65]. Ordinary physical vapor deposition is rarely reported for 2D materials. A MoS_2 -Ti composite was prepared by direct current magnetron sputtering, using Ti and MoS_2 materials [66]. In this process, the MoS_2 was amorphous.

4.2.3. Solution-Based Process

Solution-based processes are commonly used to synthesize MoS_2 nanosheets. Hydrothermal and solvothermal methods are the most interesting for the preparation of MoS_2 nanosheets [67,68]. In these methods, the Mo source is commonly a molybdate, such as Na_2MoO_4 or $(NH_4)_6Mo_7O_{24}$, and the S source is thiourea and thioacetamide and L-cysteine [69–73]. The molybdate reacts with the S or S compound in a stainless steel autoclave. The physicochemical reaction takes place at high temperatures (160–200 °C) and

pressure for at least a few hours. In the solvothermal method, organic solvents such as 1-methyl-2-pyrrolidinone, N,N-dimethylformamide, and polyethylene glycol-600 are used to proceed with the reaction, while in the hydrothermal method, water is used as a solvent. The MoS_2 powders obtained from these methods have different sizes and shapes. The sizes and shapes of the products can be adjusted by altering the experimental conditions. To improve the crystalline quality of MoS_2 , the products are usually post-annealed at high temperature.

The MoS_2 nanomaterials prepared through different bottom-up approaches have various sizes, shapes, morphologies, and thicknesses and can be used for many applications.

5. Application of MoS₂ as a Co-Catalyst in Photocatalysis for Hydrogen Production *5.1. MoS*₂/*Titanium Dioxide Composites*

The semiconducting material titanium dioxide (TiO₂) has been employed for hydrogen production due to its good UV light response, non-toxic nature, low cost, chemical stability, and good availability [1,12,24]. However, the photocatalytic energy conversion efficiency of TiO₂ for hydrogen production is low due to its wide band gap structure (Eg \approx 3.2 eV), photogenerated charge recombination, and some reverse reactions [1,2,12,24]. Many strategies have been attempted to improve the catalytic activity of TiO₂ nanomaterials, including micro/nanostructure constructing, crystal facet, crystal phase, surface, and tailoring the band gap [9,74,75], but the photocatalytic activity of TiO₂ still cannot reach the expected efficiency.

 MoS_2 is considered a potential co-catalyst for TiO_2 materials to boost the efficiency of photocatalytic hydrogen production. Zhu and his coworkers fabricated MoS_2/TiO_2 photocatalysts with various compositions through a facial mechanochemistry method [76]. The photocatalytic activity of the prepared composite was studied for hydrogen generation under UV irradiation. The 4% MoS₂ loaded on TiO₂ (4%-MoS₂/TiO₂) showed maximum hydrogen production at a rate of 150.7 μ mol h⁻¹, which is about 48.6 times higher than that of pure TiO₂ at ~3.1 μ mol·h⁻¹. The improved photocatalytic activity of MoS₂/TiO₂ composites is mainly due to electron transfer from TiO₂ to MoS₂ nanosheets and the active sites that produce hydrogen. Meanwhile, the recombination rate of electron-hole pairs is also reduced. Furthermore, the relatively good conductivity of MoS₂ nanosheets also assisted the photo-induced charge separation, leading to an enhanced photocatalytic performance. Ma et al. reported flower-like MoS₂/TiO₂ nanohybrid composite photocatalysts obtained from a metal organic framework-derived precursor via facial hydrothermal methods [77]. The flower-like morphology of the MoS_2/TiO_2 composites was confirmed from SEM images, as shown in Figure 5. In order to investigate the photocatalytic activity, the experiments were conducted under visible light conditions with fluorescein as a photosensitizer. An outstanding improvement in the photocatalytic activity was achieved for the optimized sample (14.6 wt% MoS_2 loaded on TiO_2) with a hydrogen evolution rate of 10046 μ mol·h⁻¹·g⁻¹. They concluded that this high performance of the MoS₂/TiO₂ composites is associated with the formation of active centers as well as the uniform distribution of MoS_2 and TiO_2 phases, inducing electrons' motion to reduce protons. In the proposed photocatalytic activity mechanism, excited electrons from fluorescein transfer to the CB of TiO_2 . These electrons further move to the surface of MoS_2 and combine with protons to produce hydrogen. Liu and his coworker prepared MoS₂ nanosheets rooted in TiO₂ nanofibers (TiO₂@MoS₂) using a hydrothermal strategy [19]. They reported single- to few-layer MoS_2 nanosheets and TiO_2 nanofibers' porous structure. The MoS_2 nanosheets grew vertically on the porous structure of TiO₂, and deep rooting MoS₂ nanosheets into TiO₂ nanofibers put them in close contact for the electron transfer process and structural stability. The hydrogen production rates of the TiO₂@MoS₂ sample were 1.68 under UV-vis light and 0.49 mmol· h^{-1} · g^{-1} under visible light.

Figure 5. (**a**,**b**) SEM images of MoS₂@TiO₂ composites. Reprinted with permission from Ref. [77]. Copyright 2016 American Chemical Society.

 ${\rm TiO}_2$ nanomaterials combined with a ${\rm MoS}_2$ co-catalyst can enhance hydrogen production rates up to several times.

5.2. MoS₂/Graphitic Carbon Nitride Composites

Graphitic carbon nitride (g- C_3N_4) is considered one of the promising candidates for photocatalysis due to its high chemical stability, environmentally friendly nature, and suitable energy bands that can efficiently absorb solar spectrum irradiation [78–81]. However, g- C_3N_4 suffers from a small specific surface area, high exciton binding energy, stacking back into a bulk, and low efficiency under visible light [82–84]. Recently, much interest has been devoted to g- C_3N_4 -based composites for solar hydrogen production under visible light. To enhance the efficiency of its photocatalytic activity, various non-precious co-catalysts such as Co_2P , Mo_2C , and MoS_2 have been incorporated with C_3N_4 [85–87]. Among them, MoS_2 as a co-catalyst in MoS_2/C_3N_4 composites shows promising efficiency for photogenerated hydrogen production [87,88].

