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Abstract— We propose an approach for vision-based navigation
of underwater robots that relies on the use video mosaics of the
sea bottom as environmental representations for navigation.

We present a methodology for building high quality video mo-
saics of the sea bottom, in a fully automatic manner, that ensures
global spatial coherency. During navigation, a set of efficient
visual routines are used for the fast and accurate localization
of the underwater vehicle with respect to the mosaic. These
visual routines were developed taking into account the operating
requirements of real-time position sensing, error bounding and
computational load.

A visual servoing controller, based on the vehicle kinematics,
is used to drive the vehicle along a computed trajectory, specified
in the mosaic, while maintaining constant altitude. The trajectory
towards a goal point is generated online to avoid undefined areas
in the mosaic.

We have conducted a large set of sea trials, under realistic
operating conditions. This paper demonstrates that, without
resorting to additional sensors, visual information can be used to
create environment representations of the sea bottom (mosaics)
and support long runs of navigation in a robust manner.

Index Terms— Underwater computer vision, video mosaics,
visual servoing, trajectory reconstruction, uncertainty estimation

I. INTRODUCTION

THIS paper describes a methodology for mosaic-based

visual navigation of underwater autonomous vehicles,

navigating close to the sea floor. A high-quality video-mosaic

is automatically built and used as a representation of the sea-

bottom. A visual servoing strategy is adopted to drive the

vehicle along a specified trajectory (indicated by waypoints)

relative to the mosaic. The control errors are defined by

comparing (registering) the instantaneous views acquired by

the vehicle and the mosaic. The proposed approach was tested

at sea with an underwater vehicle.

The autonomous navigation of underwater vehicles is a

growing research and application field. A contributing factor is

the increasing need of sub-sea data for activities such has envi-

ronmental monitoring or geological surveying. Recent interest

has been devoted to the development of smart sensors, where

the data acquisition and navigation are intertwined. These

systems aim at releasing the human operation from low-level

requirements, such as the path planning, obstacle avoidance

and homing. By providing the platforms with such level of
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human independence, these systems reduce the operating costs

and broaden the potential end-users group. The user main tasks

are in the definition of mission primitives to be carried out and

higher level mission control.

The underwater environment poses a difficult challenge for

precise vehicle positioning. The absence of electromagnetic

signal propagation prevents the use of long range beacon

networks. Aerial or land robot navigation can rely upon the

Global Positioning System to provide real-time updates with

errors of just few centimeters, anywhere around the world.

The underwater acoustic equivalent is severely limited both in

range and accuracy, thus requiring the previous deployment of

carefully located beacons, and restricting the vehicle operating

range to the area in between. Sonar equipment provides range

data and is increasingly being used in topographic matching

for navigation, but the resolution is too low for precise, sub–

metric navigation. Vision can provide precise positioning if

an adequate representation of the environment exists, but is

limited to short distances to the floor due to visibility and

lighting factors. However, for the mission scenarios where the

working locations change often and are restricted to relatively

small areas, the use of visual based positioning can be the

most appropriate.

The methodology in this paper considers mission scenarios

where an autonomous platform is required to map an area of

interest and navigate upon it afterwards, as illustrated in Fig.

1.

For building the video mosaic, the quality constraints are

very strict, as the mosaic will be the basis for global navi-

gation. Hence, highly accurate image registration methods are

needed. The proposed mosaic creation method deals with long

image sequences, the automatic inference of the path topology,

and the 3–D recovery of the overall geometry. The quality of

the mosaic is improved by ensuring global data consistency,

using overlapping image regions from loop trajectories or zig-

zag scanning patterns.

During navigation, the performance depends heavily upon

the ability of the vehicle to localize itself with respect to the

previously constructed map. Two important requirement are

the bounding of localization errors and real-time availability of

position estimates. To address this, two distinct visual routines

are run simultaneously: image-to-mosaic registration and inter-

image motion estimation.

The first routine, also referred to as mosaic matching, is

devised for accurate positioning and error bounding. It runs

at a low frequency, and uses robust model–based feature

matching to register a current image over the mosaic. The

outcome of this routine is the 3–D position of the camera in a



2                                                                                                                                                              EEE JOURNAL OF OCEAN ENGINEERING, VOL 28.,NO. 4, OCTOBER 2003

Mosaic ServoingMosaic Creation

Fig. 1. The operation modes for the proposed mosaic-based navigation system.

world coordinate frame associated with the map. The second

routine computes the image motion between camera images in

real–time. It provides updates over the last successful mosaic

matching, but is prone to accumulate errors if not combined

with the mosaic matching.

Depending on the use, the localization information can

either be expressed directly in terms of an image frame (e.g.

pixel location on the mosaic) or converted to an explicit

position and orientation of the vehicle in 3D.

To avoid driving the vehicle over the areas where the mosaic

matching may be too difficult (such as near the borders of the

region covered by the mosaic), a trajectory generation module

was implemented. This module provides a set of waypoints

between the current and final location that simultaneously

searches for a short travel path while keeping away from the

mosaic borders.

A final control module consists in translating all these data

into control errors and design the controllers that drive the

vehicle propellers.

This paper builds upon our previous work on mosaic

creation, pose estimation and station keeping. In [1], [2] the

basic process of sequential image processing is detailed for the

creation of underwater mosaics, along with the pose estimation

and error propagation. The present paper extends this approach

to loop trajectories and distant superpositions, which are

essential for the creation of spatially coherent mosaics over

large areas.

In [3] a fast template–based pose estimation method and

a vision–based controller are derived. These methods are

specially suited for underwater station keeping [4]. We use the

same controller structure, but extend it to navigate to distant

points with respect to the starting position. Furthermore, a

trajectory generation procedure is also implemented. A key

point is the extension and integration of several methods

for mosaic creation, pose estimation and visual servoing that

complement each other.

