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Abstract: Molybdenum disulfide (MoS2), with a two-dimensional (2D) structure, has attracted huge
research interest due to its unique electrical, optical, and physicochemical properties. MoS2 has
been used as a co-catalyst for the synthesis of novel heterojunction composites with enhanced
photocatalytic hydrogen production under solar light irradiation. In this review, we briefly highlight
the atomic-scale structure of MoS2 nanosheets. The top-down and bottom-up synthetic methods of
MoS2 nanosheets are described. Additionally, we discuss the formation of MoS2 heterostructures with
titanium dioxide (TiO2), graphitic carbon nitride (g-C3N4), and other semiconductors and co-catalysts
for enhanced photocatalytic hydrogen generation. This review addresses the challenges and future
perspectives for enhancing solar hydrogen production performance in heterojunction materials using
MoS2 as a co-catalyst.
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1. Introduction

Hydrogen is a clean, renewable energy source and alternative to fossil fuels [1] that
can be stored at high mass-specific energy density, and its only product on combustion is
water [2]. At present, about 96% of hydrogen is industrially produced from coal gasification
and steam methane reformation processes [1,2]. However, these processes of hydrogen
production also generate secondary pollutants or greenhouse gases, such as CO2 and
N2O, that affect the environment [2]. Methane pyrolysis produces hydrogen and solid
carbon as a byproduct [3]. This process generates CO2-free hydrogen and has an advantage
over conventional steam methane reformation and coal gasification processes. However,
methane pyrolysis is a temporary solution and not a sustainable process due to the depletion
of natural gas reserves [3].

To overcome energy challenges and environmental problems, hydrogen produc-
tion from electrochemical water splitting using highly active catalysts is a promising
strategy [4,5]. Less than 4% of hydrogen is produced through electrocatalysis at the indus-
trial level [2]. The electrocatalysis of water for hydrogen production is a high-cost technique,
which has hindered its large-scale industrialization. As an alternative, photocatalytic hydro-
gen evolution reaction (HER) from water splitting over a particular semiconductor material
has been the most interesting way to address these issues. Generally, the photocatalytic
efficiency depends upon three processes, including light absorption in the solar spectrum,
charge separation, and surface active sites for catalytic activity [1,2,6].

A photocatalyst that can absorb sunlight across the whole solar spectrum is considered
to be an ideal candidate for photocatalysis [6,7]. In 1972, Fujishima et al. reported photo-
induced water splitting on TiO2 electrodes [8]. Since then, much research has been focused
on TiO2 and other related semiconducting materials such as metal oxides, metal sulfides,
conjugated polymers, nanosheets, graphitic carbon nitride, metal organic frameworks,
and covalent organic frameworks, etc., as photocatalysts for hydrogen production [9–17].
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However, the available photocatalysts for hydrogen production are still limited due to low
visible light absorption and high electron–hole recombination rates.

Molybdenum disulfide (MoS2), with a 2D nanostructure, has attracted huge attention
due to its outstanding optical and electronic properties and promising applications [18–22].
MoS2 nanomaterials as co-catalysts are promising photocatalysts for HER [18,23]. It is
reported that the exposed edges of layers of MoS2 contain active sites for catalytic activity
while its basal planes are mostly inactive [19,24]. In addition to the active photocatalytic
sites, the band gap of MoS2 nanosheets is an important parameter for photocatalytic
HER. The band gap of MoS2 increases from bulk (1.2 eV) to single layer (1.9 eV) due
to quantum confinement [19,24]. As a result, the location of the conduction band (CB)
of MoS2 moves towards a more negative potential than the proton reduction potential
(H+/H2), which consequently enhances the reduction in adsorbed H+ and photocatalytic
hydrogen evolution.

It is widely reported that loading a co-catalyst over semiconductors is a promising
approach with superior photocatalytic performance due to the photoelectron separation and
charge transfer [18,19]. MoS2-decorated semiconductor materials constitute a promising
approach that has shown superior hydrogen production due to their heterojunctions with
controllable nanoscale architectures, design for enhanced performance in terms of light
absorption, charge separation, and surface catalytic reactions [15,19,23,24].

