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Humans demonstrate a remarkable ability to generate accurate and ap-
propriate motor behavior under many different and often uncertain en-
vironmental conditions. We previously proposed a new modular archi-
tecture, the modular selection and identi�cation for control (MOSAIC)
model, for motor learning and control based on multiple pairs of for-
ward (predictor) and inverse (controller) models. The architecture simul-
taneously learns the multiple inverse models necessary for control as
well as how to select the set of inverse models appropriate for a given
environment. It combines both feedforward and feedback sensorimotor
information so that the controllers can be selected both prior to move-
ment and subsequently during movement. This article extends and eval-
uates the MOSAIC architecture in the following respects. The learning in
the architecture was implemented by both the original gradient-descent
method and the expectation-maximization (EM) algorithm. Unlike gra-
dient descent, the newly derived EM algorithm is robust to the initial
starting conditions and learning parameters. Second, simulations of an
object manipulation task prove that the architecture can learn to manip-
ulate multiple objects and switch between them appropriately. More-
over, after learning, the model shows generalization to novel objects
whose dynamics lie within the polyhedra of already learned dynamics.
Finally, when each of the dynamics is associated with a particular ob-
ject shape, the model is able to select the appropriate controller before
movement execution. When presented with a novel shape-dynamic pair-
ing, inappropriate activation of modules is observed followed by on-line
correction.
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1 Introduction

Given the multitude of contexts, that is, the properties of objects in the world
and the prevailingenvironmental conditions, there are two qualitatively dis-
tinct strategies to motor control and learning. The �rst is to use a single con-
troller, which would need to be highly complex to allow for all possible sce-
narios. If this controller were unable to encapsulate all the contexts, it would
need to adapt every time the context of the movement changed before it
could produce appropriate motor commands. This would produce transient
and possibly large performance errors. Alternatively, a modular approach
can be used in which multiple controllers coexist, with each controller suit-
able for one or a small set of contexts. Such a modular strategy has been
introduced in the mixture of experts architecture for supervised learning (Ja-
cobs, Jordan, Nowlan, & Hinton, 1991; Jacobs, Jordan, & Barto, 1991; Jordan
& Jacobs, 1992). This architecture comprises a set of expert networks and a
gating network that performs classi�cation by combining each expert’s out-
put. These networks are trained simultaneously so that the gating network
splits the input space into regions in which particular experts can specialize.

To apply such a modular strategy to motor control, two problems must be
solved. First, how does the set of inverse models (controllers) learn to cover
the contexts that might be experienced (the module learning problem)? Sec-
ond, given a set of such inverse models how are the correct subsets selected
for the current context (the module selection problem)? From human psy-
chophysical data, we know that such a selection process must be driven
by two distinct processes: feedforward selection based on sensory signals
such as the perceived size of an object, and selection based on feedback of
the outcome of a movement. For example, on picking up an object that ap-
pears heavy, feedforward selection may choose controllers responsible for
generating a large motor impulse. However, feedback processes, based on
contact with the object, can indicate that it is in fact light, thereby causing a
switch to the inverse models appropriate for such an object.

Narendra and Balakrishnan (1997) and Narendra, Balakrishnan, and
Ciliz (1995) have conducted pioneering work on a multiple-module sys-
tem consisting of paired forward and inverse models. At any given time,
the system selects only one control module, that is, an inverse model, ac-
cording to the accuracy of the prediction of its paired forward model. Under
this condition, they were able to prove stability of the system when the mod-
ules are used in the context of model reference control of an unknown linear
time-invariant system. To guarantee this stability, Narendra’s model has no
learning of the inverse models and little in the forward models. In addition,
no mixing of the outputs of the inverse models is allowed, thereby limiting
generalization to novel contexts.

A hallmark of biological control is the ability to learn from a naive state
and generalize to novel contexts. Therefore, we have sought to examine the
modular architecture in a framework inwhich the forward and inversemod-
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els are learned de novo, and multiple inverse models can simultaneously
contribute to control. In addition, switching between modules, as well as
being driven by prediction errors as in Narendra’s model, can be initiated by
purely sensory cues. Therefore, our goal is to develop an empirical system
that shows suitable generalization, can learn both predictors and controllers
from a naive state, and can switch control based on both prediction errors
during a movement and sensory cues prior to movement initiation.