Part of this work done in the context of the European

Project NARVAL [5]. The main scientific goal was the de-

sign and implementation of reliable navigation systems for

mobile robots in unstructured environments, without resorting

to global positioning methods. The algorithms and results

described in this paper, where large mosaics are created and

used for posterior navigation, constitute a major achievement

towards this goal.

A. Related Work and Contributions

This paper relates to the work of a number of authors. The

most important differences are now highlighted.
1) Mosaic Construction with Global Registration: The ap-

plication of mosaicing techniques for underwater imagery is a

topic of increasing research interest, not only as a visualization

tool for covering large areas [6], [7], [8], [9], but also as a

spatial representation for underwater robotics [10], [11], [12].

Comparative results on vehicle positioning and mosaicing for

long image sequences are reported in [13], where calibrated

testing of the algorithm presented in this paper is included.

Considering the topic of global registration, several ap-

proaches have been proposed using topology inference of

neighboring frames [14], [15], and restricted parameterizations

for the projection matrices [16]. Recent methods allow the fast

computation of globally consistent linear strips mosaics [17],

and use Kalman Filtering for closing the trajectory loops [18].

The main differences of our approach with all of the above

are twofold: (1) the parameterization of the homographies with

complete and meaningful 3D pose parameters and, (2) the

inclusion of the unknown single world plane constraint.
2) Mosaics for Navigation: One of the early references

to the idea of using mosaics as visual maps is the work of

Zheng [19], where panoramic representations were applied

to route recognition and outdoor navigation. However the

visual representations do not preserve geometric characteristics

nor correspond to visually correct mosaics. This constitutes a

drawback as the representation is not fit for human perception,

which is important for mission definition. Recently, Kelly [20]

has addressed the feasibility and implementation issues of

using large mosaics for robot guidance, predicting a large

impact of these techniques on industrial environments. In this

case, the problem is simplified by assuming that the image

plane is parallel to the mosaiced areas and the motion of the

vehicles is restricted to the ground plane.

Xu [21] investigated the use of seafloor mosaics, constructed

using temporal image gradients, in the context of concurrent

mapping and localization, for real-time applications. Albeit

careful compensation for systematic errors, eventual loops

in the camera path are not taken into account nor used for

compensating for the accumulated error, which prevents the

use in covering large areas. Huster [22] described a naviga-

tion interface using live–updated mosaics, and illustrated the

advantages of using it as a visual representation for human
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operation. However, since the mosaic is not used in the

navigation control loop, there is no guaranty the vehicle is

driven to the desired position.

One of the works more closely related to ours is [11], in the

sense it combines spatially consistent mosaic with underwater

ROV navigation. However, in their approach, the navigation

system requires additional sensors to provide heading, pitch

and yaw information, whereas our work relies solely upon

vision to provide information for all the relevant degrees of

freedom. The integration of several different sensors benefits

for the robustness of the overall navigation system, provided

that realistic estimates exist for the uncertainty associated with

each sensor. However, it is of scientific relevance to know of

far can underwater vision systems go when used alone, and

have ways of computing the uncertainty of the pose. Our paper

is directed towards this goal.

Regarding navigation, our approach differs from the con-

current mapping and localization approaches (CM&L, SLAM)

in the sense the map is totally created prior to its use. Some

authors have successfully implemented (and extended) CM&L

for the underwater navigation with mosaics [21], [11], which

has the advantage of using the mosaic while it is being

constructed, but leads to less accurate mosaics due to the real–

time constraints.

3) Contributions: Our paper presents the first results on

using large mosaic for servoing at sea, which validates the

servoing approach. Previous experiments on visual trajec-

tory following using mosaics at sea were restricted proof-of-

concepts, using very small mosaics and few meter runs [21],

[11].

Our work contributes to the field of visual underwater

navigation in several ways:

• The mosaic creation is approached in a fully automated

and integrated way where global spatial consistency is

imposed by estimating the image neighboring topology.

• All the degrees of freedom arising from the mosaic

geometry are taken into account and parameterized as

geometrically meaningful entities – pose parameters and

world plane description. As a result, we retrieve the

vehicle trajectory over time, together with the associated

uncertainty.

• Different techniques of inter-image motion and image-to-

mosaic matching were devised and used in a combined

manner, together with robust estimation methods, provid-

ing the necessary degree of accuracy and robustness.

• A simple and effective visual servoing control scheme is

used to drive the vehicle. The error signals are defined

exclusively from image measurements.

• The appropriateness of the approach is demonstrated by

successful experimental testing in the challenging, real–

world conditions of the underwater environment (at sea).

B. Paper Organization

Section II reviews some useful entities and methods related

with the mosaic geometry. Section III details the algorithm

used for creating a navigation map through image mosaicing,

along with illustrative results. Section IV describes the mosaic

navigation, namely the algorithms implemented for the vehicle

localization, the image based control law and selected results

from the mosaic servoing experiments. Section V draws the

conclusions and establish directions for future work.

II. VISUAL GEOMETRY AND MOTION ESTIMATION

This section reviews some important geometry entities and

estimation methods related to the mosaicing process.

A. Camera model

The adopted camera model is the standard pin-hole model,

which performs a linear projective mapping of the 3D world

into the image frame. The camera is assumed to be calibrated

with known intrinsic parameter K matrix [23], [24]. In this

work, the radial distortion was estimated and used for the

off-line creation of displacement maps. During the image

acquisition, these maps are used as look-up tables for the on-

line correction of the distortion.

B. Homographies

We assume that the working area of the sea bottom can be

approximated by a plane. Two views of the same 3–D plane

are related by a homography [25] (also referred to as a planar

transformation) which is represented by a 3×3 matrix defined

up to a scale factor. A homography H performs a point–to–

point mapping between the homogeneous coordinates of the

image points x′ and x, such that x′ = Hx. It has, at most,

eight degrees of freedom which are illustrated in Fig. 2. The

estimation of H requires at least four pairs of corresponding

points. In the case of more than four correspondences, it can

be estimated by least-squares [26].
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Fig. 2. Degrees of freedom of the planar projective transformation on images:
(a) horizontal translation, (b) vertical translation, (c) rotation, (d) scaling, (e)
shear, (f) aspect ratio, (g) projective distortion along the horizontal image axis,
(h) projective distortion along the vertical image axis

C. Visual Motion Estimation

The starting point for the creation of mosaics is the estima-

tion of image motion between consecutive frames of a video

sequence.