The design of and nano-interface coupling between MoS_2 and C_3N_4 can significantly enhance the photocatalytic HER performance. The appropriate MoS_2/C_3N_4 composites with an optimal ratio are believed to enhance solar absorption, increase the interfaces, and decrease the electron transfer distance of the photo-excited electrons between C_3N_4 and MoS_2 co-catalysts. Yuan's group reported $MoS_2/g-C_3N_4$ composites with various contents of MoS₂ developed using the solvent thermal method. The composite catalysts were evaluated for photocatalytic H₂ generation [87]. They found that $MoS_2/g-C_3N_4$ composites containing 0.75% MoS₂ nanosheets performed better and had a reaction rate of 1155 μ mol·h⁻¹·g⁻¹ under visible light irradiation. The apparent quantum yield was about 6.8% under a monochromatic light of 420 nm. Furthermore, they explained that the large surface area of $g-C_3N_4$ nanosheets and the nano-interface coupling between MoS₂ nanosheets and g-C₃N₄ were mainly responsible for the outstanding photocatalytic hydrogen production of the MoS₂/g-C₃N₄ composite. Recently, Li et al., reported the in situ synthesis of a g-CN/MoS₂ composite [89]. The composite exhibited enhanced photocatalytic hydrogen production compared to pristine g-CN under visible light irradiation. The rod-like MoS₂ plays an important role as co-catalyst in the g-CN/MoS₂ composite in the enhancement of the hydrogen production rate. Zhang et al. reported sulfur-doped C_3N_4 with covalently crosslinked MoS_2 nanosheets (MoS_2/SC_3N_4) for improved photocatalytic hydrogen production [88]. The ultrathin array-like nanosheet structure of the MoS_2/SC_3N_3 composites was observed by SEM characterizations (see Figure 6). MoS_2/SC_3N_3 composites were studied for photocatalytic HER under visible light conditions. MoS₂/SC₃N₃ with 2.5% MoS₂ nanosheets showed the optimal hydrogen production rate of 702.53 µmol·h⁻¹·g⁻¹. The array-like porous morphology had a rich exposed surface, covalent bonding structure, and enhanced visible light absorption by the cyano group of MoS₂/SC₃N₃ composites. This facilitates the photogenerated electrons' transfer from the CB of SC₃N₃ to MoS₂ via a heterojunction interface that consequently enhances the photocatalytic hydrogen evolution. Zhang et al. reported a MoS₂/Fe₂O₃/g-C₃N₄ ternary composite photocatalyst under hydrothermal conditions for hydrogen production [90]. The obtained ternary composite showed a hydrogen production rate about five times higher compared to g-C₃N₄. In addition, 1T MoS₂/C₃N₄ composites also show enhanced photocatalytic hydrogen production [91–94]. Li et al. loaded metallic 1T-phase MoS₂ quantum dots onto CdS nanorods (1T-MoS₂-CdS) using a one-step hydrothermal method at different temperatures [91]. The 1T-MoS₂-CdS composite prepared at 180 °C showed remarkable photocatalytic hydrogen production (131.7 mmol·h⁻¹·g⁻¹) under visible light ($\lambda > 420$ nm). This rate of hydrogen evolution reaction was over 65 times greater than that of pure CdS (mmol·h⁻¹·g⁻¹) and two times that of Pt-loaded CdS.

Figure 6. SEM images of (a) SC_3N_2 , (b) MoS_2 and ultrathin array-like nanosheet, (c) MoS_2/SC_3N_4 -0.5%, (d) MoS_2/SC_3N_4 -1.5%, (e), MoS_2/SC_3N_4 -2.5%, and (f) MoS_2/SC_3N_4 -5.0%. Reprinted with permission from Ref. [88]. Copyright 2021 Elsevier.

Besides 1T-phase MoS_2 , amorphous MoSx nanomaterials are efficient electrocatalysts as well as co-catalysts for hydrogen production [95–97]. They provide more unsaturated active S atoms, which can rapidly capture protons from the solution to convert them into hydrogen molecules. Yu et al. reported amorphous $MoSx/g-C_3N_4$ (a- $MoSx/g-C_3N_4$) composites developed using an adsorption in situ transformation method [95]. The a- $MoSx/g-C_3N_4$ composites were compared with crystalline $MoS_x/g-C_3N_4$ and $g-C_3N_4$ catalysts, and all of the a- $MoSx/g-C_3N_4$ catalysts displayed better photocatalytic performances than the crystalline $MoSx/g-C_3N_4$ and C_3N_4 catalysts. Among the a- $MoSx/g-C_3N_4$ composites, the a- $MoSx/g-C_3N_4$ catalyst with 3 wt% Mo showed the best photocatalytic performance and a hydrogen production rate of 273.1 μ mol·h⁻¹·g⁻¹.

Similar to TiO_2/MoS_2 photocatalysts, $MoS_2/g-C_3N_4$ heterojunction composites can improve hydrogen production.

5.3. MoS₂ Coupling with Other Semiconductor Materials

As discussed earlier, MoS_2 as a co-catalyst for other semiconductor compounds can efficiently enhance the photocatalytic activity of hydrogen generation. The interfacial coupling of MoS_2 with semiconductor compounds has been designed in many strategies.

An appropriate ratio, increased interface area, and decreased migration distance of the photogenerated electrons between the MoS_2 and the semiconductor compounds can effectively improve photocatalytic hydrogen production. Zhang et al. reported MoS_2/CdS composites with willow branch-shaped morphology developed using a one-pot hydrothermal method [98]. The MoS_2/CdS composite with 5 wt% MoS_2 as a co-catalyst displayed an enhanced photocatalytic performance and produced 250.8 μ mol·h⁻¹ hydrogen evolution with an apparent quantum efficiency of 3.66% at 420 nm. Preparation of the willow branch-shaped nano-heterojunction morphology enhances the visible light absorption and also promotes the separation of photogenerated electron–hole pairs.

Ma et al. reported a layered CdS/MoS₂ heterostructure photocatalyst developed using ultrasonicated MoS₂ and CdS nanosheets, produced from hydro- and solvothermal methods, respectively [99]. When MoS₂ co-catalysts were loaded onto CdS nanosheets, the photocatalytic performance of the CdS/MoS₂ heterostructure was twice that of the pure CdS photocatalyst. The designing of a layered CdS/MoS₂ heterostructure could efficiently enhance the photogenerated charge separation and electron transfer, which improves the surface hydrogen evolution kinetics. Patriarchea and coworkers synthesized CdS nanosheets were deposited on it via the wet chemical method [100]. The obtained optimized MoS₂/CdS catalyst showed a good hydrogen production rate of about 0.4 mmol h^{-1} under visible light compared to the CdS catalyst. The enhanced hydrogen generation was due to the presence of the MoS₂ co-catalyst.

Samaniego-Benitez and coworkers prepared ZnS/MoS₂ heterostructure materials using a one-pot solvothermal method [101]. The hydrogen production yield of the ZnS/MoS₂ sample with 10% Mo reached 2600 μ mol·h⁻¹ under UV light for 4 h. They concluded that the enhanced photocatalytic activity was due to the synergistic effect between ZnS and MoS₂ and sulfur vacancies created in the ZnS structure during the synthesis process. In the proposed mechanism, a photoexcited electron moves from the CB of ZnS to the CB of MoS₂, where it interacts with the proton and produces hydrogen.

Recently, Guan et al., used MoS₂ as a co-catalyst for methylammonium lead iodide to split hydrogen iodide for photocatalytic HER [102]. The methylammonium lead iodide microcrystals and MoS₂ nanoflowers (MAPbI₃/MoS₂) formed a heterostructure. The MoS₂ nanoflowers have plenty of active catalyst sites for hydrogen evolution. The hydrogen evolution rate of MAPbI₃/MoS₂ reached ~30,000 µmol·h⁻¹·g⁻¹ and a solar-derived hydrogen iodide splitting efficiency of 7.35% was achieved under visible light irradiation. This hydrogen evolution rate is more than 1000 times higher compared to that of pristine MAPbI₃. The MoS₂ can induce charge separation and provide abundant active sites for photocatalytic hydrogen evolution.