In an attempt to incorporate these goals into a model of motor control and
learning, Gomi and Kawato (1993) combined the feedback-error-learning
(Kawato, 1990) approach and the mixture of experts architecture to learn
multiple inverse models for different manipulated objects. They used both
the visual shape of the manipulated objects and intrinsic signals, such as
somatosensory feedback and efference copy of the motor command, as the
inputs to the gating network. Using this architecture, it was possible, al-
though quite dif�cult, to acquire multiple inverse models. This dif�culty
arose because a single gating network needed to divide up the large input
space into complex regions based solely on the control error. Furthermore,
Gomi and Kawato’s (1993) model cannot demonstrate feedforward con-
troller selection prior to movement execution.

Wolpert and Kawato (1998) proposed a conceptual model of sensorimo-
tor control that addresses these problems and can potentially solve the mod-
ule learning and selection problems in a computationally coherent manner.
The basic idea of the model, termed the modular selection and identi�ca-
tion for control (MOSAIC) model, is that the brain contains multiple pairs
(modules) of forward (predictor) and inverse (controller) models. Within a
module, the forward and inverse models are tightly coupled during both
their acquisition and use. The forward models learn to divide up the con-
texts experienced so that for any given context, a set of forward models can
predict the consequences of a given motor command. The prediction errors
of each forward model are then used to gate the learning of its paired in-
verse models. This ensures that within a module, the inverse model learns
the appropriate control for the context in which its paired forward model
makes accurate predictions. The selection of the inverse models is derived
from the combination of the forward model’s prediction errors and the sen-
sory contextual cues, which enables the MOSAIC model to select controllers
prior to movement.

This article extends the MOSAIC model and provides the �rst simula-
tions of its performance. First, the model is extended to incorporate the con-
text transitions under the Markovian assumption (hidden Markov model,
HMM). The expectation-maximization (EM) learning rule for the HMM-
based MOSAIC model is derived and compared with the original proposed
gradient-based method. Second, we evaluate the architecture in several re-
spects by using the same task as Gomi and Kawato’s (1993). It con�rms that
the MOSAIC model demonstrates more ef�cient learning when compared
to the mixture of experts architecture. Next, we examine the performance of
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the MOSAIC model to novel contexts (generalization). Finally, we discuss
its performance when each context is linked to a sensory stimulus and the
effects of a mismatch of the sensory stimulus with context. These simula-
tions clearly demonstrate the usefulness of combining the forward model’s
feedback selection and the feedforward selection based on the sensory con-
textual cues.

Section 2 introduces the MOSAIC model and describes its gradient-based
learning method. In section 3, the Markovian assumption of context switch-
ing is introduced, and the EM learning rule is derived. Section 4 reports
several simulation results by using the multiple object manipulation task
(Gomi & Kawato, 1993; Haruno, Wolpert, & Kawato, 1999b). Finally, the
article concludes with the discussion in section 5.

2 MOSAIC Model

2.1 Feedforward and Feedback Selection. Figure 1 illustrates how the
MOSAIC model can be used to learn and control movements when the
controlled object (plant) can have distinct and changing dynamics. For ex-
ample, for simulations, we will consider controlling the arm when the hand
manipulates objects with distinct dynamics. Central to the MOSAIC model
is the notion of dividing up experience using predictive forward models
(Kawato, Furukawa, & Suzuki, 1987; Jordan & Rumelhart, 1992). We con-
sider n undifferentiated forward models that each receives the current state,
xt, and motor command, ut, as input. The output of the ith forward model
is Oxi

tC1, the prediction of the next state at time t,

Oxi
tC1 D w (wi

t, xt, ut), (2.1)

where wi
t are the parameters of a function approximator w (e.g., neural net-

work weights) used to model the forward dynamics. These predicted next
states are compared to the actual next state to determine the likelihood that
each forward model accounts for the behavior of the system. Based on the
prediction errors of the forward models, the likelihood, lit, of the ith forward-
inverse model pair (module) generating xt is calculated by assuming the
data are generated by that forward model dynamics but contaminated with
gaussian noise with standard deviation s as

lit D P(xt |wi
t, ut, i) D

1p
2p s2

e¡|xt¡Oxi
t |

2/2s2
, (2.2)

where xt is the true state of the system. To normalize these likelihoods across
the modules, the softmax function of likelihoods in equation (2.3) could
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Figure 1: Schematic of the MOSAIC model with n paired modules. Each mod-
ule consists of three interacting parts. The �rst two, the forward model and the
responsibility predictor, are used to determine the responsibility of the module
li