For each image Ik , a set of point features is extracted

using the Harris corner detector [27] and matched over the

following image Ik+1, through a correlation-based procedure.

The correlation is performed using a fast implementation [28]

of the Lucas-Kanade point tracker [29]. A robust estimation
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technique is used to filter out matching outliers, and estimate

the homography Hk,k+1 that relates the coordinate frames of

Ik and Ik+1. A variant of random sampling LMedS, detailed

in [1], is used.

A different approach to the computation of image motion

was also investigated for station keeping applications. In this

approach, the tracking of an image region is performed by

combining optic flow information with template matching,

which relies on a set of pre–computed motion models to

describe the image deformations. The robustness of the method

is increased by adapting the set of used models to the most

commonly observed camera motions [3], [30].

D. 3–D Pose Estimation

Given an homography, it is possible to obtain the relative

3–D motion of the camera up to a scale factor. A homography

matrix H21 is decomposed [31] as

H21 = K

(
R21 + t

nT
1

d1

)
K−1 (1)

where R21 and t are, respectively, the 3×3 rotation matrix and

the 3×1 translation vector relating the 3-D camera frames. The

world plane (that induces the homography) is accounted for

by the unitary vector n1, containing the outward plane normal

expressed in the camera 1 coordinates, and the distance d1 of

the plane to the first camera center.

The problem of recovering the motion parameters from a

homography for an intrinsically calibrated camera is discussed

in-depth by Faugeras [31]. In the most general case there are

eight different sets of solutions. However, only two are valid

for a non-transparent world plane, which are found using the

SVD of M21 = K−1H21K [32].

Most often it is important to estimate not only the ve-

hicle location but also the associated uncertainty, in a 3–D

world referential. The pose uncertainty allows for monitoring

the performance of the localization algorithm, and provides

information for sensor fusion in the case of using more

than one positioning modality. We will now outline how the

uncertainty can be propagated from the point matches to the

pose parameters, using a first order approximation.

Let Θ =
[
α β γ W

Ctx
W
Cty

W
Ctz

]T
be the 6-vector

containing the camera pose in the form of 3 camera rotation

angles and the location of the camera centre in world coordi-

nates. The 3-D rigid transformation that relates points in the

world and camera frames is given by




Cx
Cy
Cz



 =CRW








Wx
Wy
Wz



 −




W
Ctx
W
Cty
W
Ctz







 . (2)

The rotation matrix CRW is defined by X-Y-Z fixed angle

convention[33],

CRW =




cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ



 (3)

where s (.) and c (.) represent the sine and cosine functions

of the rotation angles.

Without loss of generality, we assume that all the world

points belong to the plane defined by Wz = 0. A image-to-

world homography has the form :

Ψ(K,Θ) = K ·CRW ·




1 0 −W

Ctx

0 1 −W
Cty

0 0 −W
Ctz



 . (4)

If a set of matches exists between image point projections

and their world coordinates, then the camera pose can be

estimated [2], by minimizing the following error function

F (X,Θ) =
∑N

i=1 [d2 (xi,Ψ(K,Θ) · x′

i)
+d2

(
x′

i,Ψ
−1(K,Θ) · xi

)
]

(5)

where xi and x′

i denote corresponding image and world–plane

points, and d (·, ·) is the Euclidean distance.

In this paper, the uncertainty propagation follows the

method described by Haralick in [34] for propagating the co-

variance matrix through any kind of linear or non-linear calcu-

lation. The method assumes that a scalar function, F (X,Θ), is

defined which is minimized by the noisy estimate Θ̂, and noisy

data X̂ , and that the calculation can be well approximated by

a first order Taylor series expansion for the level of noise

involved.

An estimator for the 6 × 6 covariance matrix Σ∆Θ of the

noise in Θ̂, is given by

Σ∆Θ = J · Σ∆X · JT (6)

where Σ∆X is the covariance matrix of the data, and

J =

[
∂2F

∂Θ2

(
X̂, Θ̂

)]−1 [
∂2F

∂X∂Θ

(
X̂, Θ̂

)]T

. (7)

E. Uncertainty propagation from the pose to the mosaic

If the camera pose and associated uncertainty are known,

then we can estimate the location where the camera optical

axis intersects the mosaic, and its uncertainty. This is helpful in

defining search areas for the initial matching over the mosaic

map. The intersection of the camera optical axis with the world

plane is given by Eq. (2) with the additional constraints of
Cx = Cy = Wz = 0. This system is easily solvable for the

intersection coordinates,

[
Wx
Wy

]
=W

C tz ·

[
sβ

cβcγ

− sγ
cγ

]
+

[
W
Ctx
W
Cty

]
. (8)

For small levels of noise, Υ (Θ) =
[

Wx Wy
]T

can

be approximated by its first-order Taylor expansion. The

associated covariance matrix Σ∆Υ is approximated by Σ∆Υ =
J ·Σ∆Θ·J

T , where J is the partial derivatives matrix of Υ (Θ),

J =



 0
W
Ctz

(cβ)2cγ

W
Ctz sβsγ

cβ(cγ)2
1 0 sβ

cβcγ

0 0 −
W
Ctz

(cγ)2
0 1 − sγ

cγ



 . (9)
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III. MOSAIC MAP CREATION

The mosaic map creation method comprises four major

stages, illustrated in Fig. 3. Firstly, the image motion is

computed in a sequential manner to infer the approximate

topology1 of the camera movement. Secondly, this topology

is refined by searching for non–consecutive matches on areas

where the path winds up on itself. Next, a global minimization

is carried out, using the most general 6-degree of freedom

motion model and the point matches between all the images.