For these examples, we can conclude that MoS₂ is an efficient co-catalyst for CdS, ZnS, and MAPbI₃ etc, catalysts to produce hydrogen.

5.4. MoS₂ and Other Co-Catalyst Heterojunction Composites

The heterojunction of a MoS₂ co-catalyst with other co-catalysts is an attractive strategy because it can improve the photogenerated electron transfer from a semiconductor to a MoS₂ co-catalyst during photocatalysis, which enhances the activity via the catalytic sites on MoS₂ co-catalysts [103–105]. The heterojunctions between MoS₂ and highly conductive co-catalysts decrease the resistance effect and increase the electron transfer process during photocatalysis [106].

For improved photocatalytic H₂ evolution, a widely studied example of anchoring a MoS₂ co-catalyst on graphene has been reported [107,108]. Xiang et al., synthesized a TiO₂/MoS₂/graphene hybrid photocatalyst for hydrogen production [18]. The hybrid photocatalyst showed significant enhancement of photocatalytic H₂ generation under UV illumination, with an apparent quantum efficiency of 9.7% at 365 nm. The improved activity is described in terms of synergetic effects between MoS₂ and the conductive graphene co-catalysts and TiO₂ leading to outstanding photocatalytic hydrogen evolution activity. These authors have proposed a mechanism for the significant boost of photocatalytic H₂ generation. They reported that this enhancement is due to the transfer of photogenerated electrons from the CB of TiO₂ nanoparticles to the CB of MoS₂ nanosheets through highly conductive graphene sheets (Figure 7), where H⁺ ions are adsorbed at an active site of MoS₂. Apart from graphene, other highly conductive materials such as metal sulfides and phosphides can also be used as interfacial electron transfer sources to enhance photocatalytic hydrogen evolution. Lu and coworkers synthesized g-C₃N₄, Ni₂P, and MoS₂ heterojunctions by hydrothermal and ultrasonic methods [109]. The hydrogen production rate of the g-C₃N₄-1%Ni₂P-1.5%MoS₂ composite was about 532.41 µmol·h⁻¹·g⁻¹ under visible light, which is 5.15- and 2.47-fold higher than those of g-C₃N₄-1%Ni₂P and g-C₃N₄ 1.5%MoS₂, respectively. The Ni₂P co-catalyst could be acting as an interface electron bridge between g-C₃N₄ and MoS₂ nanosheets. It provides interfacial electron transfer channels in g-C₃N₄/MoS₂ heterostructure composites and prevents the rapid recombination process of photogenerated charge carriers.

Figure 7. Schematic illustration of the charge transfer and proposed mechanism of electron transfer in $TiO_2/MoS_2/graphene$ composites. Reprinted with permission from Ref. [18]. Copyright 2012 American Chemical Society.

Finally, we summarize some heterojunction composites with semiconducting and MoS_2 materials in which the MoS_2 nanomaterial acts as a co-catalyst for enhanced photocatalytic hydrogen production. Table 1 and Figure 8 show different strategies used for various types of catalysts combined with a MoS_2 co-catalyst to form heterojunction composites for enhanced photocatalytic hydrogen production.

Catalyst	Synthesis Method	Light Source	Photocatalytic Activity	No. of Cycles	Total Times of Cycles (h)	Ref.
MoS ₂ nanoparticles/TiO ₂ nanoparticles	Mechanochemistry	$300 \text{ W} \text{ Xe lamp} (\lambda = 250-380 \text{ nm})$	150.7 μ mol·h ⁻¹ ·g ⁻¹	3	18	[76]
TiO_2 nanofibers @MoS ₂ nanosheets	Hydrothermal	300 W xenon lamp λ > 320 nm or λ > 420 nm	$1.68 \text{ mmol} \cdot \text{h}^{-1} \cdot \text{g}^{-1}$ $0.49 \text{ mmol} \cdot \text{h}^{-1} \cdot \text{g}^{-1}$	6	30	[19]
Flower-like $MoS_2@TiO_2$ nanohybrids	Metal organic framework-derived	300 W Xe lamp ($\lambda \ge 420$ nm)	10046 μ mol \cdot h ⁻¹ \cdot g ⁻¹	3	10	[77]
MoS ₂ nanosheets/TiO ₂ nanotubes	Hydrothermal process	300 W Xe-lamp ($\lambda \ge 420$ nm)	143.32 μ mol·h ⁻¹ ·g ⁻¹	4	14	[110]
MoS ₂ nanosheets/g-C ₃ N ₄ nanosheets	Solvothermal method	300 W Xe-lamp ($\lambda > 420 \text{ nm}$	1155 μ mol·h ⁻¹ ·g ⁻¹	3	12	[87]
S-doped C_3N_4 nanosheets/MoS ₂ nanosheets	One-step solid-state strategy	Visible LED lamp	702.53 μ mol·h ⁻¹ ·g ⁻¹	3	16	[88]
Amorphous MoS _x nanoparticles/g-C ₃ N ₄ nanosheets	Adsorption in situ transformation method	Low-power LEDs (3W, 420 nm)	273.1 μ mol·h ⁻¹ ·g ⁻¹	4	12	[95]
$g-C_3N_4/NCDS/MoS_2$	Thermal polymerization and solvothermal approach	300 W Xe lamp ($\lambda \ge 420$ nm)	212.41 μ mol \cdot h ⁻¹ \cdot g ⁻¹	4	16	[111]
ZnS/MoS ₂ particles	One-pot solvothermal	Hg pen-lamp (254 nm), (4.4 mW/cm ²)	$606 \ \mu mol \cdot h^{-1} \cdot g^{-1}$	-	-	[101]
MoS ₂ clusters/CdS nanorod	Solvothermal method	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	$12.38 \text{ mmol} \cdot \text{h}^{-1} \cdot \text{g}^{-1}$	4		[112]
MoS ₂ /ZnIn ₂ S ₄ microspheres	Impregnation method	300 W Xe-lamp ($\lambda > 420 \text{ nm}$)	$3.06 \text{ mmol} \cdot \text{h}^{-1} \cdot \text{g}^{-1}$	3	15	[113]
MoS ₂ nanosheets/ZnIn ₂ S ₄ microspheres	In situ photo-assisted deposition	300 W Xe-lamp (λ > 420 nm)	$8.047 \text{ mmol}\cdot\text{h}^{-1}\cdot\text{g}^{-1}$	-	-	[114]
MoS ₂ nanoflake-Mn _{0.2} Cd _{0.8} S nanorod/MnS nanoparticle	One-pot solvothermal	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	995 μ mol \cdot h ⁻¹	5	20	[115]

Table 1. Summary of MoS₂ usage as a co-catalyst for various materials to form heterostructures for photocatalytic hydrogen generation.