t, re�ecting the degree to which the module captures the current context and
should therefore participate in control. The ith forward model receives a copy
of the motor command ut and makes a state prediction Oxi

t. The likelihood that a
particular forward model captures the current behavior, lit, is determined from
its prediction error, xt ¡ Oxi

t, using a likelihood model. A responsibility predictor
estimates the responsibility before movement onset using sensory contextual
cues yt and is trained to approximate the �nal responsibility estimate. By mul-
tiplying this estimate, the prior p i

t , by the likelihood li
t, and normalizing across

the modules an estimate of the module’s responsibility, li
t is achieved. The third

part is an inverse model that learns to provide suitable control signals, ui
t , to

achieve a desired state, x¤
t , when the paired forward model provides accurate

predictions. The responsibilities are used to weight the inverse model outputs
to compute the �nal motor command ut and control the learning within both
forward and inverse models, with those models with high responsibilities re-
ceiving proportionally more of their error signal.

be used,1

litPn
jD1 lj

t

(2.3)

in which a value of each module lies between 0 and 1 and sums to 1 over
the modules. Those forward models that capture the current behavior, and
therefore produce small prediction errors, will have large softmax values.

1 The softmax function represents Bayes’ rule in the case of the equal priors.
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They could be then used to control the learning of the forward models
in a competitive manner, with those models with large softmax receiving
proportionally more of their error signal than modules with small softmax.

While the softmax provides information about thecontextduring a move-
ment, it cannot do so before a motor command has been generated and the
consequences of this action evaluated. To allow the system to select con-
trollers based on contextual information2 we introduce a new component,
the responsibility predictor (RP). The input to this module, yt, contains con-
textual sensory information (see Figure 1), and each responsibility predictor
produces a prior probability, p i

t as in equation (2.4), that each model is re-
sponsible in a given context,

p i
t D g(d i

t, yt), (2.4)

where d i
t are the parameters of a function approximator g. These estimated

prior probabilities can then be combined with the likelihoods obtained from
the forward models by using the general framework of Bayes’ rule. This
produces a posterior probability as in equation (2.5),

li
t D

p i
t l

i
tPn

jD1 p
j
t lj

t

, (2.5)

that each model is responsible for a given context.
We call these posterior probabilities the responsibility signals, and these

form the training signal for the RP. This ensures that the priors will learn to
re�ect the posterior probabilities.

In summary, the estimates of the responsibilities produced by the RP
can be considered as prior probabilities because they are computed before
the movement execution based only on extrinsic signals and do not rely
on knowing the consequences of the action. Once an action takes place,
the forward models’ errors can be calculated, and this can be thought of
as the likelihood after the movement execution based on knowledge of
the result of the movement. The �nal responsibility, which is the product
of the prior and likelihood, normalized across the modules, represents the
posterior probability. Adaptation of the RP ensures that the prior probability
becomes closer to the posterior probability.

2.2 Gradient-Based Learning. This section describes gradient-descent
learning of the MOSAIC model. The responsibility signal is used to gate
the learning of the forward and inverse models and determine the inverse
model selection. It ensures the competition between the forward models.

2 We will regard all sensory information that is not an element of dynamical differential
equations as contextual signal.
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The following gradient-descent algorithm, equation (2.6) is similar in spirit
to the “annealed competition of experts” architecture (Pawelzik, Kohlmor-
gen, & Müller, 1996),

Dwi
t D 2 li

t
dw i

dwi
t
(xt ¡ Oxi

t), (2.6)

where 2 is the learning rate.
For each forward model, a paired inverse model in equation (2.7) is as-

sumed whose inputs are the desired next state x¤
tC1 and the current state xt.

The ith inverse model produces a motor command ui
t as output,

ui
t D y (vi

t, x¤
tC1, xt), (2.7)

where vi
t are the parameters of some function approximator y . For physical

dynamic systems, an inverse model will exist. There may not be a unique
inverse, but feedback error learning, described below, will �nd one of the
inverses that is suf�cient for our model.

The total motor command in equation (2.8) is the summation of the out-
puts from these inverse models using the responsibilities, li

t, to weight the
contributions

ut D
nX

iD1

li
tu

i
t D

nX

iD1

li
ty (vi

t, x¤
tC1, xt). (2.8)

Therefore, each inverse model contributes in proportion to the accuracy of
its paired forward model’s prediction. One of the goals of the simulations
will be to test the appropriateness of this proposed mixing strategy.