Finally, the images are blended to create a fronto–parallel

mosaic image, and a 3–D world referential is associated with

it.

Match consecutive

images

Find all pairs of

overlapping images

Match images

New matches

found

?

Adjust topology by

global optimization

Match with general

motion model

Global optimize

with all D.O.F

Define a world

referential on the

world plane

Blend images to

create a fronto

parallel mosaic

Yes

No

STEP 1

STEP 2

STEP 3

STEP 4

Fig. 3. Flow–chart for the complete mosaic creation algorithm.

A. Step 1 - Initial Motion Estimation

The first part of the algorithm consists on the sequential es-

timation of inter-frame homographies, as described in Section

II-C.

In order to speed up the initial matching process, the

computed homography for the current pair of images is used

to restrict the correlation search over the next pair. If, after

the random sampling LMedS, the image matching is not

successful then the process is repeated with larger correlation

areas.

In underwater vision, the image acquisition rate is usually

high when compared to the camera motion, resulting in

1The topology refers to the complete set of inter–image homographies that
allows for the registration of all images on a common image frame, thus
implicitly containing the camera path information in image coordinates.

large overlap between consecutive frames. To avoid this, a

frame discarding procedure was used during acquisition, thus

reducing the memory and processing requirements for the next

stages. A minimum of overlap of 60 % is imposed for the

selected frames. This threshold was chosen based on the results

of preliminary matching trials.

This step is performed on-line during the mosaic image

acquisition. As a by product, it allows for the real-time

creation of simple mosaics, without global constraints. This

proves to be very useful for the maneuvering of the vehicle

during the acquisition, as it provides visual information on the

approximate trajectory of the vehicle.

B. Step 2 - Iterative Topology Estimation

After the initial motion estimation step, possible overlap

between non-consecutive images can be predicted, and used

to search for new image matches.

In this stage, the topology is estimated by performing

iterative steps of image matching and global optimization. The

image matching part is conducted over overlapping frames,

and is similar to what was described above. If new matches

are found, then the topology is re-estimated by means of a

global optimization procedure. This procedure uses a reduced

representation for the camera motion, based on 3 parameters

(2D translation and rotation), that implicitly assumes the

camera is facing the ground at a constant distance. The reason

for a simpler motion model for the first two stages of the

algorithm, has to do with the effectiveness of the topology

inference. The most general 8–parameter homographies can

cope with general perspective distortion, but has more degrees

of freedom than usually required. Consequently, small errors

in the initial inter–frame motion estimation tend to quickly

accumulate, and make it impossible to infer the neighboring

relations among non-consecutive frames.

The cost function to be minimized is the sum of distances

between each correctly matched point and its corresponding

point after being projected onto the same image frame, i.e.,

F (X,Θ) =
∑
i,j

Ni,j∑
n=1

[d2
(
xi

n, H(Θi,Θj) · x
j
n

)

+ d2
(
xj

n, H
−1(Θi,Θj) · x

i
n

)
]

(10)

where Ni,j is the number of correct matches between frame i

and j, and H(Θi,Θj) is the homography constructed using the

motion parameter vectors Θi and Θj . These vectors contain

the 3 parameters that relate the frames i and j with the

reference frame (first frame). The minimization is carried out

using a non-linear least squares algorithm [35], and the cycle

of matching and topology refinement is executed until no new

image pairs can be matched.

To speed-up the optimization procedure (and, thus, the mo-

tion refinement cycle time), a sub-mosaic aggregation scheme

was implemented. Under this scheme the complete sequence is

initially divided into sets of consecutive images to form small

rigid sub-mosaics. Inside each sub-mosaic the homographies

are considered static and only the inter-mosaic homographies

are taken into account in the optimization algorithm. This
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reduced parameter scheme significantly improves the speed of

evaluating the cost function and does not affect the capability

of inferring the appropriate trajectory topology.

C. Step 3 - High Accuracy Global Registration

The main objective of the final stage of the algorithm

is attaining a highly accurate registration. A more general

parameterization for the homographies is therefore required,

capable of modelling the warping effects caused by wave-

induced general camera rotation and changes on the distances

to the sea floor. Therefore, a parameterization is devised to

take explicitly into account all the 6 degrees of freedom of

the camera pose.

The estimation of the homographies using a general model

does not impose, per se, the existence of a single world plane

from which the homographies are induced. This condition is

imposed by augmenting the overall estimation problem with

additional parameters that describe the position and orientation

of the world plane. Such additional parameters are included

on the parameterization of the homographies.

An important advantage of the devised parameterization

is that it allows for the full 3–D camera trajectory and

world plane to be recovered during the process. Although this

knowledge is not explicitly used for the navigation methods

of this paper, it is nonetheless valuable in the context of an

integration mission.

1) General parameterization: One of the camera frames

(usually the first) is chosen as the origin for the 3-D referential,

where the optical axis is coincident with the referential Z-axis.

The world plane is parameterized with respect to this frame

by 2 angular values that define its normal. As the trajectory

and plane reconstruction can only be attained up to an overall

scale factor, this ambiguity is removed by setting the plane

distance to 1 metric unit2, measured along the Z-axis.

Let Θi and Θj be the pose 6-vectors containing 3 rotation

angles and 3 translations with respect to the reference 3-D

frame of the first camera. Let n (Θp) be a 3-vector containing

the normal to the world–plane (also in the 3-D reference

frame), which is parameterized by the 2-vector Θp of angles.

