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MOSCO CONVERGENCE AND THE KADEC PROPERTY

JONATHAN M. BORWEIN AND SIMON FITZPATRICK

(Communicated by William J. Davis)

Abstract. We study the relationship between Wijsman convergence and Mosco

convergence for sequences of convex sets. Our central result is that Mosco

convergence and Wijsman convergence coincide for sequences of convex sets

if and only if the underlying space is reflexive with the dual norm having the

Kadec property.

1. Introduction

There are many notions of convergence of sequences of convex sets in a

normed space. This paper was stimulated by the analysis in Beer [Be] where

various notions of set convergence are characterized when the sets in question

are hyperplanes. One of the most fruitful notions is that of Mosco convergence

[At, Be, Mol, Mo2, Sa-We, So, Ts]. Mosco convergence is particularly useful in

reflexive spaces since then polarity is sequentially bicontinuous (En converges to

E if and only if En converges to E ;see[Mo2]). Another more intuitive notion

is that of Wijsman convergence [Wi]. It has been known for some time that these

notions coincide when the underlying space is reflexive and the norm used is

Fréchet differentiable [At, So, Ts] and when the space is finite dimensional.

Beer has shown that this coincidence fails, even for sequences of hyperplanes,

whenever the dual norm is not Kadec.

Our central result (Theorem 3.4) is that Mosco convergence and Wijsman

convergence coincide for sequences of convex sets if and only if the underlying

space is reflexive with the dual norm having the Kadec property. This recaptures

the results mentioned above. We establish this by providing a circuit of char-

acterizations of reflexive spaces whose dual norm is Kadec (Theorem 3.1). The

proof of this result is motivated both by Tsukada's technique and Beer's anal-

ysis. In §2 we make the appropriate definitions and provide some preliminary

results.
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2. Preliminary results

Throughout this paper X is a real Banach space endowed with a fixed norm,

INI-
A sequence of sets {Cn} in X is said to converge Wijsman to a set C if

limn^ood(x,Cn) = d(x,C)

for each x in I, where d(x, C) := infceC ||jc — c|[ and d(x, 0) = oo. We will

write lim^ Cn = C.
A sequence of sets {Cn} in X is said to converge Mosco to a set C if

M(i): for each x e C there exist, for large n,xn e Cn suchthat xn converges

in norm to x.

M(ii): if there is a subsequence n   with xn, e Cn, such that xn, converges

weakly to a point x then x eC.

We will write lim,, C = C.
M     n

It is apparent that Wijsman convergence depends on the precise norm used,

while Mosco convergence is preserved by equivalent renorming. We now record

some useful relationships.

Proposition  2.1. (a)  If Cn   are subsets of X   and   lim^ Cn   =   0   then

iimMCn = 0-

(b) Conversely, if X is reflexive and HmM Cn = 0 then lim^ Cn = 0.

Proo/". (a) For C empty, M(i) holds vacuously. If M(ii) fails with C empty

then there is a subsequence n with xn, e Cn, such that xn, converges weakly

to a point x. But now {*„,} is bounded and liminf<f(.x,Cn) < oo whence

limwCn = 0.
(b) If liminfd(x,Cn) < oo we can find a bounded subsequence cn) e C„,.

By weak compactness there is a further subsequence cn„ e Cn„ with weak limit

x0. By M(ii) we see that x0 e HmM Cn = 0. This contradiction establishes

that liminfd(x,Cn) = oo so that lim^ Cn = 0.     D

Theorem 2.2. (a) If X is reflexive and lim^ Cn — C then lim^, Cn = C.

(b) If X is nonreflexive there is a sequence {Cn} of compact convex sets

with lim^ Cn — C compact convex and nonempty, but lim^ Cn fails

to exist.

Proof, (a) We may suppose that C is nonempty. Let e > 0. Choose c e C

so that H* - c\\ < d(x, C) + e . By M(i) select cn € Cn with cn converging in

norm to c. Then

limsxxpd(x,Cn) < lim||.x -cn\\ - \\x -c\\ < d(x,C) + e,

and so

limsupí/(^,Cn)<íi(x,C).

Suppose now that liminfd(x,Cn) < d(x,C) -e. Select cn, e Cn, with

||x - cn,\\ < d(x, C) - e . Since X is reflexive {cn,} has a weak subsequential
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limit point x0 which, by M(ii), lies in C. Thus, as the norm is weakly lower

semicontinuous

d(x,C) < \\x - x0\\ < d(x,C) -e,

a contradiction.

(b) Suppose X is not reflexive. Select e in I with \\e\\ = 1. Consider

K := B[0,1] n B[e, j]. (Here B[x, r] is the closed ball of radius r around x.)