Once again, the responsibilities are used to weight the learning of each in-
verse model as in equation (2.9). This ensures that inverse models learn only
when their paired forward models make accurate predictions. Although for
supervised learning the desired control command u¤

t is needed (but is gen-
erally not available), we can approximate (u¤

t ¡ut) with the feedback motor
command signal uf b (Kawato, 1990):

Dvi
t D 2 li

t
dyi

dvi
t
(u¤

t ¡ ut) ’ 2
dui

t

dvi
t
li

tuf b. (2.9)

In summary, the responsibility signals li
t are used in three ways: to gate

the learning of the forward models (see equation 2.6), to gate the learning
of the inverse models (see equation 2.9), and to determine the contribution
of the inverse models to the �nal motor command (see equation 2.8).

3 HMM-Based Learning

The learning rule described so far for the forward models (see equations 2.5
and 2.6) is a standard gradient-based method and thus involves the fol-
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lowing drawbacks. First, the scaling parameter s must be manually tuned.
This parameter determines the extent of competition among modules and
is critical for successful learning. Second, the responsibility signal li

t at time
t was computed only from the single observation of the sensory feedback
made at time t. Without considering the dynamics of context evolution, the
modules may switch too frequently due to any noise associated with the
observations.

To overcome these dif�culties, we can use the EM algorithm to adjust the
scaling parameter s and incorporate a probabilistic model of the context
transitions. This places the MOSAIC model selection process within the
framework of hidden state estimation; the computational machinery cannot
directly access the true value of the responsibility, although it can observe
the physical state (i.e., position, velocity, and acceleration) and the motor
command. More speci�cally, we introduce here another way of learning
and switching based on the hidden Markov model (HMM) (Huang, Ariki,
& Jack, 1990). It is related to the methods proposed in the speech processing
community (Poritz, 1982; Juang & Rabiner, 1985).

Let Xi be [xi
1, . . . , xi

t]
0 a sequence of outputs of the ith forward model

and Yi be [xi
0 u1, . . . , xi

t¡1 ut]0 a sequence of forward-model input of the
ith module. The forward model is assumed to be a linear system with the
relation Xi D YiWi, where Wi is a column vector representing the true ith
forward model parameters. By assuming gaussian noise process with a stan-
dard deviation si, the likelihood L(X|Wi , si) that the ith module generates
the given data is computed as follows:

Li(X|Wi, si ) D
1p

2p s2
i

e
¡ 1

2s2
i

(X¡YiWi )0 (X¡YiWi )
.

To consider dynamics, HMM introduces a stationary transition probability
matrix P in which aij represents a probability of switching from the ith to
the jth module:

P D

0
BBB@

a11 . . . a1n
a21 . . . a2n
...

...
...

an1 . . . ann

1
CCCA .

The gradient-based method described in the previous section implicitly
assumes that aij D 1/n, so that all transitions are equally likely. As contexts
tend to change smoothly, this assumption may lead to more frequent and
noisier switching than desired. By using these notations, the total expected
likelihood L(X|h ) that the n modules generate the given data is computed
as in equation (3.1):

L(X | h ) D
X

j

T¡1Y

tD0

ast¡1st Lst (X(t) | Wst , sst ), (3.1)
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in which h represents parameters of forward models (Wi and si), and j and
st are all the possible sequences of modules and a module selected at time
t, respectively.

The objective here is to determine the optimal parameters P, Wi, and
si, which maximize the expected likelihood L(X | h ). The standard itera-
tive technique for the problem is the Baum-Welch algorithm (Baum, Petrie,
Soules, & Weiss, 1970) which is a specialized instance of the EM (Dempster,
Laird, & Rubin, 1977).

The �rst step (E-step) is to compute the expectation in equation 3.1.
To avoid the combinatorial explosion in enumerating j , the Baum-Welch
algorithm introduces at(i) and bt(i) for dynamic programming. at(i) rep-
resents the forward probability Pr(X1, . . . , Xt, st D i | h ) of the partial
observation sequence to time t and module i, which is reached at time t
given parameter h . bt(i), on the other hand, is the backward probability
Pr(XtC1, . . . , XT | st D i, h ) of the partial observation sequence from t C 1
to the �nal observation T, given module i at time t and parameter h . The
two variables can be computed recursively as follows, and the expectation
is reduced to the sum of products of at(i) and bt(i):

at(i) D
nX

jD1

at¡1(j)ajiLi(X(t))

bt(i) D
nX

jD1

btC1(j)aijLj (X(t C 1))

L(X | h ) D
nX

iD1

aT¡1(i) D
nX

iD1

at(i)bt(i).