In this review, we briefly introduce the basic aspects and synthetic methods of MoS2
nanosheets. Different types of MoS2-based heterojunction composites are also discussed.
The role of MoS2 nanomaterials as co-catalysts in heterojunction composites for enhanced
HER performance is addressed. Additionally, some important issues are highlighted and
useful opinions are discussed to further improve photocatalytic hydrogen production using
MoS2 as a co-catalyst.

2. Atomic-Scale Structure of MoS2

A single layer of MoS2 has a sandwich structure of S-Mo-S, where the Mo atoms
are covalently bonded with the S atoms (Figure 1). MoS2 has several polymorphs, in-
cluding 1T1, 1T2, 1H, 2T, 2H, 2R1, 2R2, 3Ha, 3Hb, 3R, and 4T [25–29]. Among them the
1T MoS2, 2H MoS2, and 3R-MoS2 polymorphs of MoS2 have been most investigated for
different applications [25,27–29]. A single-layer 1T MoS2 sheet is metallic and has good
electrical properties [30,31], while single-layer 2H MoS2 and 3R-MoS2 sheets behave as a
semiconductor with a direct band gap [28,32].
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Generally, MoS2 sheets are stacked together by weak van der Waals forces and form
few-layer MoS2 nanosheets. As the band gap of MoS2 nanosheets increases from bulk
(1.2 eV) to single layer (1.9 eV) [33], it absorbs the visible region of the solar spectrum. Thus,
MoS2 can play an important role as a co-catalyst during photocatalysis [29]. MoS2-based
semiconductor composites act as co-catalysts that can significantly enhance the efficiency
of photocatalytic hydrogen production [7,34–37].

3. Photochemical Hydrogen Evolution Reaction

As mentioned above, Fujishima and Honda reported on photo-induced water splitting
on TiO2 electrodes. Hydrogen can also be directly produced from photochemical water
splitting. Usually, a photoelectrolytic cell is designed to carry out the photochemical
water splitting process. A typical photoelectrolytic cell for water splitting is shown in
Figure 2a [38]. Using light sources, the photocatalytic water splitting takes place in several
steps: the absorption of light by catalyst on electrode; the generation of charges followed
by the excitation of electrons in the valence band; the separation of charge as well as the
transport of charge carriers; and the oxidation of water and generation of hydrogen during
water splitting, which occur at separate electrodes. The pure, overall water splitting process
comprises two half-reactions to generate hydrogen and oxygen molecules, as shown in
Figure 2b [39]. Water oxidation occurs at the anode to produce oxygen, whereas H+ ions
are reduced on the cathode into hydrogen gas. For more details of photocatalytic water
splitting, see the review of Jeong et al. [39].
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Figure 2. (a) Schematic device illustration of photoelectrochemical water splitting. Reprinted with
permission from Ref. [38] (Copyright 2019 Elsevier). (b) Schematic representation of the photoelectro-
chemical water splitting process in a common PEC water splitting system consisting of a photoanode
and a metal counterpart. Reprinted from Ref. [39].

4. Synthesis of MoS2

Nanostructured MoS2 can be fabricated via both top-down and bottom-up approaches.
In the case of the top-down method, the commercially available bulk crystal of MoS2 is
physically downsized into MoS2 nanomaterials (Figure 3) [29,40,41], while in the bottom-up
approach, MoS2 nanomaterials are synthesized via chemical reaction with small molecules
using chemical vapor deposition (CVD) and hydrothermal or solvothermal methods,
etc. [42–44]. Single layers, multilayers, nanoparticles, and quantum dots of MoS2 have also
been reported [45–48]. Continued efforts have been reported for the fabrication of MoS2
nanomaterials via the top-down and bottom-up strategies [16–19,28–31,40–44].
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4.1. Top-Down Approach
Exfoliation of MoS2