Since K contains B[\e, \], K is not countably weakly compact and we can

find en with \\en\\ < 1, \\e — en\\ < \ so that {en} has no weak cluster point

[Da]. We now let Cn := ordinary{0,en} and C := {0} .

We first establish that limM Cn = C. Since 0 6 Cn for all n , it suffices to

show that if 0 < t, < 1 and t„,en, converges weakly to x then x = 0. We

may assume, on extracting a further subsequence, that tn, converges to t. If

t - 0 then x = 0 since \\en\\ < 1.  If t > 0 then en, converges weakly to

f~ X, which is impossible.

Suppose that lim^ Cn = C'. For any y G C' we have d(y ,Cn) —> 0. By

M(ii) we see that y = 0. Thus C' = C = {0} . However,

die C \<\\e  -e\\ < ±

while d(e, C) = \\e\\ = 1 and lim^ Cn¿ C.     u

Part (a) of the previous result is well known (see [So], p. II.6).

Corollary 2.3. A Banach space X is reflexive if and only if Mosco convergence

implies Wijsman convergence for sequences of closed convex subsets of X.

This corollary explains the need for reflexivity in our main results. The next

result similarly explains the need for convexity of the subsets.

Theorem 2.4. A Banach space X is finite dimensional if and only if for every

sequence {Cn} of weakly closed subsets of X, and weakly closed set C

lim^ Cn = C   if and only if   lim^ Cn = C.

Proof. First, suppose X is finite dimensional. Then Wijsman and Mosco con-

vergences coincide for closed sets [Au, p. 244]. Second, Theorem 2.2(b) covers

the nonreflexive case.

Suppose now that X is reflexive and infinite dimensional. Since 0 is in the

weak closure of the unit sphere, we can choose a sequence {en} of unit vectors

converging weakly to zero (by the Kaplansky-Whitley construction, [Da, p. 58]).

Select a norm-one linear functional /, and define

C:={x:\f(x)>\}   and   Cn:=Cu{en}.

An easy computation shows that

d(x,C) = max{0,2--\f(x)\}

and

d(x, Cn) = min{d(x, C), ||x - en\\} < d(x, C).
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Observe that liminf ||x - en\\ > max{||x||, 1 - ||x||} > \ > d(x,C) for all x

(because {en } converges weakly to zero and the norm is weakly lower semicon-

tinuous). This shows that liminf<i(x,C;¡) > d(x,C) and so limwCn - C.

Also C and each Cn is weakly closed. However, en € Cn and {en} converges

weakly to 0 £ C. Thus limM Cn^C.     D

Remark 2.5. A sequence {Cn} of subsets of X converges Mosco [Wijsman] to

a set C if and only if {clCn} converges Mosco [Wijsman] to C. Thus there

is no loss of generality in considering only norm-closed sets.

3. Dual Kadec spaces

Three definitions are needed.  First recall that the duality map J between

X and X* is the subgradient of j|| ||  ; explicitly x* e J(x) if and only if

ll-^'ll = IMI = (x* ,x). Also / is said to norm-usco provided that J is

norm to norm upper semicontinuous with norm compact images (see [GGS]).

In particular, if either the norm is Fréchet or X is finite dimensional then

J is norm-usco. A dual Banach space X* is (sequentially) weak* Kadec if

whenever {x*n} is a sequence of norm-one elements of X* converging weak *

to a norm-one element x* then lim \\x* - x*\\ = 0.

Theorem 3.1. Let X be a reflexive Banach space. The following statements are

equivalent:

(1) X* is (sequentially) weak* Kadec.

(2) The duality map on X is norm-usco.

(3) If x e X/{0} and xn e X converge weakly to x then there is 6 in

]0,1] suchthat limsup||x - 0xj| < ||x||.

(4) If x e X/{0} and xn € X converge weakly to x then there is 6 in

]0,1] suchthat liminf \\x - 6xn\\ < \\x\\.

(5) If {Cn} is a sequence of closed convex subsets of X, for which lim^ Cn

exists and is closed, then lim,. C„ = lim^ C .
M      H w      n

(6) // /„  and f are elements of X*  and X\mw f~x(l) = /_I(1), then

limM/-1(l) = /-'(l).

(7) If xn € X converge weakly to x and fn e X* converge weak*  to f

such that H/JI = U/H = (fn,xn) = 1, then (f,x) = 1.

Proof. (1) => (2). Let {xn} converge in norm to x and fn € J(xn). Then, as

J is locally bounded, there is a subsequence {fn,} weakly converging to some

/. Since

ll/„ll2 = IK,||2 = </„, xn)

while xn, —► x we have

(f,x) = lim(fn,,x) = lim(fn,,xn,) = lim||xn/||2 = ||x||2.