Figure 8. Photocatalytic hydrogen production of heterojunction materials using MoS_2 as a co-catalyst. (i) MoS_2 nanosheets/ TiO_2 nanotubes [110]. (ii) $g-C_3N_4/NCDS/MoS_2$ [111]. (iii) Amorphous MoS_x nanoparticles/ $g-C_3N_4$ nanosheets [95]. (iv) TiO_2 nanofibers/@MoS_2 nanosheets [19]. (v) ZnS/MoS_2 particles [101]. (vi) S-doped C_3N_4 nanosheets/ MoS_2 nanosheets [88]. (vii) MoS_2 nanosheets/ $g-C_3N_4$ nanosheets [87]. (viii) $MoS_2/ZnIn_2S_4$ microspheres [113]. (ix) MoS_2 nanosheets/ $ZnIn_2S_4$ microspheres [114]. (x) Flower-like $MoS_2@TiO_2$ nanohybrids [77]. (xi) MoS_2 clusters/CdS nanorod [112].

6. Conclusions and Outlook

In summary, we highlighted the significance of MoS₂ as a co-catalyst to improve hydrogen evolution. A comprehensive analysis of the literature led us to conclude that MoS_2 is a good co-catalyst for other semiconducting materials such as TiO₂, C₃N₄, CdS, ZnS, etc., which form heterostructure nanocomposites and consequently boost the photocatalytic hydrogen generation ability. However, there are still some critical issues that must be resolved, such as the downsizing of MoS₂ nanosheets for appropriate band gap alignment and the high density of catalytic active sites. These issues can be solved by reducing the size of MoS_2 to quantum dots or the molecular level, which will certainly enhance the catalytic active sites. The photoexcited electron transfers between photocatalysts and the MoS₂ co-catalyst play an important role during photocatalytic hydrogen generation. The electron transfer mechanism at the interface of a semiconductor photocatalyst and a MoS₂ co-catalyst is yet to be fully investigated and completely understood. It is important to conduct theoretical studies such as density functional theory (DFT) simulations and apply in situ testing methods to understand electron transfer paths. Although MoS₂ nanosheets as a co-catalyst are a promising candidate for photocatalytic hydrogen production, all the challenges require further efforts and study.

Author Contributions: Conceptualization and validation, S.A.S., I.K. and A.Y.; writing—original draft preparation, S.A.S. and I.K.; writing—review and editing, S.A.S. and A.Y.; supervision, A.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: No supporting data is reported.

Acknowledgments: We are thankful to the National Natural Science Foundation of China (under research grant no. 22150410332) and the start-up foundation for the introduction of talent at Jiangsu University of Science and Technology, China.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Kampouri, S.; Stylianou, K.C. Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. *ACS Catal.* **2019**, *9*, 4247–4270. [CrossRef]
- Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. *Chem. Rev.* 2020, 120, 919–985. [CrossRef] [PubMed]
- Sanchez-Bastardo, N.; Robert, S.; Ruland, H. Methane pyrolysis for zero-Emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy. *Ind. Eng. Chem. Res.* 2021, 60, 11855–11881. [CrossRef]
- Shah, S.A.; Shen, X.; Yuan, A.; Ji, Z.; Yue, X.; Zhu, G.; Zhou, H.; Xu, K.; Zhu, J.; Chen, Y. One step in-situ synthesis of Ni₃S₂/Fe₂O₃/N-doped carbon composites on Ni foam as an efficient electrocatalyst for overall water splitting. *Appl. Surf. Sci.* 2020, 527, 146918. [CrossRef]
- 5. Ola, O.; Ullah, H.; Chen, Y.; Thummavichai, K.; Wang, N.; Zhu, Y. DFT and experimental studies of iron oxide-based nanocomposites for efficient electrocatalysis. J. Mater. Chem. C 2021, 9, 6409–6417. [CrossRef]
- 6. Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. *Chem. Soc. Rev.* **2019**, *48*, 2109–2125. [CrossRef]
- Zhao, H.; Jiang, Z.; Xiao, K.; Sun, H.; Chan, H.S.; Tsang, T.H.; Yang, S.; Wong, P.K. Photo-assisted separation of noble-metal-free oxidation and reduction cocatalysts for graphitic carbon nitride nanosheets with efficient photocatalytic hydrogen evolution. *Appl. Catal. B-Environ.* 2021, 280, 119456. [CrossRef]
- 8. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [CrossRef]
- Wen, J.; Li, X.; Liu, W.; Fang, Y.; Xie, J.; Xu, Y. Strategies for engineering metal-organic frameworks as efficient photocatalysts. *Chin. J. Catal.* 2015, 36, 2049–2070. [CrossRef]
- Kong, D.; Fan, H.; Yin, D.; Zhang, D.; Pu, X.; Yao, S.; Su, C. AgFeO₂ Nanoparticle/ZnIn₂S₄ Microsphere p–n heterojunctions with hierarchical nanostructures for efficient visible-light-driven H₂ evolution. ACS Sustain. Chem. Eng. 2021, 9, 2673–2683. [CrossRef]
- 11. Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G.A. Colloidal synthesis of 1T-WS₂ and 2H-WS₂ nanosheets: Applications for photocatalytic hydrogen evolution. *J. Am. Chem. Soc.* **2014**, *136*, 14121–14127. [CrossRef] [PubMed]
- 12. Li, Y.; Ding, L.; Yin, S.; Liang, Z.; Xue, Y.; Wang, X.; Cui, H.; Tian, J. Photocatalytic H₂ Evolution on TiO₂ Assembled with Ti₃C₂ MXene and Metallic 1T-WS₂ as Co-catalysts. *Nano-Micro Lett.* **2020**, *12*, 6. [CrossRef] [PubMed]
- 13. Dai, C.; Liu, B. Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 2020, 13, 24. [CrossRef]
- 14. Wan, Y.; Deng, J.; Gu, C.; Ma, Y. Highly efficient photocatalytic hydrogen evolution based on conjugated molecular micro/nanocrystalline sheets. *J. Mater. Chem. A* 2021, *9*, 2120. [CrossRef]
- 15. Luo, L.; Gong, Z.; Ma, J.; Wang, K.; Zhu, H.; Li, K.; Xiong, L.; Guo, X.; Tang, J. Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water. *Appl. Catal. B-Environ.* **2021**, *284*, 119742. [CrossRef]
- 16. Sun, K.; Liu, M.; Pei, J.; Li, D.; Ding, C.; Wu, K.; Jiang, H. Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis. *Angew. Chem. Int. Ed.* **2020**, *59*, 22749. [CrossRef]
- 17. Chen, W.; Wang, L.; Mo, D.; He, F.; Wen, Z.; Wu, X.; Xu, H.; Chen, L. Modulating benzothiadiazole-based covalent organic frameworks via halogenation for enhanced photocatalytic water splitting. *Angew. Chem. Int. Ed.* **2020**, *59*, 16902. [CrossRef]
- 18. Xiang, Q.; Yu, J.; Jaroniec, M. Synergetic effect of MoS₂ and graphene as cocatalysts for enhanced photocatalytic H₂ production activity of TiO₂ nanoparticles. *J. Am. Chem. Soc.* **2012**, *134*, 6575–6578. [CrossRef]
- 19. Liu, C.; Wang, L.; Tang, Y.; Luo, S.; Liu, Y.; Zhang, S.; Zeng, Y.; Xu, Y. Vertical single or few-layer MoS₂ nanosheets rooting into TiO₂ nanofibers for highly efficient photocatalytic hydrogen evolution. *Appl. Catal. B-Environ.* **2015**, *164*, 1–9. [CrossRef]
- Shah, S.A.; Xu, L.; Sayyar, R.; Bian, T.; Liu, Z.; Yuan, A.; Shen, X.; Khan, I.; Tahir, A.A.; Ullah, H. Growth of MoS₂ nanosheets on M@N-doped carbon particles (M = Co, Fe or CoFe Alloy) as an efficient electrocatalyst toward hydrogen evolution reaction. *Chem. Eng. J.* 2022, 428, 132126. [CrossRef]
- 21. Wilcoxon, J.P.; Newcomer, P.P.; Samara, G.A. Synthesis and optical properties of MoS₂ and isomorphous nanoclusters in the quantum confinement regime. *J. Appl. Phys.* **1997**, *81*, 7934. [CrossRef]
- 22. Thurston, T.R.; Wilcoxon, J.P. Photooxidation of organic chemicals catalyzed by nanoscale MoS₂. *J. Phys. Chem. B* **1999**, *103*, 11–17. [CrossRef]
- 23. Liu, H.; Li, Y.; Xiang, M.; Zeng, H.; Shao, X. Single-layered MoS₂ directly grown on rutile TiO₂ (110) for enhanced interfacial charge transfer. *ACS Nano* **2019**, *13*, 6083–6089. [CrossRef] [PubMed]
- 24. Li, Z.; Meng, X.; Zhang, Z. Recent development on MoS₂-based photocatalysis: A review. J. Photochem. Photobiol. C 2018, 35, 39–55. [CrossRef]
- 25. Khalila, R.M.A.; Hussaina, F.; Rana, A.M.; Imran, M.; Murtaza, G. Comparative study of polytype 2H-MoS₂ and 3R-MoS₂ systems by employing DFT. *Phys. E Low-Dimens. Syst. Nanostruct.* **2019**, *106*, 338–345. [CrossRef]
- Samanian, M.; Ghatee, M.H. Study of the molybdenum dichalcogenide crystals: Recent developments and novelty of the P-MoS₂ structure. J. Mol. Model. 2021, 27, 268. [CrossRef]
- Eidsavg, H.; Rasukkannu, M.; Velauthapillai, D.; Vajeeston, P. In-depth first-principle study on novel MoS₂ polymorphs. *RSC Adv.* 2021, 11, 3759–3769. [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. *Nat. Nanotechnol.* 2012, 7, 699–712. [CrossRef]