In the frameworkof MOSAIC model, the weighted average of inversemodel
outputs is necessary to compute the motor command. Equation 3.2 replaces
equation 2.8 to compute the motor command:

ut D
nX

iD1
at¡1(i)ui

t D
nX

iD1
at¡1(i)y (vi

t, x¤
tC1, xt). (3.2)

The second step (M-step) determines the optimal parameters for the cur-
rent value of the expectation. We introduce two variables, c t(i) and c t(i, j),
each of which represents the posterior probability of being in module i at
time t, given the observation sequence and parameters, and a posterior
probability of transition from module i to module j, conditioned on the
observation sequence and parameters, respectively. Because c t(i) can be re-
garded as an example of li

t in the previous section, we can also use c t(i)
(and at(i) for on-line computation) instead of li

t in the rest of the article:

c t(i) D P(st D i | X, h ) D at(i)bt(i)/L(X | h )
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c t(i, j) D P(st D i, stC1 D j, | X, h )at(i)aijLj(X(t C 1))btC1( j)/L(X | h ).

With these de�nitions, the state transition probabilities are reestimated as
in equation 3.3,

Oaij D
PT¡2

tD0 c t(i, j)
PT¡2

tD0 c t(i)
, (3.3)

which is the number of expected transitions from module i to module j
divided by the expected number, which stay in module i.

Since the maximization step for linear parameters is a maximum likeli-
hood estimation weighted by c t(i) (Poritz, 1982; Fraser & Dimitriadis, 1993),
new estimates of W and s ( OW and Os, respectively) are computed as in equa-
tions 3.4 and 3.5,

OWi D (Y0c (i)Y)¡1Y0X (3.4)

Os2
i D

(X ¡ Y OWi)0c (i)(X ¡ Y OWi)PT¡1
tD0 c t(i)

, (3.5)

which are the standard equations for weighted least-squared method (Jor-
dan & Jacobs, 1992). In the equations, c (i) represents a vector of c t(i).
These new parameters are used to recompute the likelihood in equation 3.1.
Although we discuss a batch algorithm for simplicity, on-line estimation
schemes (Krishnamurthy & Moore, 1993) can be used in the same way (see
Jordan & Jacobs, 1994, for details)

4 Simulation of Arm Tracking While Manipulating Objects

4.1 Learningand Control of DifferentObjects. To examinemotor learn-
ing and control in the MOSAIC model, we simulated a task in which the
hand had to track a given trajectory (30 sec shown in Figure 3b), while hold-
ing different unknown objects (see Figure 2). Each object had a particular
mass, damping, and spring constant (M, B, K), illustrated in Figure 2. The
manipulated object was periodically switched every 5 seconds among three
different objects a, b , and c in this order. The task was exactly the same
as that of Gomi and Kawato (1993). We assumed the existence of a perfect
inverse dynamic model of the arm for the control of reaching movements.
The controller therefore needs to learn the motor commands to compensate
for the dynamics of the different objects. The sampling rate was 1000 Hz,
and a trial was a 30 second run. The inputs to the forward models were the
motor command and the position and velocity of the hand. Each forward
model outputs a prediction of the acceleration of the hand at the next time
step. The inputs to the inverse model were the hand’s position, velocity,
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Manipulated
     Object

M
K

B
u

M (Kg) B (N m¡1 s) K (N m¡1)
a 1.0 2.0 8.0
b 5.0 7.0 4.0
c 8.0 3.0 1.0
d 2.0 10.0 1.0

Figure 2: Schematic illustration of the simulation experiment in which the
arm makes reaching movements while grasping different objects with mass
M, damping B, and spring K. The object properties are shown in the table.

and acceleration of the desired state. Each inverse model output a motor
command.

