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Mosaic organization of DNA nucleotides
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Long-range power-law correlations have been reported recently for DNA sequences containing
noncoding regions. We address the question of whether such correlations may be a trivial conse-
quence of the known mosaic structure ("patchiness" ) of DNA. We analyze two classes of controls
consisting of patchy nucleotide sequences generated by different algorithms —one without and one
with long-range power-law correlations. Although both types of sequences are highly heteroge-
neous, they are quantitatively distinguishable by an alternative 6uctuation analysis method that
differentiates local patchiness from long-range correlations. Application of this analysis to selected
DNA sequences demonstrates that patchiness is not sufficient to account for long-range correlation
properties.

PACS number(s): 87.10.+e, 05.40.+j

Recently there have been several reports that certain
DNA sequences may display long-range power-law corre-
lations extending across more than 104 nucleotides [1—5].
Moreover, it appears that coding sequences do not dis-

play long-range correlations [1,2]. How to interpret these
findings is unclear at present. It is known that DNA
nucleotides form a mosaic comprised of "patches" (ex-
cess of one type of nucleotide) [6—10]. The possibility
that such patchiness is related to the appearance of long-
range power-law correlations has been raised by Nee [9]
and by Karlin and Brendel [10]. Here we address this
possibility by systematically studying distinct forms of
mosaic structure.

A useful way of analyzing patchiness arising &om
the heterogeneous purine-pyrimidine content is the DNA
walk [1], defined as follows: A one-dimensional walker
dictated by the nucleotide sequence takes one step down
when there is a purine [u(i) = —1] and one step up when
there is a pyrimidine [u(i) = 1]. The displacement of the
walker after n steps, y(n), is defined as y(n):—P," i u(i),
and is displayed on a graph of y vs n as in Fig. 1 [11].

Figure 1(a) shows a representative DNA walk for a
class of artificial "control" sequences generated by stitch-
ing together subsequences that correspond to random
walks with different nucleotide composition (strand bias)
[12]. Figure 1(b) shows a representative DNA walk for
a difFerent class of sequences, generated by a model with
a well-defined long-range power-law correlation [13]; the
heterogeneous structure of this control sequence arises
directly from the long-range correlation itself.

We find apparent patchiness in real DNA sequences—
both in the noncoding and coding regions. Figure 1(c)
displays the E. coli K12 genomic fragment (composed of
more than 80%%uo coding regions), while Fig. 1(d) shows the
human T-cell receptor alpha/delta locus (( 10% coding).

The fundamental di8'erence between the two control
sequences is that the first does not possess long-range
power-law correlations, while the second does. Therefore
, ~ appropriate scaling analysis of the correlation proper-
ties should be able to distinguish between them. In Ref.

[1], a "min-max" method was proposed to take into ac-
count the "nucleotide heterogeneity. " A potential draw-
back of this method is that it requires the investigator to
judge how many local maxima and minima of a landscape
to utilize in the analysis. Here we present an alternative
method —"detmnded fluctuation analysis" (DEA)—that
is independent of investigator input and permits the de-
tection of long-range correlations embedded in a patchy
landscape [such as Fig. 1(b)], and also avoids the spu-
rious detection of apparent long-range correlations that
are an artifact of patchiness [Fig. 1(a)].

The DFA method comprises the following steps.
(1) Divide the entire sequence of length N into N/E

nonoverlapping boxes, each containing E nucleotides, and
define the "local trend" in each box (proportional to the
compositional bias in the box) to be the ordinate of a
linear least-squares fit for the DNA walk displacement in
that box [14].

{2)Define the "detrended walk, " denoted by yt{n), as
the difFerence between the original walk y(n) and the
local trend. Calculate the variance about the detrended
walk for each box, and calculate the average of these
variances over all the boxes of size E, denoted Fdz(E) [15].