Due to the layered structure and van der Waals interactions, MoS2 nanosheets can
be easily prepared through the exfoliation method. Mechanical, chemical, electrochemi-
cal, and liquid-phase exfoliation processes have been reported for the synthesis of MoS2
nanosheets [39–52]. For example, in the mechanical exfoliation technique, the suitable MoS2
flakes are peeled off from the bulk crystal of MoS2 using adhesive tape and shifted onto a
specific substrate [46,53]. When the scotch tape is detached, some parts of MoS2 remain
on the substrate. As result, single- or few-layer MoS2 nanosheets with random shapes
and sizes are obtained. The 2D materials prepared by the exfoliation method have good
quality and allow to study the pristine properties of materials and device performance.
However, during this process, the thickness and size of the MoS2 are difficult to control,
and the resulting materials are inappropriate for large-scale production and scaled-up ap-
plications [53,54]. Li et al., mechanically exfoliated single- and multilayer MoS2 nanosheets
from SiO2/Si with the adhesive tape method [41]. The flakes of MoS2 were mechanically
stripped on Si/SiO2 substrate. The obtained single-layer and multilayer MoS2 materials
were characterized using a bright-field optical microscope and an atomic force microscope
(AFM). From the AFM measurements, the height of a single MoS2 sheet was found to be
0.8 nm, while the thickness of two, three, and four layers of MoS2 nanosheets was 1.5, 2.1,
and 2.9 nm, respectively (Figure 4). The MoS2 nanosheet monolayers showed an enhanced
optical performance, especially single-layer MoS2 nanosheets. It was observed that the van
der Waals interactions between MoS2 to SiO2 were much weaker. For this purpose, gold
can be used as a substrate to exfoliate the MoS2 nanosheets due to its strong affinity for
sulfur. It can exfoliate the MoS2 monolayer from the bulk because of the strong van der
Waals interactions between Au and MoS2 layers [55–57]. Huang et al. prepared large-area
MoS2 nanosheets using a Au-assisted exfoliation strategy [50]. In a typical synthesis, a Au
thin layer was deposited on a Ti or Cr adhesion-covered substrate. To develop good contact
between a MoS2 bulk crystal on tape and a Au-covered substrate, it should be passed under
high pressure. The monolayer sheets with a large area were collected from the surface of
the Au after peeling off the tape.
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In the top-down approaches, single- and multilayer MoS2 nanosheets are prepared,
which have been used to study some fundamental properties of MoS2 nanosheets.

4.2. Bottom-Down Approach
4.2.1. Chemical Vapor Deposition

The CVD technique has a long history and is commonly used for the synthesis of
high-quality semiconductor materials. In a typical CVD process of MoS2 nanosheets, the
Mo sources are solid precursors of Mo or MoO3 powder, and the S sources are H2S gas or
solid S powder [58–61]. The solid MoO3 and vaporized S react with each other in a low-
pressure chamber, forming nuclei for the growth of MoS2 [58]. Then, MoS2 slowly grows
and enlarges its size on the substrates under carrier gas flow. The temperatures at which
MoS2 grows during the CVD process are usually between 700 and 1000 ◦C, with a metal
catalyst such as Au [61]. Plasma-enhanced CVD requires a low temperature (150–300 ◦C)
for the growth of MoS2 nanosheets, and MoS2 can even be directly deposited on the plastic
substrate [62]. Recently, metal organic CVD has been reported for the synthesis of MoS2
nanosheets [63,64], where organometallic precursors were used as starting materials.

4.2.2. Physical Vapor Deposition

Advanced technology such as molecular beam epitaxy (MBE) can be used to prepare
single-crystal semiconductor thin films. However, its applications are limited to the syn-
thesis of 2D materials [65]. Ordinary physical vapor deposition is rarely reported for 2D
materials. A MoS2–Ti composite was prepared by direct current magnetron sputtering,
using Ti and MoS2 materials [66]. In this process, the MoS2 was amorphous.

