
MOSEL: A Flexible Toolset

for Monadic Second-Order Logic

Peter Kelb, Tiziana Margaria, Michael Mendler, Claudia Gsottberger

Universits Passau, D-94032 Passau (Germany),
{kelb, tiziana,mendler, gsottber}@fmi, uni-passau, de

Abst rac t . MOSEL is a new tool-set for the analysis and verification in
Monadic Second-order kogic. In this paper we concentrate on the sys-
tem's design: MOSEL is a tool-set to include a flexible set of decision
procedures for several theories of the logic complemented by a variety
of support components for input format translations, visualization, and
interfaces to other logics and tools. The main distinguishing features of
MOSEL are its layered approach to the logic, based on a formal seman-
tics for a minimal subset, its modular design, and its integration in a
heterogeneous analysis and verification environment.

1 I n t r o d u c t i o n a n d B a c k g r o u n d

Already 30 years ago Alonzo Church proposed monadic second-order logic on

strings (M2L(Str)) as an appropriate specification formalism for reasoning about

sequences of bitvectors [9]. This logic is among the most succinct decidable log-

ics known to capture finite state systems. It is decidable, however, only in non-

elementary time: the worst-case complexity is a stack of exponentials of height

proportional to the size of the formula, a good reason for it having been consid-

ered impractical for a long time. Known almost exclusively to theoreticians for a

long time, recently this logic celebrates a certain renaissance: despite the worst-

case computational ' intractability' of this logic, relevant practical problems are

usually far bet ter behaved and can be solved automatically in reasonable time.

Fields of application have been the specification, verification, and synthesis, in

a fully automatic manner, of relevant classes of parametric systems. In particu-

lar, the logic can be used profitably as a description language for model-based

analysis of software [17] as well as hardware systems [2,16,18,19] and is therefore

a good candidate formalism for hardware/software codesign. Some examples of

distributed systems have been addressed too [14,15]. From an application point of

view this logic conveniently combines two important features in a single formal-

ism: It is both an abstract specification language and an effective programming

language. Every specification can be translated into executable behaviour in the
form of an equivalent finite state automaton.

In this paper we present MOSEL, a new system for the automatic analysis

and verification in Monadic Second-order [ogic. The accent here is put primar-

ily on the system's design, rather than on individual algorithms: MOSEL is a

!84

tool-set, which, in its complete realization, will include a flexible set of decision
procedures for several theories of the logic (e.g., finite and infinite strings, and
trees) complemented by a variety of support components to provide input for-
mat translations, visualization, and interfaces to other logics and other analysis,
verification, and synthesis tools.

The availability and construction of composite, even heterogeneous tools
is supported by the MEwAFrarne| 1 concept [25,26], a system-level program-
ming environment, and it is actively promoted in projects like the METAFrame-
based Electronic Tool Integration platform which will be available in the coming
Springer Journal on Software Tools for Technology Transfer. From these and
other project experiences it has clearly emerged that single monolithic systems
are becoming less and less adequate for the challenges of modern system-level
verification, and that tool support must be granted in an increasingly flexi-
ble, application-specific, and user-friendly way. The decision of extending the
repository of algorithms, tools, and support components already available in
METAFrame to deal also with monadic second-order logic, therefore, was natu-
rally linked with a component-based implementation, which increases software
reusability and offers high flexibility for the overall environment.

At the moment we have implemented in MOSEL a semantic decision pro-
cedure for monadic second-order logic over finite strings and a set of interface
modules. Decision procedures for other variants of the logic as well as further

support components are planned to follow at need. Although in the rest of the
paper we will refer only to the current tools of MOSEL, the design principles and
the overall system concept are valid in general.

Related Work. Toolmakers have recently started to show interest in monadic
second-order logic. To our knowledge, however, only few implementations are
available at the moment. Two groups have been actively working on tools:
in ~rhus the Mona [14] and Mona++ packages implement interpretations over
strings and trees respectively, and in Kiel the AMoRE system [20] offers a de-
cision procedure for the logic over trees. Decision procedures are also soon to
be integrated into STeP [3], and interests in a similar development have been
recently shown by the hardware groups at Berkeley and at Indiana University.

The current implementations successfully demonstrated on several interest-
ing case studies, spanning diverse fields of application, that practical examples
are often indeed much better behaved than the staggering theoretical worst case
complexity would suggest. However, they are still closer to research prototypes,
basically lacking documentation as well as flexible structuring and user inter-
faces, which severely restricts their value for general users.