The homography relating frames i and j with the reference

image frame is given by Eq. (1):

Hi,1 = K ·
[
R (Θi) + t (Θi) · n

T (Θp)
]
·K−1

Hj,1 = K ·
[
R (Θj) + t (Θj) · n

T (Θp)
]
·K−1

(11)

where R (Θi) and R (Θj) are rotation matrices, tT (Θi) and

tT (Θj) are the translation components, as defined in Section

II-D. The homography relating frames i and j is given by

Hi,j = Hi,1 ·H
−1
j,1

= K ·
[
R (Θi) + t (Θi) · n

T (Θp)
]
·[

R (Θj) + t (Θj) · n
T (Θp)

]
−1

·K−1

(12)

2If additional information is available on the real distance to the sea floor
(for example, from an altimeter), then it can be straightforwardly used here.

2) Cost Function: The cost function is similar to the one

previously used in the iterative motion refinement, where

the distances between matched points are measure in their

respective image frames, and summed over all pair of correctly

matched images, i.e.,

F (X,Θ) =
∑
i,j

Ni,j∑
n=1

[d2
(
xi

n, Hi,j · x
j
n

)

+d2
(
xj

n, H
−1
i,j · xi

n

)
]

(13)

For a set of M images, the total number of parameters to be

estimated is (M − 1) × 6 + 2.

The initialization values for the complete parameter set are

computed using Eq. (1). As there are two valid solutions for

the decomposition of the homographies relating each frame

with the reference frame, the solutions are chosen such that

the variance of the world plane normals is minimized. The

considered world plane normal is the average of the selected

set. As before, the cost function is minimized using non-linear

least squares.

D. Step 4 - Mosaic 3-D Referential and Image Blending

For the navigation, we are interested in establishing an

Euclidean 3-D world reference associated with the mosaic.

As its location is purely arbitrary, the origin is set at the

intersection of the optical axis of the first image with the plane

of the mosaic. The orientation is such that the mosaic plane

has null −→z coordinate, and the −→x axis is parallel to the first

camera frame −→x axis. If the information about overall scale

is available from a sensor such as an altimeter, it is also used

here. As the orientation of the world plane is explicitly taken

into account and estimated, it is straightforward to compute the

planar projective transformation that yields a fronto-parallel

view of the mosaic3.

The final operation consists of blending the images, i.e.,

choosing the representative pixels to compose the mosaic

image, taken from the spatially registered images. A common

method is using the last contributing image. However, consid-

ering the use for navigation, an alternative method is used.

The mosaic is created by choosing the contributing points

which were located the closest to the center of their frames.

In underwater applications, it compares favorably to other

commonly used rendering methods such as the average or the

median, since it better preserves the textures and minimizes

the effects of unmodelled lens distortion, which is larger at

the image borders.

E. Mosaic Construction Results

The results reported in this paper were obtained from

experiments conducted using a custom modified commercially

available Phantom 500SP ROV. The ROV is illustrated in

Fig. 4 and among other sensors, is equipped with a pan and

tilt camera. The controllable degrees of freedom are defined

3The most appropriate projection for the visaul map is the fronto-parallel,
since it minimizes the perspective image distortions in the image-to-mosaic
matching for vehicles where the camera is pointing downwards.
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by the geometric arrangement of the thrusters. The forward–

backward force and a differential torque are applied by two

horizontally placed thrusters while an upward–downward force

is applied by a vertical thruster. This arrangement creates non-

holonomic motion constraints. The ROV is wired to a remote

processing unit by a 150 meter umbilical cable. Video signals

are sent up to the ground surface for processing.

Fig. 4. Computer controlled Phantom ROV with the on–board camera. The
camera housing is visible in the lower right, attached to the crash frame.

A set of experiments using the remotely operated vehicle

were conducted at sea. The ROV was deployed from a pier,

and operated within the umbilical cord range of 100 meters.

For this range the water depth varied between 2 and 7 meters.

Although the working area was fairly flat, a large percentage of

area was covered with waving algae. Some sandy pits proved

adequate for the map construction and navigation tests. Several

successful experiments were conducted from which the most

representative are now presented.

An illustrative example of the mosaic creation process

is given in Fig. 5. The image sequence was acquired in

shallow waters of about 2 meters depth, while the vehicle was

manually driven around a squared shaped rock. During the

acquisition, the inter-frame motion estimation was performed

on-line, which allowed for the selection of 98 images based

on a 60% superposition criteria. This resulted in the upper–

left mosaic, where the effects of error accumulation are visible

near the image top in the form of a repeated white stone.

After 4 steps of topology estimation, 285 distinct pairs of

non-consecutive images (combined from the selected image

set) where successfully matched and the final topology of the

upper-right mosaic was obtained. Next, the global optimization

was carried out using full 3-D pose parameters for all cameras

and world plane description. The outcome of this step allows

for the creation of a fronto-parallel view of the mosaic, which

can be used as the navigation map.

The high quality of the final mosaic is testified by the fact

that visual features lying on the predominant ground plane,

such as the small algae covered rocks, are not disrupted along

the visible boundaries of the contributing images.

For the servoing tests, the mosaic of Fig. 6 was used,

created from 46 selected images. The original image sequence

was acquired over a sandy area delimited by algae. An on-

board sensor measured the distance from the sea floor to the

position where the first image of the sequence was captured.

The measured value of 4.29 meters was then used to set the

overall mosaic map scale. The mosaic covers approximately 64

square meters, from which 26 correspond to sand. Each pixel

on the mosaic corresponds to a sea floor area of about 2 × 2
centimeters. The rectangular region that contains the mosaic

area measures 10.8 × 9.5 meters. The mosaicing process was

able to successfully cope with image contents that clearly

departs from the assumed planar and static conditions. This

is visible in the large percentage of the mosaic area used by

moving algae.

Fig. 6. Perspective view of the mosaic used for the underwater navigation
tests, and original camera path. The dots mark the 3–D position of the camera
centres for the set of 46 images selected to create the mosaic. The world
referencial is represented by the 3 axes. Vertical lines were added to ease the
perception of the 3–D trajectory.

IV. MOSAIC NAVIGATION

Having described the methods for creating mosaics as

visual maps, we will now address the problem of navigation.

The mosaic based navigation comprises 3 distinct modules:

localization, guidance and control. An overall block illustration

of the main modules is shown in Fig. 7.