In the �rst simulation, we used the gradient-based method to train three
forward-inverse model pairs (modules): the same number of modules as
the number of objects. The learning rate for all modules was set to 0.01.
In each module, both the forward (w in equation 2.1) and inverse (y in
equation 2.7) models were implemented as a linear neural network. The
scaling parameter s was tuned by hand over the course of the simulation.
The use of linear networks allowed M, B, and K to be estimated from the
forward and inverse model weights.3 Let MF

j ,BF
j ,KF

j be the estimates from

the jth forward model and MI
j ,B

I
j ,K

I
j be the estimates from the jth inverse

model.
Figure 3a shows an evolution of the forward model estimates of MF

j ,BF
j ,KF

j
for the three modules during learning. The three modules started from ran-
domly selected initial conditions (open arrows) and converged over 200 tri-
als to very good approximations4 of the three objects (�lled arrows), as

3 The object dynamics can be described by a linear differential equation whose coef-
�cients are de�ned by M, B, and K. By comparing these coef�cients with weights of the
linear network, we can calculate the estimated value of M, B, and K from both forward
and inverse weights.

4 The weights were assumed to be converged if the predicted acceleration error per
point became less than 0.001.
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Table 1: Learned Object Characteristics.

Module MF
j BF

j KF
j MI

j BI
j KI

j

1 1.0020 2.0080 8.0000 1.0711 2.0080 8.0000
2 5.0071 7.0040 4.0000 5.0102 6.9554 4.0089
3 8.0029 3.0010 0.9999 7.8675 3.0467 0.9527

shown in Table 1. Each of the three modules converged to a, b , and c ob-
jects, respectively. It is interesting to note that the estimates of the forward
models are superior to those of the inverse models. This is because the in-
verse model learning depends on how modules are switched by the forward
models.

Figure 3b shows the performance of the model before (left) and after
(right) learning. The top three panels show, from top to bottom, the respon-
sibility signals of the �rst, second, and third modules, and the bottom panel
shows the hand’s actual and desired trajectories. At the start of learning, the
three modules were equally poor and thus generated almost equal respon-
sibilities (one-third) and were equally involved in control. As a result, the
overall control performance was poor, with large trajectory errors. How-
ever, at the end of learning, the three modules switched quite well but did
show occasional inappropriate spikes even though the learning parameter
was carefully chosen. If we compare these results with Figure 7 of Gomi and
Kawato (1993) for the same task, the superiority of MOSAIC model com-
pared to the gating expert architecture is apparent. Note that the number
of free parameters (synaptic weights) is smaller in the current architecture
than the other. The difference in performance comes from two features of
the basic architecture. First, in the gating architecture, a single gating net-
work tries to divide the space while many forward models split the space
in the MOSAIC model. Second, in the gating architecture, only a single
control error is used to divide the space, but multiple prediction errors are
simultaneously used in the MOSAIC model.

4.2 Feedforward Selection. This section describes results of a simple
simulation of feedforward selection using responsibility predictors. Each
dynamic object was associated with a visual cue, A, B, or C as shown in
Figure 4. The visual cue was a two-dimensional (2-D) shape represented
as a 3£3 binary matrix, which was randomly placed at one of four possi-
ble locations on a 4£4 retinal matrix. The retinal matrix was used as the
contextual input to the RP (three-layer sigmoid feedforward network with
16 inputs, 8 hidden units, and 3 output units). During the course of learning,
the combination of manipulated objects and visual cues was �xed as A-a,
B-b , and C-c . After 200 iterations of the trajectory, the combination A-c
was presented for the �rst time. Figure 5 plots the responsibility signals of
the three modules (top three traces) and corresponding acceleration error
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A B

C

Figure 4: Visual representations of the objects used as input to the responsibility
predictors.

of the control induced by the con�icting visual-dynamic pairing (bottom
trace). Until the onset of movement (time 0), A was always associated with
light mass of a, and C was always associated with the heavy mass c . Prior
to movement when A was associated with c , the a module was switched
on by the visual contextual information, but soon after the movement was
initiated, the likelihood signal from the forward model’s prediction dom-
inated, and the c module was properly selected. This demonstrates how
the interplay of feedforward and feedback selection processes can lead to
on-line reselection of appropriate control modules.