We can best compare the current finite string implementation of MOS~.L with
Version 0.2 of the Mona tool [14]. In our experience during the last two years,
in which it was also used actively by students in a graduate course on Formal
Methods for System Design, the following weaknesses were observed:

1 METAFrame(~ is a registered trademark.

185

- The intuitive definition of Mona's implemented constructs found in [14] has
omissions (e.g., it misses predicate definitions) and leaves unclear the corre-
spondence between the published and the implemented versions of the logic,
for instance concerning empty strings. Distinguishing between primitive and
derived constructs, with explicitly documented encodings, and a proof of the
correctness of the semantics, would have avoided those problems. The Mona
system is moving recently to a different, weak second-order, semantics which
is closer to Biichi's original setup [8], but more difficult to implement. There
was no official release of this new version at the time of writing.

- Rigid user in ter face of the tool, which is in pure textual form. Mona accepts
only M2L(Str) formulas and delivers automata and counter examples only
as lists of transitions. The need for direct input of an automaton (e.g. to
use the tool as a model checker), and for some form of visualization of the
generated automata is not attended. Not even the same format for automata
descriptions delivered as output can be read and used again by the tool.

- Shallow in tegratabi l i ty of the tool in larger environments. The embedding of
Mona into METAFrame was limited by the rigid interface of the former, which
forces a one-directional cooperation: since Mona has to run inside the ML
interpreter, it was not possible to launch it from METAFrame. Thus we could
not use Mona as planned, i.e., as an external decision procedure callable at
need with a simple command, nor could we exploit METAFrame's powerful
graph manipulation and the wealth of available analysis and verification tools
given the user interface limitations.

- Very limited reuse of work. The repository of automata created by Mona
has the lifespan of a single session. Leaving the tool means losing the library,
which is an unexpected waste of computation time for a tool implementing
a non-elementary decision procedure. Without access to the source files we
had no possibility of eliminating this serious drawback.

The system requirements to MOSEL presented in the following section arose
exactly from these points, which, to our knowledge, are not addressed by any
other related project.

2 T h e ~r C o n c e p t : S y s t e m R e q u i r e m e n t s

The following four main principles underly our design of MOSEL:

Definition of semant ic models for a min ima l subset of the logic. Having
started with a M2L(Str) implementation where the logic is interpreted on strings
of finite, but arbitrary length, the semantics is defined in terms of finite-state
automata, as discussed in the following sections.

Layered approach to the logic. We introduce a hierarchy of logic layers,
with increasingly powerful constructs, related by either direct embedding or
more elaborate encodings as shown in Fig. 1.

"~86

Fig. 1. Layered Logics in MOSEL

- The minimal logic contains a minimal set of primitives, for which the se-
mantics is formally defined in terms of corresponding automata (Sect. 3).
This set constitutes the reference language for proofs involving semantics,
which is very economic e.g. for structural induction on the constructs of the
language. While this is the ideal language for developing the theory, it is not
adequate for practical use.

- The kernel logic extends the minimal logic by additional (derived) constructs
and coincides with the set of constructs actually implemented as primitives
in the semantic decision procedure. The design of this extension is guided
by considerations of efficiency of the computations required in the decision
procedure, as discussed later in Sect. 4.

- A set of generic user logics corresponds to an application-independent layer.
They extend the kernel logic by higher-level operators which are convenient
for generic applications. We will discuss the syntax of Mona Version 0.2 as
an extended example.

- A number of application-specific logics, each containing additional admissible
predicates and constructs tailored to specific application domains. We have
direct experience in the domain of verification and synthesis of hardware,
where we deal with families of parametric sequential circuits (Sect. 6).

Due to the principle of implementing outer layers of the logic through successive
encodings and definitional extensions to the unique minimal logic, and by making
these explicit, the semantic coherence of richer logics with the minimal logic is
ensured. The coherence of the kernel wrt. the minimal logic has also been proved
to some extent automatically in MOSEL, as reported in Section 5.

Additional advantages of this principle are that the implemented set of prim-
itives is transparent too, and that it is immediately clear which constructs are
expensive, since this is determined by their (easily computable) definition in
terms of kernel logic constructs.