Mosaic map

Localization
(Mosaic Matching)

MosImg

Guidance
(waypoint generation)

Control

Fig. 7. Overall visual servoing control scheme.

A. Localization on the Mosaic

The first step of mosaic localization consists of finding

the initial match between the current camera image and the

corresponding area on the mosaic. To restrict the search area,

a coarse estimate is required of the vehicle 3D position

and orientation, with respect to the mosaic world referential.
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(a) (b)

(c) (d)

Fig. 5. Mosaic creation example with intermediate step outcome – Consecutive image motion estimation (a), topology estimation and and non-consecutive
image matching (b), high accuracy global registration (c) and final fronto-parallel view of the mosaic after global optimization (d). The first three mosaics
were rendered using the pixels from the last contributing image, while the last was created with the contribution from the image whose pixels were closer to
the frame center.

This will typically be provided by some other modality of

autonomous navigation in which a coarse global position

estimate is maintained, such as beacon-based navigation or

surface GPS reading. This estimate is used for searching for

point matches. If the associated uncertainty is available, then it

is used to bound the search area on the mosaic, as mentioned

in Section II-E.

If the search for point matches is not successful on the first

attempt, then a spiral search pattern is used for the subsequent

tries. This pattern defines new areas in the mosaic where the

search will be performed, thus no motion of vehicle is re-

quired. To find the appropriate distance between search areas,

a set of experiments was conducted using typical underwater

images and mosaics.

For the experimental part of this paper, no external modality

of positioning was available to provide the required initial

pose estimate. Therefore, this pose was computed from a very

coarse matching of 3 points, that were manually provided.

1) On–line tracking: The on–line tracking comprises two

complementary processes which run in parallel, at very distinct

rates.

Absolute localization – The current image is matched di-

rectly over the mosaic, to have an absolute position

estimate. This procedure is similar to the initial match, in
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the sense it uses the current position estimate to restrict

the search area, and the spiral search pattern in case of

the initial matching failure.

Incremental tracking – This process estimates the incre-

mental vehicle motion by matching pairs of images from

the incoming video stream. The motion model used

is a four-parameter homography that accounts for 3-D

translation and rotation over the vertical axis. The success

of the image matching is assessed by the percentage of

correctly matched points found. In the case of unreliable

measures, occurring when the number of selected matches

is close to the minimum required for the homography

computation, the resulting homography is discarded and

replaced by the last reliable one.

The complementary nature is illustrated by the fact that the

two processes address different requirements of the position

estimation needed for control and navigation: real-time oper-

ation and bounded errors. The mosaic matching is a time-

consuming task (as it might not be sucessful on the first

attempt) but provides an accurate position measurement. Con-

versely, the image-to-image tracking is a much faster process,

but due to its incremental nature tends to accumulate small

errors over time, eventually rendering the estimate useless for

our control purposes, if used by itself. It is also worth noting

that this scheme is well fit for multiprocessor platforms, as the

two processes can be run separately.

The contributions from the two processes are combined by

simply cascading the image-to-image tracking homographies

over the last successful image-to-mosaic matching. A typical

position estimation update rate of 7 Hz is attained, on a dual–

processor machine.

The considered image motion model for the incremental

tracking is the four-parameter homography. This model as-

sumes fronto-parallelism of the image plane with respect to the

scene, and is more restrictive than the most general six d.o.f.

model. However, the four-parameter model was found to be

the best trade-off between (1) accurate motion representation

capability and (2) insensitivity to estimation noise, which

causes accumulated error build-up.

B. Trajectory Generation

A simple trajectory generation algorithm was used for the

navigation experiments. The purpose of generating trajectories

is to make the vehicle avoid the map areas where the mosaic

matching is likely to fail. Examples of such are the areas of

non-static algae, the mosaic borders or regions that were not

imaged during the mosaic acquisition phase. In this paper,

only the distance to the mosaic borders was considered, but

the method can be used to avoid any region defined a priori

in the map.

The first step consists of the creation of a cost map as-

sociated with navigating over every elementary region of the

map image, where the regions to be avoided have higher costs

than the rest. The cost map is created by using the distance

transform [36], and contains positive values that decrease with

the distance to the border of the valid region. Outside the valid

region, the cost is set to a sufficiently large positive number.

Given the current and desired vehicle positions on the

mosaic, we want to find the path that minimizes the sum of

costs. This is formulated as a minimal path problem, where

a path is defined as an ordered set of weighted locations. To

solve it efficiently, we use Dijkstra’s algorithm [37], whose

complexity is O
(
m2

)
where m is the number of pixels in the

cost image. Fig. 8 presents an example of the generation of

trajectories using this method.

The cost map is created off-line, after the mosaic creation

phase. During operation, a new trajectory is generated on-

line each time an end-point is specified. For the purpose

of avoiding the mosaic edges, a relatively small number of

trajectory waypoints is required. Therefore, the size of the

cost image can be reduced so that the computation of the

trajectory does not compromise the on-line nature of the

mosaic servoing.

Start

End

Fig. 8. Trajectory generation example – Valid mosaic region in white (upper
left), cost image (upper right) and mosaic with superimposed trajectory (lower
image).

C. Control

Motivated by the under–actuated nature of the vehicle,

a decoupled control design is adopted, which controls the

motion of robot in the horizontal plane, and maintains a

constant altitude in the vertical plane. The controller is design

within the framework of visual servoing strategies [38], and

makes use of direct measurements on the image coordinates as

opposed to the use of 3–D pose information. Even though 3–D

information is available on-line at little added computational

cost, the image-based approach attained higher performance

on preliminary tests.

The implemented controllers were developed for visual

station keeping and docking applications [3], [39], and are

based on the approaches of Espiau et al. [40] and Malis et al.

[41]. Details on the model identification and low-level control

of the platform can be found in [42].