4.2.3. Solution-Based Process

Solution-based processes are commonly used to synthesize MoS2 nanosheets. Hy-
drothermal and solvothermal methods are the most interesting for the preparation of
MoS2 nanosheets [67,68]. In these methods, the Mo source is commonly a molybdate,
such as Na2MoO4 or (NH4)6Mo7O24, and the S source is thiourea and thioacetamide and
L-cysteine [69–73]. The molybdate reacts with the S or S compound in a stainless steel
autoclave. The physicochemical reaction takes place at high temperatures (160–200 ◦C) and
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pressure for at least a few hours. In the solvothermal method, organic solvents such as
1-methyl-2-pyrrolidinone, N,N-dimethylformamide, and polyethylene glycol-600 are used
to proceed with the reaction, while in the hydrothermal method, water is used as a solvent.
The MoS2 powders obtained from these methods have different sizes and shapes. The
sizes and shapes of the products can be adjusted by altering the experimental conditions.
To improve the crystalline quality of MoS2, the products are usually post-annealed at
high temperature.

The MoS2 nanomaterials prepared through different bottom-up approaches have
various sizes, shapes, morphologies, and thicknesses and can be used for many applications.

5. Application of MoS2 as a Co-Catalyst in Photocatalysis for Hydrogen Production
5.1. MoS2/Titanium Dioxide Composites

The semiconducting material titanium dioxide (TiO2) has been employed for hydro-
gen production due to its good UV light response, non-toxic nature, low cost, chemical
stability, and good availability [1,12,24]. However, the photocatalytic energy conversion
efficiency of TiO2 for hydrogen production is low due to its wide band gap structure
(Eg ≈ 3.2 eV), photogenerated charge recombination, and some reverse reactions [1,2,12,24].
Many strategies have been attempted to improve the catalytic activity of TiO2 nanomateri-
als, including micro/nanostructure constructing, crystal facet, crystal phase, surface, and
tailoring the band gap [9,74,75], but the photocatalytic activity of TiO2 still cannot reach the
expected efficiency.

MoS2 is considered a potential co-catalyst for TiO2 materials to boost the efficiency
of photocatalytic hydrogen production. Zhu and his coworkers fabricated MoS2/TiO2
photocatalysts with various compositions through a facial mechanochemistry method [76].
The photocatalytic activity of the prepared composite was studied for hydrogen generation
under UV irradiation. The 4% MoS2 loaded on TiO2 (4%-MoS2/TiO2) showed maximum
hydrogen production at a rate of 150.7 µmol h−1, which is about 48.6 times higher than
that of pure TiO2 at ~3.1 µmol·h−1. The improved photocatalytic activity of MoS2/TiO2
composites is mainly due to electron transfer from TiO2 to MoS2 nanosheets and the active
sites that produce hydrogen. Meanwhile, the recombination rate of electron–hole pairs
is also reduced. Furthermore, the relatively good conductivity of MoS2 nanosheets also
assisted the photo-induced charge separation, leading to an enhanced photocatalytic per-
formance. Ma et al. reported flower-like MoS2/TiO2 nanohybrid composite photocatalysts
obtained from a metal organic framework-derived precursor via facial hydrothermal meth-
ods [77]. The flower-like morphology of the MoS2/TiO2 composites was confirmed from
SEM images, as shown in Figure 5. In order to investigate the photocatalytic activity, the
experiments were conducted under visible light conditions with fluorescein as a photo-
sensitizer. An outstanding improvement in the photocatalytic activity was achieved for
the optimized sample (14.6 wt% MoS2 loaded on TiO2) with a hydrogen evolution rate
of 10046 µmol·h−1·g−1. They concluded that this high performance of the MoS2/TiO2
composites is associated with the formation of active centers as well as the uniform dis-
tribution of MoS2 and TiO2 phases, inducing electrons’ motion to reduce protons. In the
proposed photocatalytic activity mechanism, excited electrons from fluorescein transfer
to the CB of TiO2. These electrons further move to the surface of MoS2 and combine with
protons to produce hydrogen. Liu and his coworker prepared MoS2 nanosheets rooted in
TiO2 nanofibers (TiO2@MoS2) using a hydrothermal strategy [19]. They reported single- to
few-layer MoS2 nanosheets and TiO2 nanofibers’ porous structure. The MoS2 nanosheets
grew vertically on the porous structure of TiO2, and deep rooting MoS2 nanosheets into
TiO2 nanofibers put them in close contact for the electron transfer process and structural
stability. The hydrogen production rates of the TiO2@MoS2 sample were 1.68 under UV–vis
light and 0.49 mmol·h−1·g−1 under visible light.
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TiO2 nanomaterials combined with a MoS2 co-catalyst can enhance hydrogen produc-
tion rates up to several times.