- Liang, Z.; Shen, R.; Ng, Y.H.; Zhang, P.; Xiang, Q.; Li, X. A review on 2D MoS₂ cocatalysts in photocatalytic H₂ production. J. Mater. Sci. Technol. 2020, 56, 89–121. [CrossRef]
- Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS₂ nanosheets as supercapacitor electrode materials. *Nat. Nanotechnol.* 2015, *10*, 313–318. [CrossRef]
- Cheng, P.; Sun, K.; Hu, Y.H. Memristive Behavior and Ideal Memristor of 1T Phase MoS₂ Nanosheets. *Nano Lett.* 2016, 16, 572–576. [CrossRef] [PubMed]
- 32. Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS₂: A new direct-gap semiconductor. *Phys. Rev. Lett.* **2010**, 105, 136805. [CrossRef] [PubMed]
- 33. Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS₂. *Phys. Rev. B* **2011**, *83*, 245213. [CrossRef]
- Su, L.; Luo, L.L.; Wang, J.W.; Song, T.; Tu, W.X.; Wang, Z.J. Lamellar flower-like porous MoS₂ as an efficient cocatalyst to boost photocatalytic hydrogen evolution of CdS. *Catal. Sci. Technol.* 2021, *11*, 1292–1297. [CrossRef]
- 35. Zhang, S.; Duan, S.; Chen, G.; Meng, S.; Zheng, X.; Fan, Y.; Fu, X.; Chen, S. MoS₂/Zn₃In₂S₆ composite photocatalysts for enhancement of visible light-driven hydrogen production from formic acid. *Chin. J. Catal.* **2021**, *42*, 193–204. [CrossRef]
- Sun, J.; Yin, M.; Li, Y.; Liang, K.; Fan, Y.; Li, Z. Efficient photocatalytic hydrogen production of ternary composite constituted by cubic CdS, MoS₂ and activated carbon. J. Alloys Compd. 2021, 874, 59930. [CrossRef]
- Sun, J.; Duan, L.; Wu, Q.; Yao, W. Synthesis of MoS₂ quantum dots cocatalysts and their efficient photocatalytic performance for hydrogen evolution. *Chem. Eng. J.* 2018, 332, 449–455. [CrossRef]
- Lee, G.J.; Chen, H.C.; Wu, J.J. (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production. *Int. J. Hydrogen Energy* 2019, 44, 110–117. [CrossRef]
- Jeong, S.Y.; Song, J.; Lee, S. Photoelectrochemical device designs toward practical solar water splitting: A review on the recent progress of BiVO₄ and BiFeO₃ photoanodes. *Appl. Sci.* 2018, *8*, 1388. [CrossRef]
- Zhou, K.G.; Mao, N.N.; Wang, H.X.; Peng, Y.; Zhang, H.L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. *Angew. Chem. Int. Ed.* 2011, 50, 10839–10842. [CrossRef]
- 41. Li, H.; Yin, Z.; He, Q.; Li, H.; Huang, X.; Lu, G.; Fam, D.W.; Tok, A.I.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS₂ film-based field-effect transistors for sensing NO at room temperature. *Small* **2012**, *8*, 63–67. [CrossRef] [PubMed]
- Hu, D.; Xiang, J.; Zhou, Q.W.; Su, S.Q.; Zhang, Z.B.; Wang, X.; Jin, M.L.; Nian, L.; Nozel, R.; Zhou, G.F.; et al. One-step chemical vapor deposition of MoS₂ nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production. *Nanoscale* 2018, *10*, 3518–3525. [CrossRef] [PubMed]
- Huang, T.; Chen, W.; Liu, T.Y.; Hao, Q.L.; Liu, X.H. Hybrid of AgInZnS and MoS₂ as efficient visible-light driven photocatalyst for hydrogen production. *Int. J. Hydrogen Energy* 2017, 42, 12254–12261. [CrossRef]
- Wei, J.; Huang, H.; Luo, Q.; Liu, N.; Wang, X.Y.; Wang, X.F.; Zhong, M.; Huang, X.L. Synthesis of few layers amorphous 1T/2H MoS₂ by a one-step ethanol/water solvothermal method and its hydrodesulfurization performance. *Catal. Lett.* 2022, 152, 263–275. [CrossRef]
- 45. Yang, Y.; Liu, Z.; Shu, K.; Li, L.; Li, J. Improved performances of CVD-grown MoS₂ based phototransistors enabled by encapsulation. *Adv. Mater. Interfaces* **2021**, *8*, 2100164. [CrossRef]
- 46. Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. *Acc. Chem. Res.* **2014**, *47*, 1067–1075. [CrossRef]
- 47. Jeon, J.; Lee, J.; Yoo, G.; Park, J.H.; Yeom, G.Y.; Jang, Y.H.; Lee, S. Size-tunable synthesis of monolayer MoS₂ nanoparticles and their applications in non-volatile memory devices. *Nanoscale* **2016**, *8*, 16995–17003. [CrossRef]
- Zhang, S.; Liu, X.; Liu, C.; Luo, S.; Wang, L.; Cai, T.; Zeng, Y.; Yuan, J.; Dong, W.; Pei, Y.; et al. MoS₂ quantum dots growth induced by S vacancy in ZnIn₂S₄ monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. *ACS Nano* 2018, 12, 751–758. [CrossRef]
- 49. Huang, Y.; Pan, Y.H.; Yang, R.; Bao, L.H.; Meng, L.; Luo, H.L.; Cai, Y.Q.; Liu, G.D.; Zhao, W.J.; Zhou, Z.; et al. Universal mechanical exfoliation of large-area 2D crystals. *Nat. Commun.* **2020**, *11*, 2453. [CrossRef]
- 50. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS₂. *Nano Lett.* **2011**, *11*, 5111–5116. [CrossRef]
- 51. Ambrosi, A.; Pumera, M. Electrochemical exfoliation of MoS₂ crystal for hydrogen electrogeneration. *Chem. Eur. J.* **2018**, 24, 18551–18555. [CrossRef] [PubMed]
- 52. Liu, Y.; He, X.; Hanlon, D.; Harvey, A.; Coleman, J.N.; Li, Y. Liquid phase exfoliated MoS₂ nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. *ACS Nano* **2016**, *10*, 8821–8828. [CrossRef] [PubMed]
- Ottaviano, L.; Palleschi, S.; Perrozzi, F.; DOlimpio, G.; Priante, F.; Donarelli, M.; Benassi, P.; Nardone, M.; Gonchigsuren, M.; Gombosuren, M.; et al. Mechanical exfoliation and layer number identification of MoS₂ revisited. 2D Mater. 2017, 4, 045013. [CrossRef]
- 54. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469. [CrossRef] [PubMed]
- 55. Magda, G.; Peto, J.; Dobrik, G.; Hwang, C.; Biro, L.P.; Tapaszto, L. Exfoliation of large-area transition metal chalcogenide single layers. *Sci. Rep.* **2015**, *5*, 14714. [CrossRef]
- Desai, S.B.; Madhvapathy, S.R.; Amani, M.; Kiriya, D.; Hettick, M.; Tosun, M.; Zhou, Y.; Dubey, M.; Ager, J.W.; Chrzan, D.; et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. *Adv. Mater.* 2016, 28, 4053–4058. [CrossRef]