4.3 Feedback Selection by HMM. We will show here that the MOSAIC
model with the EM algorithm was able to learn both the forward and inverse
models and the transition matrix. In particular, when the true transitions
were made cyclic or asymmetric, the estimated transition matrix closely
captured the true transitions. For example, when we tested a hidden state
dynamics generated by the transition matrix P, the EM algorithm converged
to the following transition matrix OP, which was very close to the true P:

P D

0

@
0.99 0.01 0
0 0.99 0.01
0.01 0 0.99

1

A

OP D

0

@
0.9816 0.0177 0.0007
0.0021 0.9882 0.0097
0.0079 0.0000 0.9920

1

A .
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Table 2: Acceleration Error Rates: HMM-MOSAIC/Gradient-MOSAIC with
Two Types of Initial Conditions.

Initial Conditions S.D. Switching Period (Steps)

- 5 25 50 100 200

20% 0.998 0.887 1.031 0.636 0.443
40% 0.855 0.676 1.147 0.598 0.322

Now, we compare the gradient-based (see equation 2.6) and EM (see
equation 3.4) learning methods on the same condition as Figure 2. We tested
�ve switching periods of 5, 25, 50, 100, and 200 steps for the total trial length
of 600 steps. Separate simulations were run in which the initial weights
of the inverse and forward models were generated by random processes
with two different standard deviations.5 The scaling parameter s in the
gradient-based method was �xed through the simulation, whereas the EM
method automatically adjusted this parameter. Fifty repetitions of 20 tri-
als were performed for each pair of switching period and initial weight
variance.

Table 2 shows the ratio of the �nal acceleration errors of the two learning
methods: the error of EM algorithm divided by the error of gradient-based
method. The EM version of the MOSAIC model (HMM-MOSAIC) provides
more robust estimation in two senses. First, HMM-MOSAIC achieved a
precise estimation for a broad range of switching periods. In particular, it
signi�cantly outperforms gradient-MOSAIC for infrequent switching. This
is probably because gradient-MOSAIC does not take the switching dynam-
ics into account and switches too frequently. Figure 6 exempli�es typical
changes in responsibility and actual acceleration for the two learning meth-
ods. It con�rms the more stable switching and better performance of HMM-
MOSAIC. The second superiority of HMM-MOSAIC is the better perfor-
mance when the learning starts from worse (larger variance) initial values.
These two results, with the additional bene�t that the scaling parameter,
s, need not be hand-tuned, con�rms that HMM-MOSAIC is more suitable
for learning and detecting the switching dynamics if the true switching is
infrequent (i.e., every more than 100 steps).

4.4 Generalization to a Novel Object. A natural question regarding the
MOSAIC model is how many modules need to be used. In other words,
what happens if the number of objects exceeds the number of modules or
an already trained MOSAIC model is presented with an unfamiliar object?
To examine this, HMM-MOSAIC, trained with four objects a, b , c , and

5 The standard deviation of the initial conditions were 20% and 40%, respectively. In
both cases, the mean was equal to the true parameters.
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Figure 6: Actual accelerations and responsibilities of HMM-MOSAIC and
gradient-MOSAIC. (Top panels) Actual (black) and desired (blue) accelerations.
(Bottom Panels) Responsibilities of the three modules.

d in Figure 2, was presented with a novel object g (its (M, B, K) is (2.61,
5.76, 4.05)). Because the object dynamics can be represented in a three-
dimensional parameter space and the four modules already acquired de�ne
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four vertices of a tetrahedron within the 3D space, arbitrary object dynam-
ics contained within the tetrahedron can be decomposed into a weighted
average of the existing four forward modules (internal division point of
the four vertices). The theoretically calculated linear weights of g were
(0.15,0.20,0.35,0.30) . Interestingly, each module’s responsibility signal av-
eraged over trajectory was (0.14,0.25,0.33,0.28) , and the mean squared Eu-
clidean deviation from the true value was 0.16. This combination produced
the error that was comparable to the performance with the already learned
objects. When tested on 50 different objects within the tetrahedron,6 the
average Euclidean distance between the true internal division vector and
estimated responsibility vector was 0.17. Therefore, although the responsi-
bility was computed in the space of acceleration and had no direct relation
to the space of (M, B, K), the two vectors had very similar values. This
demonstrates the �exible adaptation of the MOSAIC model to unknown
objects, which originates from its probabilistic soft-switching mechanism.
This is in sharp contrast to the hard switching of Narendra and Balakrishnan
(1997) in which only one module can be selected at a time. Extrapolation
outside the tetrahedron is likely to produce poorer performance, and it is
an open research question as to the conditions under which extrapolation
could be achieved and how the existing modules relearn in such a situa-
tion.