5.2. MoS2/Graphitic Carbon Nitride Composites

Graphitic carbon nitride (g-C3N4) is considered one of the promising candidates
for photocatalysis due to its high chemical stability, environmentally friendly nature,
and suitable energy bands that can efficiently absorb solar spectrum irradiation [78–81].
However, g-C3N4 suffers from a small specific surface area, high exciton binding energy,
stacking back into a bulk, and low efficiency under visible light [82–84]. Recently, much
interest has been devoted to g-C3N4-based composites for solar hydrogen production under
visible light. To enhance the efficiency of its photocatalytic activity, various non-precious
co-catalysts such as Co2P, Mo2C, and MoS2 have been incorporated with C3N4 [85–87].
Among them, MoS2 as a co-catalyst in MoS2/C3N4 composites shows promising efficiency
for photogenerated hydrogen production [87,88].

The design of and nano-interface coupling between MoS2 and C3N4 can significantly
enhance the photocatalytic HER performance. The appropriate MoS2/C3N4 composites
with an optimal ratio are believed to enhance solar absorption, increase the interfaces,
and decrease the electron transfer distance of the photo-excited electrons between C3N4
and MoS2 co-catalysts. Yuan’s group reported MoS2/g-C3N4 composites with various
contents of MoS2 developed using the solvent thermal method. The composite catalysts
were evaluated for photocatalytic H2 generation [87]. They found that MoS2/g-C3N4
composites containing 0.75% MoS2 nanosheets performed better and had a reaction rate
of 1155 µmol·h−1·g−1 under visible light irradiation. The apparent quantum yield was
about 6.8% under a monochromatic light of 420 nm. Furthermore, they explained that the
large surface area of g-C3N4 nanosheets and the nano-interface coupling between MoS2
nanosheets and g-C3N4 were mainly responsible for the outstanding photocatalytic hy-
drogen production of the MoS2/g-C3N4 composite. Recently, Li et al., reported the in situ
synthesis of a g-CN/MoS2 composite [89]. The composite exhibited enhanced photocat-
alytic hydrogen production compared to pristine g-CN under visible light irradiation. The
rod-like MoS2 plays an important role as co-catalyst in the g-CN/MoS2 composite in the
enhancement of the hydrogen production rate. Zhang et al. reported sulfur-doped C3N4
with covalently crosslinked MoS2 nanosheets (MoS2/SC3N4) for improved photocatalytic
hydrogen production [88]. The ultrathin array-like nanosheet structure of the MoS2/SC3N3
composites was observed by SEM characterizations (see Figure 6). MoS2/SC3N3 composites
were studied for photocatalytic HER under visible light conditions. MoS2/SC3N3 with 2.5%
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MoS2 nanosheets showed the optimal hydrogen production rate of 702.53 µmol·h−1·g−1.
The array-like porous morphology had a rich exposed surface, covalent bonding structure,
and enhanced visible light absorption by the cyano group of MoS2/SC3N3 composites.
This facilitates the photogenerated electrons’ transfer from the CB of SC3N3 to MoS2 via a
heterojunction interface that consequently enhances the photocatalytic hydrogen evolu-
tion. Zhang et al. reported a MoS2/Fe2O3/g-C3N4 ternary composite photocatalyst under
hydrothermal conditions for hydrogen production [90]. The obtained ternary composite
showed a hydrogen production rate about five times higher compared to g-C3N4. In
addition, 1T MoS2/C3N4 composites also show enhanced photocatalytic hydrogen produc-
tion [91–94]. Li et al. loaded metallic 1T-phase MoS2 quantum dots onto CdS nanorods
(1T-MoS2-CdS) using a one-step hydrothermal method at different temperatures [91]. The
1T-MoS2-CdS composite prepared at 180 ºC showed remarkable photocatalytic hydrogen
production (131.7 mmol·h−1·g−1) under visible light (λ > 420 nm). This rate of hydrogen
evolution reaction was over 65 times greater than that of pure CdS (mmol·h−1·g−1) and
two times that of Pt-loaded CdS.
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Figure 6. SEM images of (a) SC3N2, (b) MoS2 and ultrathin array-like nanosheet, (c) MoS2/SC3N4-
0.5%, (d) MoS2/SC3N4-1.5%, (e), MoS2/SC3N4-2.5%, and (f) MoS2/SC3N4-5.0%. Reprinted with
permission from Ref. [88]. Copyright 2021 Elsevier.