- 57. Velicky, M.; Donnelly, G.E.; Hendren, W.R.; McFarland, S.; Scullion, D.; DeBenedetti, W.J.I.; Correa, G.C.; Han, Y.; Wain, A.J.; Hines, M.A.; et al. Mechanism of Gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. *ACS Nano* **2018**, *12*, 10463–10472. [CrossRef]
- Lin, Y.C.; Zhang, W.; Huang, J.K.; Liu, K.K.; Lee, Y.H.; Liang, C.T.; Chu, C.W.; Li, L.J. Wafer-scale MoS₂ thin layers prepared by MoO₃ sulfurization. *Nanoscale* 2012, *4*, 6637–6641. [CrossRef]
- 59. Cai, J.; Jian, J.; Chen, X.; Lei, M.; Wang, W. Regular hexagonal MoS₂ microflakes grown from MoO₃ precursor. *Appl. Phys. A* 2007, *89*, 783–788. [CrossRef]
- 60. Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P.; Lou, J. Large-area vapor-phase growth and characterization of MoS₂ atomic layers on a SiO₂ substrate. *Small* **2014**, *8*, 966–971. [CrossRef]
- 61. Song, I.; Park, C.; Hong, M.; Baik, J.; Shin, H.-J.; Choi, H. Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition. *Angew. Chem. Int. Ed.* **2014**, *53*, 1266–1269. [CrossRef] [PubMed]
- 62. Ahn, C.; Lee, J.; Kim, H.-U.; Bark, H.; Jeon, M.; Ryu, G.; Lee, Z.; Yeom, G.; Kim, K.; Jung, J.; et al. Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. *Adv. Mater.* **2015**, *27*, 5223–5229. [CrossRef] [PubMed]
- 63. Kang, K.; Xie, S.; Huang, L.; Han, Y.; Huang, P.; Mak, K.; Kim, C.-J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. *Nature* 2015, 520, 656–660. [CrossRef] [PubMed]
- 64. Kumar, V.; Dhar, S.; Choudhury, T.; Shivashankar, S.; Raghavan, S. A predictive approach to CVD of crystalline layers of TMDs: The case of MoS₂. *Nanoscale* **2015**, *7*, 7802–7810. [CrossRef]
- 65. Vishwanath, S.; Liu, X.; Rouvimov, S.; Mende, P.; Azcatl, A.; McDonnell, S.; Wallace, R.; Feenstra, R.; Furdyna, J.; Jena, D.; et al. Comprehensive structural and optical characterization of MBE grown MoSe₂ on graphite, CaF₂ and graphene. 2D Mater. 2015, 2, 024007. [CrossRef]
- 66. Qin, X.; Ke, P.; Wang, A.; Kim, K. Microstructure, mechanical and tribological behaviors of MoS₂-Ti composite coatings deposited by a hybrid HIPIMS method. *Surf. Coat. Technol.* **2013**, *228*, 275–281. [CrossRef]
- 67. Feng, X.; Tang, Q.; Zhou, J.; Fang, J.; Ding, P.; Sun, L.; Shi, L. Novel mixed–solvothermal synthesis of MoS₂ nanosheets with controllable morphologies. *Cryst. Res. Technol.* **2013**, *48*, 363–368. [CrossRef]
- 68. Liu, Y.; Xu, X.; Li, H.; Si, Z.; Wu, X.; Ra, R.; Duan, W. A facile one step synthesis of MoS₂/g-C₃N₄ photocatalyst with enhanced visible light photocatalytic hydrogen production. *Catal. Lett.* **2022**, *152*, 972–979. [CrossRef]
- 69. Deng, Z.; Hu, Y.; Ren, D.; Lin, S.; Jiang, H.; Li, C. Reciprocal hybridization of MoO₂ nanoparticles and few-layer MoS₂ for stable lithium-ion batteries. *Chem. Commun.* **2015**, *51*, 13838–13841. [CrossRef]
- 70. Jagminas, A.; Naujokaitis, A.; Gaigalas, P.; Ramanavicius, S.; Kurtinaitiene, M.; Trusovas, R. Substrate impact on the structure and electrocatalyst properties of molybdenum disulfide for HER from water. *Metals* 2020, *10*, 1251. [CrossRef]
- Guo, X.; Wang, Z.; Zhu, W.; Yang, H. The novel and facile preparation of multilayer MoS₂ crystals by a chelation-assisted sol-gel method and their electrochemical performance. *RSC Adv.* 2017, *7*, 9009–9014. [CrossRef]
- 72. Shah, S.A.; Shen, X.; Xie, M.; Zhu, G.; Ji, Z.; Zhou, H.; Xu, K.; Yue, X.; Yuan, A.; Zhu, J.; et al. Nickel@nitrogen-doped carbon@MoS₂ nanosheets: An efficient electrocatalyst for hydrogen evolution reaction. *Small* **2019**, *15*, 1804545. [CrossRef] [PubMed]
- Shah, S.A.; Zhu, G.; Shen, X.; Kong, L.; Ji, Z.; Xu, K.; Zhou, H.; Zhu, J.; Song, P.; Song, C.; et al. Controllable sandwiching of reduced graphene oxide in hierarchical defect-rich MoS₂ ultrathin nanosheets with expanded interlayer spacing for electrocatalytic hydrogen evolution reaction. *Adv. Mater. Interfaces* 2018, *5*, 1801093. [CrossRef]
- 74. Zhu, J.; Zhu, S.; Kong, X.; Liang, Y.; Li, Z.; Wu, S.; Luo, S.; Chang, C.; Cui, Z. Rutile-coated B-phase TiO₂ heterojunction nanobelts for photocatalytic H₂ evolution. *ACS Appl. Nano Mater.* **2020**, *3*, 10349–10359. [CrossRef]
- Yang, W.; Li, M.; Pan, K.; Guo, L.; Wu, J.; Li, Z.; Yang, F.; Lin, K.; Zhou, W. Surface engineering of mesoporous anatase titanium dioxide nanotubes for rapid spatial charge separation on horizontal-vertical dimensions and efficient solar-driven photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2021, 586, 75–83. [CrossRef]
- Zhu, Y.; Ling, Q.; Liu, Y.; Wang, H.; Zhu, Y. Photocatalytic H₂ evolution on MoS₂-TiO₂ catalysts synthesized via mechanochemistry. *Phys. Chem. Chem. Phys.* 2015, 17, 933–940. [CrossRef]
- 77. Ma, B.; Guan, P.Y.; Li, Q.Y.; Zhang, M.; Zang, S.Q. MOF derived flower-like MoS₂@TiO₂ nanohybrids with enhanced activity for hydrogen evolution. *ACS Appl. Mater. Interfaces* **2016**, *8*, 26794–26800. [CrossRef]
- 78. Zhou, Z.; Zhang, Y.; Shen, Y.; Liu, S.; Zhang, Y. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. *Chem. Soc. Rev.* **2018**, *47*, 2298–2321. [CrossRef]
- 79. Khan, I.; Luo, M.; Guo, L.; Khan, S.; Shah, S.A.; Khan, I.; Khan, A.; Wang, C.; Ai, B.; Zaman, S. Synthesis of phosphate-bridged g-C₃N₄/LaFeO₃ nanosheets Z-scheme nanocomposites as efficient visible photocatalysts for CO₂ reduction and malachite green degradation. *Appl. Catal. A Gen.* 2022, 629, 118418. [CrossRef]
- Zhao, D.; Dong, C.; Wang, B.; Chen, C.; Huang, Y.; Diao, Z.; Li, S.; Guo, L.; Shen, S. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. *Adv. Mater.* 2019, 31, 1903545. [CrossRef]
- 81. Han, X.; Xu, D.; An, L.; Hou, C.; Li, Y.; Zhang, Q.; Wang, H. Ni-Mo nanoparticles as co-catalyst for drastically enhanced photocatalytic hydrogen production activity over g-C₃N₄. *Appl. Catal. B-Environ.* **2019**, 243, 136–144. [CrossRef]
- 82. Wu, X.; Gao, D.; Yu, H.; Yu, J. High-yield lactic acid-mediated route for a g-C₃N₄ nanosheet photocatalyst with enhanced H₂-evolution performance. *Nanoscale* **2019**, *11*, 9608–9616. [CrossRef] [PubMed]