5 Discussion

We have proposed a novel modular architecture, the MOSAIC model for
motor learning and control. We have shown through simulation that this
model can learn the controllers necessary for different contexts, such as
object dynamics, and switch between them appropriately based on both
sensory cues such as vision and feedback. The architecture also has the abil-
ity to generalize to novel dynamics by blending the outputs from its learned
controllers. The architecture can also correct on-line for inappropriate selec-
tion based on erroneous visual cues.

We introduced the Markovian assumption primarily for computational
ef�ciency. However, this can also be viewed as a model of the way context
is estimated in human motor control. Vetter and Wolpert (2000b) have ex-
amined context estimation in humans and shown that the central nervous
system (CNS) estimates the current context using information from both
prior knowledge of how the context might evolve over time and from the
comparison of predicted and actual sensory feedback. In one experiment,
subjects learned to point to a target under two different visuomotor con-
texts, for example, rotated and veridical visual feedback. The contexts were

6 Since responsibility signals always take a positive value, we will focus on the inside
of the tetrahedron.
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chosen so that at the start of the movement, subjects could not tell which
context they were acting in. After learning, the majority of the movement
was made without visual feedback. However, during these movements,
brief instances of visual feedback were provided that corresponded to one
of the two contexts. The relationship between the feedback provided and
the subjects’ estimate of the current movement context was examined by
measuring where they pointed relative to where they should point for each
of the different contexts. The results showed that in the presence of un-
certainty about the current context, subjects produced an estimate of the
current context intermediate to the two learned contexts rather than sim-
ply choose the more likely context. There were also systematic relation-
ships between the timing and nature of the feedback provided and the
�nal context estimate. A two-state HMM provided a very good �t to these
data. This model incorporates an estimate of the context transition ma-
trix and sensory feedback process, visual location corrupted by noise, and
optimally estimates the current context. Vetter and Wolpert also studied
whether the CNS could model the prior probability of context transitions.
This was examined in cases where the context changed either discretely
between movement (Vetter & Wolpert, 2000b) or continuously during a
movement (Vetter & Wolpert, 2000a). In both cases, when feedback was
withheld, subjects’ estimate of context showed behavior that demonstrated
that the CNS was using knowledge about context transitions to estimate
the context in the absence of feedback. Taken together, these results support
that the CNS uses a model of context transition and compares predicted
and actual sensory feedback to estimate the current context. Although their
HMM model does not contain inverse models and responsibility predic-
tors, it is very close in spirit to our forward models. The HMM was also
tested as a model of human context estimation when either the context
transition or sensory feedback noise was removed. The result is compat-
ible with our simulation in that neither could explain the experimental
data.

One may ask how the MOSAIC model works when the context evolu-
tion has a hierarchical structure of depth greater than one. A natural ex-
tension of the MOSAIC model is to a hierarchical structure that consists
of several layers, each comprising a MOSAIC model. At each layer, the
higher-level MOSAIC model interacts with its subordinate MOSAICmodels
through access to the lower-level MOSAIC model’s responsibility signals,
representing which module should be selected in the lower level given the
current behavioral situation. The higher level generates descending com-
mands, which represent the prior probability of the responsibility signal for
the lower-level modules, and thus prioritizes which lower-level modules
should be selected. This architecture could provide a general framework
that is capable of sequential motor learning, chunking of movement pat-
terns, and autonomous symbol formation (Haruno, Wolpert, & Kawato,
1999a).
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6 Conclusion

We have described an extension and evaluation of the MOSAIC model.
Learning was augmented by the EM algorithm for HMM. Unlike gradi-
ent descent, it was found to be robust to the initial starting conditions and
learning parameters. Second, simulations of an object manipulation task
demonstrate that our model can learn to manipulate multiple objects and
to switch among them appropriately. Moreover, after learning, the model
showed generalization to novel objects whose dynamics lay within the tetra-
hedron ofalready learned dynamics. Finally, wheneachof the dynamics was
associated with a particular object shape, the model was able to select the
appropriate controller before movement execution. When presented with
a novel shape-dynamic pairing, inappropriate activation of modules was
observed, followed by on-line correction. In conclusion, the proposed MO-
SAIC model for motor learning and control, like the human motor system,
can learn multiple tasks and shows generalization to new tasks and an abil-
ity to switch between tasks appropriately.
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