Besides 1T-phase MoS2, amorphous MoSx nanomaterials are efficient electrocatalysts
as well as co-catalysts for hydrogen production [95–97]. They provide more unsaturated
active S atoms, which can rapidly capture protons from the solution to convert them
into hydrogen molecules. Yu et al. reported amorphous MoSx/g-C3N4 (a-MoSx/g-C3N4)
composites developed using an adsorption in situ transformation method [95]. The a-
MoSx/g-C3N4 composites were compared with crystalline MoSx/g-C3N4 and g-C3N4
catalysts, and all of the a-MoSx/g-C3N4 catalysts displayed better photocatalytic perfor-
mances than the crystalline MoSx/g-C3N4 and C3N4 catalysts. Among the a-MoSx/g-C3N4
composites, the a-MoSx/g-C3N4 catalyst with 3 wt% Mo showed the best photocatalytic
performance and a hydrogen production rate of 273.1 µmol·h−1·g−1.

Similar to TiO2/MoS2 photocatalysts, MoS2/g-C3N4 heterojunction composites can
improve hydrogen production.

5.3. MoS2 Coupling with Other Semiconductor Materials

As discussed earlier, MoS2 as a co-catalyst for other semiconductor compounds can
efficiently enhance the photocatalytic activity of hydrogen generation. The interfacial
coupling of MoS2 with semiconductor compounds has been designed in many strategies.
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An appropriate ratio, increased interface area, and decreased migration distance of the
photogenerated electrons between the MoS2 and the semiconductor compounds can ef-
fectively improve photocatalytic hydrogen production. Zhang et al. reported MoS2/CdS
composites with willow branch-shaped morphology developed using a one-pot hydrother-
mal method [98]. The MoS2/CdS composite with 5 wt% MoS2 as a co-catalyst displayed an
enhanced photocatalytic performance and produced 250.8 µmol·h−1 hydrogen evolution
with an apparent quantum efficiency of 3.66% at 420 nm. Preparation of the willow branch-
shaped nano-heterojunction morphology enhances the visible light absorption and also
promotes the separation of photogenerated electron–hole pairs.

Ma et al. reported a layered CdS/MoS2 heterostructure photocatalyst developed
using ultrasonicated MoS2 and CdS nanosheets, produced from hydro- and solvothermal
methods, respectively [99]. When MoS2 co-catalysts were loaded onto CdS nanosheets, the
photocatalytic performance of the CdS/MoS2 heterostructure was twice that of the pure
CdS photocatalyst. The designing of a layered CdS/MoS2 heterostructure could efficiently
enhance the photogenerated charge separation and electron transfer, which improves
the surface hydrogen evolution kinetics. Patriarchea and coworkers synthesized CdS
nanoparticles using polymer-templated oxidative aggregation, and subsequently, MoS2
nanosheets were deposited on it via the wet chemical method [100]. The obtained optimized
MoS2/CdS catalyst showed a good hydrogen production rate of about 0.4 mmol h−1 under
visible light compared to the CdS catalyst. The enhanced hydrogen generation was due to
the presence of the MoS2 co-catalyst.