- Zhang, G.; Li, G.; Heil, T.; Zafeiratos, S.; Lai, F.; Savateev, A.; Antonietti, M.; Wang, X. Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO₂ reduction. *Angew. Chem. Int. Ed.* 2019, *58*, 3433–3437. [CrossRef] [PubMed]
- Khan, I.; Luo, M.; Khan, S.; Asghar, H.; Saeed, M.; Khan, S.; Khan, A.; Humayun, M.; Guo, L.; Shi, B. Green synthesis of SrO bridged LaFeO₃/g-C₃N₄ nanocomposites for CO₂ conversion and bisphenol A degradation with new insights into mechanism. *Environ. Res.* 2022, *7*, 112650. [CrossRef] [PubMed]
- 85. Zhang, J.; Su, F.; Wen, P.; Wang, Y.; Zhao, B.; Jiang, L.; Sun, Y. In situ growth of Co₂P nanocrystal on g-C₃N₄ for efficient and stable photocatalytic hydrogen evolution. *Energy Fuels* **2021**, *35*, 1859–1865. [CrossRef]
- Zhang, J.; Wu, M.; He, B.B.; Wang, R.; Wang, H.W.; Gong, Y.S. Facile synthesis of rod-like g-C₃N₄ by decorating Mo₂C co-catalyst for enhanced visible-light photocatalytic activity. *Appl. Surf. Sci.* 2019, 470, 565–572. [CrossRef]
- Yuan, Y.J.; Shen, Z.; Wu, S.; Su, Y.; Pei, L.; Ji, Z.; Ding, M.; Bai, W.; Chen, Y.; Yu, Z.T.; et al. Liquid exfoliation of g-C₃N₄ nanosheets to construct 2D-2D MoS₂/g-C₃N₄ photocatalyst for enhanced photocatalytic H₂ production activity. *Appl. Catal. B-Environ.* 2019, 246, 120–128. [CrossRef]
- Zhang, S.; Dong, H.; An, C.; Li, Z.; Xu, D.; Xu, K.; Wu, Z.; Shen, J.; Chen, X.; Zhang, S. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS₂ cocatalyst for drastically enhanced photocatalytic hydrogen evolution. *J. Mater. Sci. Technol.* 2021, 75, 59–67. [CrossRef]
- Li, J.; Wu, W.; Li, Y.; Zhang, H.; Xu, X.; Jiang, Y.; Lin, K. In situ synthesized rodlike MoS₂ as a cocatalyst for enhanced photocatalytic hydrogen evolution by graphitic carbon nitride without a noble metal. ACS Appl. Energy Mater. 2021, 4, 11836–11843. [CrossRef]
- 90. Zhang, Y.; Wan, J.; Zhang, C.; Cao, X. MoS₂ and Fe₂O₃ co-modify g-C₃N₄ to improve the performance of photocatalytic hydrogen production. *Sci. Rep.* **2022**, *12*, 3261. [CrossRef]
- 91. Li, X.; Lv, X.; Li, N.; Wu, J.; Zheng, Y.Z.; Tao, X. One-step hydrothermal synthesis of high-percentage 1T-phase MoS₂ quantum dots for remarkably enhanced visible-light-driven photocatalytic H₂ evolution. *Appl. Catal. B-Environ.* **2019**, 243, 76–85. [CrossRef]
- 92. Liang, Z.; Sun, B.; Xu, X.; Cui, H.; Tian, J. Metallic 1T-phase MoS₂ quantum dots/g-C₃N₄ heterojunctions for enhanced photocatalytic hydrogen evolution. *Nanoscale* **2019**, *11*, 12266–12274. [CrossRef] [PubMed]
- 93. Liang, Z.; Guo, Y.; Xue, Y.; Cui, H.; Tian, J. 1T-phase MoS₂ quantum dots as a superior co-catalyst to Pt decorated on carbon nitride nanorods for photocatalytic hydrogen evolution from water. *Mater. Chem. Front.* **2019**, *3*, 2032–2040. [CrossRef]
- 94. Shi, J.; Zou, Y.; Ma, D.; Fan, Z.; Cheng, L.; Sun, D.; Wang, Z.; Niu, C.; Wang, L. Stable 1T-phase MoS₂ as an effective electron mediator promoting photocatalytic hydrogen production. *Nanoscale* **2018**, *10*, 9292–9303. [CrossRef]
- Yu, H.; Xiao, P.; Wang, P.; Yu, J. Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H₂ evolution. *Appl. Catal. B-Environ.* 2016, 193, 217–225. [CrossRef]
- 96. Peng, X.; Huang, C.; Zhang, B.; Liu, Y. Atomic-scale intercalation of amorphous MoS₂ nanoparticles into N-doped carbon as a highly efficient electrocatalyst for hydrogen evolution reaction. *Int. J. Hydrogen Energy* **2020**, *45*, 27193–27201. [CrossRef]
- Lee, S.C.; Benck, J.D.; Tsai, C.; Park, J.; Koh, A.L.; Abild-Pedersen, F.; Jaramillo, T.F.; Sinclair, R. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production. ACS Nano 2016, 10, 624–632. [CrossRef]
- 98. Zhang, Z.W.; Li, Q.H.; Qiao, X.Q.; Hou, D.; Li, D.S. One-pot hydrothermal synthesis of willow branch-shaped MoS₂/CdS heterojunctions for photocatalytic H₂ production under visible light irradiation. *J. Catal.* **2019**, *40*, 371–379. [CrossRef]
- Ma, S.; Xie, J.; Wen, J.Q.; He, K.L.; Li, X.; Liu, W.; Zhang, X.C. Constructing 2D layered hybrid CdS nanosheets/MoS₂ heterojunctions for enhanced visible-light photocatalytic H₂ generation. *Appl. Surf. Sci.* 2017, 391, 580–591. [CrossRef]
- Patriarchea, C.; Vamvasakis, I.; Koutsouroubi, E.D.; Armatas, G.S. Enhancing interfacial charge transfer in mesoporous MoS₂/CdS nanojunction architectures for highly efficient visible-light photocatalytic water splitting. *Inorg. Chem. Front.* 2022, 9, 625–636. [CrossRef]
- Samaniego-Beniteza, J.E.; Lartundo-Rojas, L.; García-Garcíac, A.; Calderón, H.A.; Mantilla, A. One-step synthesis and photocatalytic behavior for H₂ production from water of ZnS/MoS₂ composite material. *Catal. Today* 2021, 360, 99–105. [CrossRef]
- 102. Guan, W.; Li, Y.; Zhong, Q.; Liu, H.; Chen, J.; Hu, H.; Lv, K.; Gong, J.; Xu, Y.; Kang, Z.; et al. Fabricating MAPbI₃/MoS₂ Composites for improved photocatalytic performance. *Nano Lett.* **2021**, *21*, 597–604. [CrossRef] [PubMed]
- 103. Meng, A.Y.; Zhang, J.; Xu, D.F.; Cheng, B.; Yu, J.G. Enhanced photocatalytic H₂-production activity of anatase TiO₂ nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets. *Appl. Catal. B-Environ.* **2016**, *198*, 286–294. [CrossRef]
- 104. Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Dual Cocatalysts in TiO₂ Photocatalysis. Adv. Mater. 2019, 31, 1807660. [CrossRef]
- 105. Zhao, S.; Xu, J.; Li, Z.T.; Liu, Z.Y.; Li, Y.R. Molybdenum disulfide coated nickel-cobalt sulfide with nickel phosphide loading to build hollow core-shell structure for highly efficient photocatalytic hydrogen evolution. J. Colloid. Interf. Sci. 2019, 555, 689–701. [CrossRef]
- 106. Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for selective photoreduction of CO₂ into solar fuels. *Chem. Rev.* **2019**, 119, 3962–4179. [CrossRef]
- Lee, G.J.; Hou, Y.H.; Chen, C.Y.; Tsay, C.Y.; Chang, Y.C.; Chen, J.H.; Horng, T.L.; Anandan, S.; Wu, J.J. Enhanced performance for photocatalytic hydrogen evolution using MoS₂/graphene hybrids. *Int. J. Hydrogen Energy* 2021, 46, 5938–5948. [CrossRef]
- 108. Wang, X.; Long, R. Rapid charge separation boosts solar hydrogen generation at the graphene–MoS₂ Junction: Time-domain Ab initio analysis. *J. Phys. Chem. Lett.* **2021**, *12*, 2763–2769. [CrossRef]
- 109. Lu, X.Y.; Xie, J.; Chen, X.B.; Li, X. Engineering MPx (M = Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H₂ evolution over g-C₃N₄/MoS₂ layered heterojunctions. *Appl. Catal. B-Environ.* **2019**, 252, 250–259. [CrossRef]