To illustrate the DFA method, we show in Fig. 2 a
1000-nucleotide subsequence of the DNA walk of bac-
teriophage A [GenBank name: LAMCG, 48502 bp (bp
denotes base pair)]. Figure 2(a) shows the local trends
when this subsequence is partitioned into boxes of size
E = 100 while Fig. 2(b) shows the local trends when the
subsequence is partitioned into boxes of size E = 200. It is
apparent by visual inspection that the variance increases
with the box size. The dependence of variance on box size
gives rise to the scaling properties of the Huctuations.

If only short-range correlations (or no correlations) ex-
ist in the nucleotide sequence, then the detrended DNA
walk must have the statistical properties of a random
walk (unbiased or biased) so Eg(E) giIz; however, if
there is long-range power-law correlation (i.e., no char-
acteristic length scale), then Ed(t') / with n g li2
[16].
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FIG. 1. (s) DNA walk for a control sequence obtained by stitching together biased random walks; the characteristic length
for the patches is 2500. (b) DNA walk for a control sequence obtained from building s long-range correlation into s set of
100000 "nucleotides" which are correlated with power-law exponent a = 0.61 using the procedure of Ref. [13]. (c) DNA walk
for s genomic fragment containing mostly coding regions [E coli K12. genome, 0—2.4 min region, GenBsnk name: ECO110K,
111401bp]. (d) DNA walk for s typical intron-containing chromosomal region of s comparable length (humsn T-cell receptor
alpha/delta locus, GenBank name: HUMTCRADCV, 97634 bp). Large subregions ("patches") of uniform overall slope ("strand
bias" ) re8ect the mosaic structure. To facilitate the comparison of subtle nuctustions, each landscape is plotted so that the
end point has the same vertical displacement as the starting point, i.e., the overall bias has been removed.

Figure 3 shows the results of applying DFA to the DNA
walks displayed in Fig. 1. We note that the two types
of control sequences are clearly distinguishable by their
difFering values of the scaling exponent: a = 0.51 for the
uncorrelated control while a = 0.61 for the correlated
control. Moreover, the E. coli chromosomal sequence
of Fig. 1(c), composed primarily of coding regions, has
the same exponent (fx 0.5) as the uncorrelated patch
model of Fig. 1(a). In contrast, the genomic sequence
containing noncoding regions of Fig. 1(d) has the same
exponent (ix ) 0.5) as the correlated control sequence of
Fig. 1(b) [17].

Figure 3 also demonstrates the fact that the DFA
method is capable of identifying the characteristic length
scale of the biased subregions of the uncorrelated con-
trol sequence of Fig. 1(a). The arrow indicates the
crossover &om n —0.5 to larger o. values occurring at

2500, a value that coincides with the char-
acteristic length scale "built into" the uncorrelated con-
trol sequence of Fig. 1(a) [12]. Moreover, the E. coli
data also exhibit a crossover at roughly the same value
of 8„, suggesting the existence of a characteristic patch
size in the E coli nucleotide .sequence (probably corre-
sponding to the average length of a protein). We find
similar crossover phenomena for other coding sequences.
In contrast, no such crossover phenomenon occurs for the
correlated control sequence of Fig. 1(b) or for the intron-
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FIG. 2. DNA walk generated by a subsequence of the bac-
teriophage A genome. The detrended Huctuation analysis
(DFA) is applied in (s) to box size I = 100, snd in (b) to
box size 8 = 200. Shown in each box is the least-squares 6t
to the data in that box. One sees that the typical variance
for s box iu (s) is smaller than for s box in (b).
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FIG. 3. DFA analysis of the four landscapes shown in
Fig. 1. The uncorrelated biased random walk [Fig. 1(a)] (x)
is similar to the E. coli genomic coding fragment [Fig. 1(c)]
(CI), while the correlated control sequence [Fig. 1(b)] (+) is
quite similar to the highly noncoding human T-cell receptor
alpha/delta locus [Fig. 1(d)) (o). The lower solid line, the
best St for E. coli data from 8 = 4 to 861, has slope 0.51.
The upper solid line, the best Gt for human data from 4 = 4
to 8192, has slope 0.61. The arrow denoting the crossover
phenomenon is explained in the text.