1) Servoing over the Mosaic: Servoing to a goal position

on the mosaic is defined as the regulation to zero of an image

error function e (s) = s − sd, where s is the image feature
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parameter vector and sd the desired value. The image center

of the current camera image is used as a feature, whose desired

position is at some (distant) docking point on the mosaic, as

illustrated in Fig. 9. The image error function is then given

by e = [xc, yc]
T − [xd, yd]

T where (xc, yc) is the projection

of the current image center onto the mosaic and (xd, yd)
represents the docking point on the mosaic. Note that the

projection of the center of the current image onto the mosaic is

calculated based on the mosaic localization procedure, which

provides the control system with the current image-to-mosaic

homography. The objective of the controller is to drive the

projected image center towards the docking position, rejecting

external disturbances.

reference position

s

s
d

Fig. 9. Definition of error measures on the mosaic. The current image frame
is represented by the frame rectangle and the reference is marked by the cross.

Changes in the image features, ṡ, can be kinematically

related to changes in the relative camera pose, by the image

Jacobian matrix L [38], [40]:

ṡ = L · vcam (14)

where vcam is the 6 × 1 camera velocity screw. The image

Jacobian for the image center is given by :

L (s, Z) =[
− 1

Z
0 xc

Z
xcyc −(1 + x2

c) yc

0 − 1
Z

yc

Z
(1 + y2

c ) −xcyc −xc

]
.

(15)

This Jacobian depends both on the image point coordinates

and their depth, Z . An exponential decrease of the error

function is obtained by imposing ė = −λ · e, with λ some

positive constant. Using Eq.(15), we can then solve for the

camera motion that guarantees this convergence:

v∗

cam = −λ · L (s, Z)+ · (s− sd) (16)

where v∗

cam is the resolved camera velocity that comprises the

control objective and L+ is the pseudo-inverse of the image

Jacobian.

Since the robot’s control input is defined, in general, in

the vehicle reference frame, it is useful to relate the vehicle

velocities to camera velocities. This relationship is given by

the vehicle-to-camera Jacobian, designated by:

vcam = Jr2c·̄vrobot (17)

where v̄robot contains the controllable velocity components

of the vehicle velocity screw and Jr2c is the robot-to-

camera Jacobian relationship. This Jacobian is a function of

the camera position and orientation in the vehicle reference

frame, Jr2c = f
(
rovRcam, Pcam

)
. If the camera position

and orientation are available beforehand, the Jacobian can be

easily computed from transforming linear and angular velocity

components between the frames. It is now possible to re-

formulate the control objective in terms of desired vehicle

velocity components, such that the image center is driven

towards the docking point over the mosaic. Also, this Jacobian

allows to take the vehicle motion constraints into account by

considering only the vehicle controllable degrees of freedom,

thus resulting into physically executable trajectories.

Substituting (17) into (14), we obtain an expression that

relates the image motion to the vehicle velocity:

ṡ = L · Jr2cv̄robot . (18)

With this expression, we can solve for the vehicle velocity

in the horizontal plane, necessary to guarantee the convergence

of the image error function:

v̄∗

robot = −λ · (L (s, Z) · Jr2c)
+

(s − sd) . (19)

Figure 10 illustrates the structure of the visual servoing

controller utilized in this paper. The term B−1 is part of

the dynamic model of the vehicle’s thrusters, and allows the

computation of the necessary forces and motor torques that

correspond to the required (steady state) velocities.

Guidance +
-

+

e

- ·(L(s,Z) ·Jr2c)
+

sd

s

× B-1 u

Mosaic

matching

Fig. 10. Control block diagram.

2) Auto–altitude control: The controller for the vertical

plane aims at maintaining the camera at a fixed altitude

during navigation. This is achieved by regulating to zero

the difference in scale between the current image–to–mosaic

homography and a reference value.

The image scaling induced by an affine transform homog-

raphy Ψ can be computed from the determinant of the upper

left 2 × 2 submatrix [43]:

s =
√
|Ψ2×2| . (20)

This does not hold for general projective homographies (as

the scale changes along the image), due to the projective

distortion. However, this is a suitable approximation if the

camera plane is approximately parallel to the ground floor.
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The scaling factor s from the current image-to-mosaic

homography is compared to a reference scaling, to generate

the control error

e = s− sd

where the reference sd is taken from the initial image–to–

mosaic homography. The control signal are generated using a

PID control action in the form

urobot = −(Kp · e+Kd · ė+Ki ·

∫
e dt) (21)

where the gains were manually tuned.

D. Mosaic Servoing Results

An illustrative underwater servoing experiment is presented

in Fig. 11 where a top-view of the ROV trajectory and refer-

ences are plotted. The ROV completed several loop trajectories

and travelled for 159 meters, during a 7 minute run. The

references where manually specified through a simple user-

interface, where the operator was required to click over the

desired end position. A more detailed view of part of the run

is given in Fig. 12, corresponding to 42 seconds.

Start

End

Fig. 11. Underwater mosaic servoing experiment. This plot shows a top–view
of the ROV trajectory for the complete run with the reference positions marked
with crosses. The ROV trajectory was recovered for the on–line image–to–
mosaic matching with updates from the image–to–image tracking, and is
marked with the full line.

During the servoing experiments all the images that where

matched over the mosaic, where also recorded on disk. As an

off-line processing step, these images were re-matched over

the mosaic, and the point correspondences where used to esti-

mate both the full 6 d.o.f. pose and the associated uncertainty

[26]. For this computation, the following assumptions were

considered:

• the only source of uncertainty was the limited accuracy

on the point matching,

• point matches were affected with Gaussian noise, uncor-

related over the two coordinates,

Fig. 12. Trajectory detail is presented comprising two endpoints. The
generated path connecting the endpoints is marked by the dashed line. In order
to allow the sense of speed, a set of arrows is superimposed. The arrows are
drawn every 2 seconds and sized proportionally to the platform velocity.

• the standard deviation was 0.5 pixels for all coordinates.