- Cao, D.; Wang, Q.; Zhu, S.; Zhang, X.; Li, Y.; Cui, Y.; Xue, Z.; Gao, S. Hydrothermal construction of flower-like MoS₂ on TiO₂ NTs for highly efficient environmental remediation and photocatalytic hydrogen evolution. *Sep. Purif. Technol.* 2021, 265, 118463. [CrossRef]
- 111. Jiao, Y.; Huang, Q.; Wang, J.; He, Z.; Li, Z. A novel MoS₂ quantum dots (QDs) decorated Z-scheme g-C₃N₄ nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution. *Appl. Catal. B-Environ.* **2019**, 247, 124–132. [CrossRef]
- 112. Feng, C.; Chen, Z.; Hou, J.; Li, J.; Li, X.; Xu, L.; Sun, M.; Zeng, R. Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS₂ clusters/CdS nanorod heterojunction material under visible light. *Chem. Eng. J.* **2018**, 345, 404–413. [CrossRef]
- Wei, L.; Chen, Y.; Lin, Y.; Wu, H.; Yuan, R.; Li, Z. MoS₂ as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn₂S₄ under visible light irradiations. *Appl. Catal. B-Environ.* 2014, 144, 521–527. [CrossRef]
- 114. Chen, G.; Ding, N.; Li, F.; Fan, Y.; Luo, Y.; Li, D.; Meng, Q. Enhancement of photocatalytic H₂ evolution on ZnIn₂S₄ loaded with in-situ photo-deposited MoS₂ under visible light irradiation. *Appl. Catal. B-Environ.* **2019**, 241, 130–140. [CrossRef]
- 115. Wang, J.; Luo, J.; Liu, D.; Chen, S.; Peng, T. One-pot solvothermal synthesis of MoS₂-modified Mn_{0.2}Cd_{0.8}S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H₂ production. *Appl. Catal. B-Environ.* **2014**, 160–161, 614–620. [CrossRef]