Samaniego-Benitez and coworkers prepared ZnS/MoS2 heterostructure materials us-
ing a one-pot solvothermal method [101]. The hydrogen production yield of the ZnS/MoS2
sample with 10% Mo reached 2600 µmol·h−1 under UV light for 4 h. They concluded that
the enhanced photocatalytic activity was due to the synergistic effect between ZnS and
MoS2 and sulfur vacancies created in the ZnS structure during the synthesis process. In
the proposed mechanism, a photoexcited electron moves from the CB of ZnS to the CB of
MoS2, where it interacts with the proton and produces hydrogen.

Recently, Guan et al., used MoS2 as a co-catalyst for methylammonium lead iodide
to split hydrogen iodide for photocatalytic HER [102]. The methylammonium lead iodide
microcrystals and MoS2 nanoflowers (MAPbI3/MoS2) formed a heterostructure. The MoS2
nanoflowers have plenty of active catalyst sites for hydrogen evolution. The hydrogen
evolution rate of MAPbI3/MoS2 reached ~30,000 µmol·h−1·g−1 and a solar-derived hy-
drogen iodide splitting efficiency of 7.35% was achieved under visible light irradiation.
This hydrogen evolution rate is more than 1000 times higher compared to that of pristine
MAPbI3. The MoS2 can induce charge separation and provide abundant active sites for
photocatalytic hydrogen evolution.

For these examples, we can conclude that MoS2 is an efficient co-catalyst for CdS, ZnS,
and MAPbI3 etc, catalysts to produce hydrogen.

5.4. MoS2 and Other Co-Catalyst Heterojunction Composites

The heterojunction of a MoS2 co-catalyst with other co-catalysts is an attractive strategy
because it can improve the photogenerated electron transfer from a semiconductor to a
MoS2 co-catalyst during photocatalysis, which enhances the activity via the catalytic sites
on MoS2 co-catalysts [103–105]. The heterojunctions between MoS2 and highly conductive
co-catalysts decrease the resistance effect and increase the electron transfer process during
photocatalysis [106].

For improved photocatalytic H2 evolution, a widely studied example of anchoring
a MoS2 co-catalyst on graphene has been reported [107,108]. Xiang et al., synthesized a
TiO2/MoS2/graphene hybrid photocatalyst for hydrogen production [18]. The hybrid
photocatalyst showed significant enhancement of photocatalytic H2 generation under UV
illumination, with an apparent quantum efficiency of 9.7% at 365 nm. The improved activity
is described in terms of synergetic effects between MoS2 and the conductive graphene
co-catalysts and TiO2 leading to outstanding photocatalytic hydrogen evolution activity.
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These authors have proposed a mechanism for the significant boost of photocatalytic H2
generation. They reported that this enhancement is due to the transfer of photogenerated
electrons from the CB of TiO2 nanoparticles to the CB of MoS2 nanosheets through highly
conductive graphene sheets (Figure 7), where H+ ions are adsorbed at an active site of
MoS2. Apart from graphene, other highly conductive materials such as metal sulfides
and phosphides can also be used as interfacial electron transfer sources to enhance pho-
tocatalytic hydrogen evolution. Lu and coworkers synthesized g-C3N4, Ni2P, and MoS2
heterojunctions by hydrothermal and ultrasonic methods [109]. The hydrogen production
rate of the g-C3N4-1%Ni2P-1.5%MoS2 composite was about 532.41 µmol·h−1·g−1 under
visible light, which is 5.15- and 2.47-fold higher than those of g-C3N4-1%Ni2P and g-C3N4-
1.5%MoS2, respectively. The Ni2P co-catalyst could be acting as an interface electron bridge
between g-C3N4 and MoS2 nanosheets. It provides interfacial electron transfer channels in
g-C3N4/MoS2 heterostructure composites and prevents the rapid recombination process of
photogenerated charge carriers.
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Finally, we summarize some heterojunction composites with semiconducting and
MoS2 materials in which the MoS2 nanomaterial acts as a co-catalyst for enhanced photocat-
alytic hydrogen production. Table 1 and Figure 8 show different strategies used for various
types of catalysts combined with a MoS2 co-catalyst to form heterojunction composites for
enhanced photocatalytic hydrogen production.
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Table 1. Summary of MoS2 usage as a co-catalyst for various materials to form heterostructures for photocatalytic hydrogen generation.