So 11/11 > lim||/n,|| and so, by weak lower semicontinuity of the dual norm,

U/H = lim H/JI. By the Kadec property, ||/„, - f\\ - 0.  '
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Some consideration shows that this implies (a) that for all e > 0 there is

S > 0 with J(x) + B[0,e] 2 J(B[x,S]) ; and (b) that J(x) is norm-compact.

(2) => (3). Let x / 0 and {xn} converge weakly to x. Let e > 0 with

esup||xj| < ||x||2. Pick 6 in ]0,1] and fneJ(x - dxn) so that d(fn,J(x))

<e for all n, as is possible since {xn} is bounded and J is norm-usco. Choose

a subsequence {•*„,} with lim ||x-0x^,11 = limsup||x-0xj|. Select gn G J(x)

with ||/„-gn|| <e for all n. Since J(x) is compact we may assume that {gn,}

converges in norm to some g G J(x). Eventually we have \\fn, - g\\ < e .

We have, from the subgradient property of J,

{||x-0x„,||2-||x||2}/2 <-(/„,,6xn,)

= -(fn,-g,0xn,)-(g,dxnl)

<-0{g,Xn,) + 8e\\xnl\\.

Thence

lim{||x - dxn,\\2 - \\x\\2}/2 < 8(esup\\xn,\\ - \\x\\2) < 0,

which shows that ||x|| > lim||x - 0xn,\\ = limsup||x - 0xn\\.

(3) =>- (4). This is immediate.

(4) => (5). Let Cn and C be closed convex sets with d(x, Cn) —► d(x, C) for

all x . If C = 0 then Proposition 2.1 (a) shows lim^ Cn — 0 . If x € C then

d(x, C) = 0 so that d(x, Cn) —> 0 and one can find cn e Cn with cn —► x .

Hence M(i) holds. Now suppose that xn, G Cn, and xn, converges weakly to

x . We must show that x e C . Otherwise we let c / x be the nearest point in

C to x (C is convex and closed, and so proximinal). By translation we arrange

that c = 0, so that d(x, C) = ||x|| and 0 e C. As above we can find cn G Cn

with cn —► 0. Let yn, := xn, - cn, which converges weakly to x / 0.

We apply (4) to {yn,} and x . For 8 as promised we observe that

and so

d(x,Cn,) - ||x|| < ||x - (6yn, + cn,)\\ - \\x\\ < \\cn,\\ + \\x - 8yn,\\ - \\x\\.

Thus

0 = d(x, C) - \\x\\ = limd(x, Cn,) - \\x\\ < liminf[||cn,|| + \\x - 8yn,\\ - \\x\\]

= liminf[||x-oyfl,||-||x||]<0,

a clear contradiction. Thus x G C, giving M(ii).

(5)^(6). Let Cn:=/;'(1) and C:=/-'(l).

(6) => (7). We have x  G X converging weakly to x and / G X* converging
r-l,

weak* to / such that ||/J| = ||/|| = (fn,xn) = 1 .   Let Cn := fn '(1) and

C := /~'(1) - A computation shows that

d(x,Cn) = \l-(fn,x)\   and   d(x,C) = \l-(f,x)\,
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so that d(x,Cn) —* d(x,C) for all x. Thus by (6) lim^ Cn = C. Now

xn G Cn and {xn} converges weakly to x, so that x eC and (f ,x) = 1.

(7) =>• (1). We will establish (1) in the form:

(l') If ll/JI = U/H = 1 and {fn} converges weak* to /, then {fn} con-

verges to / uniformly on weakly compact sets. Since X is reflexive,

(l') is equivalent to (1).

Suppose (l') fails. Then select a weakly compact set W and a subsequence

{/„.} of {/„} with

sup |(/„, -/,wj)| >e >0.
wefv

Let xn, G W with \(fn, - f ,xn,)\ > e, and extracting subsequences we may

assume that {xn,} converges weakly to x and (fn, ,xn,) —> a ^ (f ,x). Then

x   — x
yn, :— . f  "'-r    converges weakly to 0,

\Jn' ' Xn' ~ Xl

and since (fn,,y„,) = 1 = ||/„,|| = ||/|| and {yn,} converges weakly to 0,

we obtain from (7) that (/,0) = 1. This contradiction establishes (l') and

completes our circuit.   □

Remark 3.2. (a) Let us reiterate that these equivalences hold for any finite-

dimensional normed space [obvious from (3)] or when the norm is Fréchet

differentiable [obvious from (2)].

(b) Note in a reflexive space that there is a complete duality between the

Kadec condition (1) and the Tsukada conditions (3) and (4).