A discrepancy b'etween the work of Ref. [10] and the
alternative analysis presented here is exemplified in Fig.
5, which reanalyzes the example studied in Ref. [10]:
the complete genome for bacteriophage A consisting pri-
marily of coding sequences. The DNA walk for this se-
quence (inset) exhibits three prominent patches of difFer-
ent strand bias. The "uncorrected" (nondetrended) fiuc-
tuation analysis applied in Ref. [10] shows a slope close to
0.5 only for quite small values of E (I. ( 20), and a slope
crossing over to a value close to unity for large 8 Re. fer-
ence [10] attributed the long-range correlations reported
in Refs. [1—4] to crossover phenomena of the sort exhib-
ited in the example shown in the top curve of Fig. 5. How-
ever, DFA for the same DNA sequence (bottom curve)
reveals that the scaling region with n 0.5 actually ex-
tends up to 3 decades, thus providing evidence that this
heterogeneous sequence resembles the patch model with-
out long-range correlations [18]. This crossover behav-
ior, observed in many coding sequences, is readily dis-
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containing DNA of Fig. 1(d), corresponding to the exis-
tence of correlations at all scales (i.e. , no characteristic
patch size).

We also utilize the DFA method to study the complete
distribution (normalized histogram), P(yg), of the basic
quantity yr(n). One quantitative measurement of this
distribution is the standard deviation, E~(E) Figure 4.
shows the histogram for the actual DNA and control se-
quences in Fig. 1. The histograms of the coding sequence
and uncorrelated control sequence are virtually indistin-
guishable only when both are rescaled by the correct ex-
ponent a = 0.51 [(Fig. 4(a)]. Moreover, the histograms
of the sequence containing noncoding regions and of the
correlated control sequence are virtually indistinguish-
able only when both are rescaled by the correct exponent
a = 0.61 which is appropriate for a correlated sequence
[Fig. 4(b)]. This finding demonstrates that the exponent
a describes the scaling properties of the entire distribu-
tion, not just the standard deviation Fg(E).

The DFA method, therefore, allows us to unambigu-
ously differentiate two properties that were previously
diKcult to distinguish: (i) the value of o., which mea-
sures the degree of long-range correlation (indicating the
absence of a characteristic length scale), and (ii) the ap-
proximate value of E„, the crossover value, indicating the
characteristic length scale of patches. Moreover, these re-
sults indicate that patchiness by itself cannot account for
long range power lax-v correlations f-oundin noucoding re
gions —since the uncorrelated patch model does not lead
to a ) 1/2. However, recent model studies demonstrate
explicitly how one can find a ) 1/2 if the patches have
no characteristic length scale [18].
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FIG. 4. Histogram of y&. We rescale the abscissa by E and
rescale the vertical variable, P(y&), such that the peaks of all
histograms are the same (= 1). Shown are four difFerent box
sizes f.. (a) shows the genomic fragment of Fig. 1(c), plotted
with n = 0.51. Similarly, (b) shows the intron-containing
gene of Fig. 1(d) for n = 0.61. The solid line in (a) is for
the uncorrelated control sequence of Fig. 1(a) with E = 400,
while the solid line in (b) is for the correlated control sequence
of Fig. 1(b) with E = 400. These histograms can be very
well Stted by P(yg) exp( —yz/c), where c is a constant and
h 1.8 (very close to Gaussian, for which b = 2). The form of
the histogram provides important information for validating
diferent models proposed recently for explaining long-range
correlations in noncoding sequences [18,19].
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FIG. 5. Comparison of the Huctuation
analysis used in Ref. [10] and the DFA pre-
sented here. The DNA sequence is for the
complete genome of lambda phage, whose
DNA walk appears in the inset. The two
parallel dotted lines have slope 0.5. A best
fit straight line to Fg(f) for the interval f = 4
to 1024 has slope o. = 0.51.
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tinguishable Rom true power-law correlations observed
in noncoding sequences which usually exhibit constant o.
value () 0.5) over several decades —more than 3 decades
in the case of the data displayed in Fig. 3.
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