Catalyst Synthesis Method Light Source Photocatalytic Activity No. of Cycles Total Times
of Cycles (h) Ref.

MoS2 nanoparticles/TiO2 nanoparticles Mechanochemistry 300 W Xe lamp (λ = 250–380 nm) 150.7 µmol·h−1·g−1 3 18 [76]

TiO2 nanofibers @MoS2 nanosheets Hydrothermal
300 W xenon lamp

λ > 320 nm
or λ > 420 nm

1.68 mmol·h−1·g−1

0.49 mmol·h−1·g−1 6 30 [19]

Flower-like MoS2@TiO2 nanohybrids Metal organic
framework-derived 300 W Xe lamp (λ ≥ 420 nm) 10046 µmol ·h−1·g−1 3 10 [77]

MoS2 nanosheets/TiO2 nanotubes Hydrothermal process 300 W Xe-lamp (λ ≥ 420 nm) 143.32 µmol·h−1·g−1 4 14 [110]
MoS2 nanosheets/g-C3N4 nanosheets Solvothermal method 300 W Xe-lamp (λ > 420 nm 1155 µmol·h−1·g−1 3 12 [87]

S-doped C3N4 nanosheets/MoS2 nanosheets One-step solid-state strategy Visible LED lamp 702.53 µmol·h−1·g−1 3 16 [88]
Amorphous MoSx nanoparticles/g-C3N4

nanosheets
Adsorption in situ

transformation method Low-power LEDs (3W, 420 nm) 273.1 µmol·h−1·g−1 4 12 [95]

g-C3N4/NCDS/MoS2
Thermal polymerization and

solvothermal approach 300 W Xe lamp (λ ≥ 420 nm) 212.41 µmol·h−1·g−1 4 16 [111]

ZnS/MoS2 particles One-pot solvothermal Hg pen-lamp (254 nm),
(4.4 mW/cm2) 606 µmol·h−1·g−1 - - [101]

MoS2 clusters/CdS nanorod Solvothermal method 300 W Xe lamp (λ ≥ 420 nm) 12.38 mmol·h−1·g−1 4 [112]
MoS2/ZnIn2S4 microspheres Impregnation method 300 W Xe-lamp (λ > 420 nm) 3.06 mmol·h−1·g−1 3 15 [113]

MoS2 nanosheets/ZnIn2S4 microspheres In situ photo-assisted deposition 300 W Xe-lamp (λ > 420 nm) 8.047 mmol·h−1·g−1 - - [114]
MoS2 nanoflake-Mn0.2Cd0.8S nanorod/MnS

nanoparticle One-pot solvothermal 300 W Xe lamp (λ ≥ 420 nm) 995 µmol·h−1 5 20 [115]
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6. Conclusions and Outlook

In summary, we highlighted the significance of MoS2 as a co-catalyst to improve
hydrogen evolution. A comprehensive analysis of the literature led us to conclude that
MoS2 is a good co-catalyst for other semiconducting materials such as TiO2, C3N4, CdS, ZnS,
etc., which form heterostructure nanocomposites and consequently boost the photocatalytic
hydrogen generation ability. However, there are still some critical issues that must be
resolved, such as the downsizing of MoS2 nanosheets for appropriate band gap alignment
and the high density of catalytic active sites. These issues can be solved by reducing the
size of MoS2 to quantum dots or the molecular level, which will certainly enhance the
catalytic active sites. The photoexcited electron transfers between photocatalysts and the
MoS2 co-catalyst play an important role during photocatalytic hydrogen generation. The
electron transfer mechanism at the interface of a semiconductor photocatalyst and a MoS2
co-catalyst is yet to be fully investigated and completely understood. It is important to
conduct theoretical studies such as density functional theory (DFT) simulations and apply
in situ testing methods to understand electron transfer paths. Although MoS2 nanosheets
as a co-catalyst are a promising candidate for photocatalytic hydrogen production, all the
challenges require further efforts and study.
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