This value was experimentally measured from the resid-

uals of the homography estimation [2].

The ellipsoidal uncertainty volumes associated with the

translational part of the pose parameters, are represented in

Fig. 13. From the relatively flat, horizontally-levelled ellip-

soids, it can be seen that the uncertainty on the camera position

is larger along the −→x and −→y axes than along the −→z .

As stated above, in Section IV-A, the on-line tracking

comprises two complementary processes of position estima-

tion, running simultaneously but at distinct rates. The mosaic

matching was triggered in fixed intervals of 5 seconds, typi-

cally requiring 3 seconds to be complete if it was successful

on the first attempt. The image–to–image tracking ran perma-

nently over consecutive pairs of incoming images, and was

used to update the current position estimate at approximately

7Hz. The image processing and servoing was run on a dual–

processor 800MHz computer.

During sea trials, the set of images used by the image–

to–image tracker were recorded on disk for latter processing.

This allowed for the off-line matching of the whole sequence

over the mosaic, using the same algorithms as during the

on-line mosaic matching. The trajectory was recreated using

the 4 d.o.f. fronto-parallel parameterization for the pose and

compare it to the on-line estimates, which combined the

incremental image–to–image tracking estimate with the last

available mosaic matching.

Figure 14 plots the horizontal metric distance between the

camera centres for the on-line and off-line estimates, during a

selected period of 60 seconds. The duty cycle of the mosaic

matching is represented as a square wave, where the rising

edge corresponds to the acquisition of a new image to be

matched over the mosaic, and the falling edge corresponds
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Fig. 13. Mosaic servoing trajectory reconstruction – The two views show
the camera positions associated with the images that were directly matched
over the mosaic during the servoing run. The ellipsoids mark the estimated
camera centers and convey the uncertainty assotiated with the translation part
of the pose. The ellipsoid dimensions are set for a 50% probability. However,
for clarity reasons, the ellipsoid axes sizes were enlarged by a factor of four,
and only 143 seconds of the run are represented.

to the instant when the mosaic matching information becomes

available. The error does not fall to zero during the mosaic

updates. This is due to the fact that the mosaic-based estimate

is only available some time after the corresponding image was

acquired, thus allowing for the error to grow in between.

This plot illustrates the need and importance of the periodic

mosaic matching, which is apparent from the fast error build-

up between mosaic matches, and in its fall once the matching

is successful. This approach also presents the advantage of

allowing the monitoring of the accumulated error during the

on-line run, which can be directly measured immediately after

a successful mosaic match. Although not implemented, the

magnitude of the accumulated error can be used to adjust the

frequency of the image–to–mosaic matching, thus adapting

to cases where the image–to–image tracking performance

changes.

The reason for not doing exclusively image–to–mosaic

matching during the navigation, is the processing time in-

volved. As stated above, the image–to–mosaic matching re-

quires typically 3 seconds, if the matching is successful in the

first try. Otherwise it can take much longer. Conversely the

image–to–image can run at 7Hz.

The difference in the processing times has to do with

the dissimilarity between the on-line camera images and the

corresponding areas in the mosaic. This is mainly due to the

non-planarity and non-rigidity of the scene, and to illumination

changes over time. It is also due to implementation issues,

since during the image–to–mosaic matching we match a much

larger number of correspondences and apply feature warping

prior to the correlation.

Even if the intervals between mosaic matches were reduced

and a smaller number of correspondences were searched for,

it would be difficult to achieve a position update frequency

suitable for the visual servoing. However, being a computa-

tional issue, this trade-off between precision and availability

is much dependant on the computing resources available.
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Fig. 14. Diference between the online position estimate, using mosaic
matching with inter–image tracking updates, and the offline estimate, obtained
by maching all the images over the mosaic. The upper figure shows the
horizontal (XY) distance, where the online mosaic matching instants are
marked with small circles. On the lower figure the online trajectory is plotted
as solid line, while the offline is marked in dash.

The results on mosaic based servoing show the feasibility

of using vision as a single positioning modality for relatively

large distances, and extended periods of time. The devised
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methods allow for positioning with bounded errors through

periodic mosaic matching. Also, the uncertainty from the point

matches is taken into account, thus allowing for the prediction

of the pose estimation accuracy.

V. CONCLUSIONS

We have presented a methodology for mosaic based visual-

servoing for underwater vehicles for missions where the vehi-

cle is asked to approach a distant point.

Video mosaics are proposed as visual representations of

the sea bottom. We have developed a general and flexible

approach for building high-quality video mosaics, able to

cope with a very general camera motion and guaranteeing the

overall spatial coherency of the mosaic. As a by-product, the

vehicle trajectory can be recovered together with the associated

uncertainty. A set of visual routines were proposed for local-

izing the vehicle with respect to the mosaic. The matching

schemes differ on requirements in terms of execution speed

and accuracy. Particular care was taken to ensure the degree

of robustness necessary for processing underwater imagery.

A path planning method was applied to ensure that the ve-

hicle avoids navigating near the borders of the valid regions of

the mosaic, thus increasing the chances of correctly positioning

itself.

A visual control scheme, based on image measurements,

was proposed to drive the vehicle. It attained good overall

performance for the trajectory following, given the underactu-

ated nature of the test bed, and the the fact that no dynamic

model of the vehicle motion was used.

The methodology was tested at sea, under realistic and

adverse conditions. It showed that it was possible to navigate

autonomously over the previously acquired mosaics for large

periods of time, without the use of any additional sensory

information.

We believe that the use of large video mosaics as environ-

ment representations and as a support for navigation allows

for the development of a rich set of navigation modes that

can significantly extend the operational autonomy of mobile

vehicles acting in unstructured environments.

Several open problems and improvements will be addressed

in the future. When building the video mosaic, we plan

to develop a strategy to ensure the complete coverage of

the region of interest, during the image acquisition process,

avoiding area gaps and guaranteeing the existence of sufficient

area overlap between swaths for the topology estimation.
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