(c) In each of conditions (3) and (4) " < " may be replaced by " < ", as

follows if Xn is replaced by 2xn - x in the nonstrict version.

Corollary 3.3. If X is a smooth reflexive normed space then the norm on X is

Fréchet if and only if the equivalences (1) through (7) of Theorem 3.1 hold.

Proof. Since X is reflexive, the norm is Fréchet precisely when the dual norm

is strictly convex and Kadec, or equivalently when the original norm is smooth

and the dual norm is Kadec [Ho, Ts, Bo-Fi].     D

Theorem 3.4. A Banach space is reflexive and dual Kadec if and only if Mosco

and Wijsman convergences coincide for sequences of closed convex sets.

Proof. Combine the equivalence of (1) and (5) of Theorem 3.1 with Corollary

2.3.     D

The next result extends and unifies Theorem 3.3 of Tsukada [Ts].

Corollary 3.5. If the norm on X* is Fréchet differentiable (so X is reflexive)

and Kadec, then the following are equivalent for any sequence {Cn} of closed

nonempty convex subsets of X.

( 1 )   lim^ Cn exists and is nonempty.

(2) lim^, Cn exists and is nonempty.

(3) For every x G X the sequence of metric projections of x onto Cn  is

norm convergent.
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Proof. This follows by Tsukada's arguments [Ts, pp. 306-307] on replacing his

Theorem 2.5 by our Theorem 3.4.   □

We note that one can explicitly give norms on l2 which are smooth but

for which the dual is not Kadec: let | | be the Hubert norm on l2 and set

|||(r,x)|||2 := \\(r,Tx)\\2 + max{||x||,|r|}2 where (Tx)n := xjn. Then the

dual norm is smooth but its dual is not Kadec. So we have a smooth equivalent

norm on Hubert space for which Mosco and Wijsman convergences do not

coincide for sequences of closed convex sets.

We finish this section by noting a remarkable duality.

Theorem 3.6. Mosco and Wijsman convergences coincide for sequences of closed

convex sets in a Banach space X if and only if every closed nonempty subset C

of X* is almost proximinal (i.e. there is a generic set of points in X*\C which

admit nearest points in C).

Proof. By the theorem of Lau [La] and Konjagin [Ko], also derived in

[Bo-Fi, Theorem 5.11], the second condition also coincides, with X* being

reflexive and Kadec.   D

4. The nonreflexive case

While the results of §2 show that many things fail in the absence of reflexivity,

there is an adequate analogue for Theorem 3.1.

Theorem 4.1. Let X be a Banach space whose dual unit ball is weak* sequen-

tially compact. The following statements are equivalent.

(1) If fn and f are elements of X* with ||/J| = ||/|| = 1 and if {/„}
converges weak * to f while f is norm-attaining, then {fn} converges

to f uniformly on weakly compact sets, that is to say in the Mackey

topology x := x(X* ,X).

(2) The duality map on X is norm- x upper semicontinuous with sequen-

tially x-compact images.

(3) If x € X/{0} and xn G X converge weakly to x then there is 6 in

]0,1] such that limsup||x - 0xn|| < ||x||.

(4) If x G X/{0} and xn G X converge weakly to x then there is 6 in

]0,1] such that liminf ||x - 0xj| < ||x||.

(5) If {Cn} is a sequence of closed convex subsets of X, for which limwCn

exists and is proximinal, then limM Cn = lim^ Cn.

(6) If fn and f are elements of X* with f norm-attaining and limw f~ (1)

= f~l(1), then limMf;1 (I) = f~l(I).

(7) If xn G X converge weakly to x and fn G X* converge weak* to a

norm-attaining element f G X* such that \\fn\\ - \\f\\ = (f„,xn) = 1,

then (f,x) = l.

Proof. The proof proceeds essentially as in Theorem 3.1, replacing the norm

topology on X* by the Mackey topology x (see [GGS]).     D
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For any Banach space with an equivalent smooth norm the dual unit ball is

weak * sequentially compact. This holds whenever the space is WCG and so if

X is separable or reflexive.

Corollary 4.2. Let X be a Banach space whose dual unit ball is weak* se-

quentially compact. Supposes that either (1) the dual norm is sequentially

weak* Kadec or (2) the norm is Fréchet differentiable. If {Cn} is a sequence

of closed convex subsets of X, and lim^ Cn  exists and is proximinal, then

limM Cn = lilTV Cn ■

Proof. (1) and (2) are stronger than (1) and (2) of Theorem 4.1.   D

Example 4.3. (a) Let X be c0(S) for any set S, endowed with the supremum

norm. Then Corollary 4.2(1) holds.

(b) Let X be c0(S), endowed with any Fréchet differentiable renorm. Then

Corollary 4.2(2) holds.
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