187

T ::= Id

A : : = T C _ T I T + I = T

F : : = A I ~F I F A F I 3 I d : F

Second-Order Terms

Atoms

Formulas

Fig. 2. Minimal Syntax for M2L(Str)

M o d u l a r des ign . While other tools are available only as a single large compo-
nent, MOSEL is a collection of modules which can be combined or exchanged at
need. Following the METAFrame concept of a repository-based library of com-
ponents, MOSEL supports flexible adaptation and extension to new input or
output formalisms, as well as the interchange of some of its internal components
(e.g., users may exchange the BDD package used in the decision procedure, or
the automata minimization and determinization algorithms). The aim is that
the best-fitting incarnation of the toot may be put together at need, on an
application-driven basis, from the collection of existing components.

Integratability in a heterogeneous analysis a n d ver i f i ca t ion env i ron-
m e n t . Since the MOSEL tool-set is available within the METAFrame repository
it is not merely a stand-alone tool: its decision procedure as well as each sin-
gle component (compilers, interfacing and visualization components) are also
available for use in complex, even heterogeneous METAFrame synthesized tools.

The following sections explain in detail the realization of these system re-
quirements, starting with the introduction of the logic layers and their seman-
tics (Sect. 3 to 7), followed by a description of the implementation principles
(Sect. 8), and finally by the integration within MEwAFrame (Sect. 9).

3 T h e M i n i m a l L o g i c

The minimal logic is a concrete syntactic version of the monadic second-order
logic on finite strings, M2L(Str), using a minimal set of primitives. It serves as the
reference logic for MOSEL, relative to which the correctness and completeness of
the implementation can be verified, and the semantics of the various extensions
of the language can be derided.

The syntax is shown in Fig. 2. Formulas F are constructed from atomic
formulas A by means of the three logical connectives, negation -~, conjunction
A and existential quantification 3. There are two types of atomic formulas, the
binary inclusion C_ and the successor relation +1. They can be applied to second-
order terms T, which in the minimal logic can only be variables Id. This simple
syntax is sufficient to derive other standard constructs of M2L(Str). In particular,
these include first, second-order, and Boolean terms, quantification over first-
order and Boolean variables, and derived logical connectives.

188

The second-order nature of the minimal logic becomes apparent in the defi-
nition of its semantics. Formulas F are interpreted as statements over subsets of

natural numbers, which are second-order objects. More precisely, if F is a for-

mula with the free second-order variables X1, X2 , . . . Xk, then F is a statement

about k + 1 tuples

a = (n, M 1 , M 2 , . . . , M k) ,

where n is a natural number and every Mi, for i = 1 , . . . , k , is a subset of

{0, 1, 2 , . . . , n - 1}. Such an a is called an F-structure. We say that a satisfies F,

or that a is a model of F, written a ~ F , according to the following inductive

definition:

b c
c~ Xi+ I = X j
a ~ ~ F

a ~ F1A F2

a ~ 3Xk+l : F

iff Mi is a subset of Mj
iff if]or allO < x < n - l , x in Mi iff x + l in Mj

if] not a ~ F

if] a ~ F 1 and a ~ F2
iff there is Mk+l C_ {0, 1 , . . . , n -- 1} with a . Mk+l ~ F,

where a �9 Mk+l denotes the extension of a by the new set component Mk+l. A

formula F is said to be valid if it is satisfied by every F-structure. It is satisfiable,

if it is satisfied by some F-structure, that is, if it has a model. Through the

definition of the satisfaction relation the language is interpreted as an ordinary

predicate logic, in which the logical connectives are given their standard meaning

in terms of t ru th values.

We associate with every F-s t ructure (n, M 1 , . . . , Mk) a word a0 al " " a n - 1
of length n over the alphabet {0, 1} k, by putting a~ = (a i l , a i2 , . . . ,aik) such

that aij ---- 1 iff i E Mj, for all i C { 0 , 1 , . . . , n - 1} and j E { 1 , 2 , . . . , k } .

Vice versa, every word ao al �9 "" an-1 over {0, 1} k corresponds to the F-s t ructure

(n, M1, M 2 , . . . , Mk) where Mj = {i [aij = 1}. This induces a bijection between

the words over the alphabet {0, 1} k and F-structures. For instance, the word

(0, 0, 0) (0, 1, 1) (0, 0, 1) corresponds to the structure (3, {}, {1}, {1, 2}), which

satisfies the formula X2 C_ X3 A -,3Z : Z C_ X1 A ~X1 _ Z.

From another point of view, the logic can be seen as a programming language

for finite state automata. Is F a formula with free variables X1,)(2, . . . Xk, then

we can associate with F a finite automaton ~F 1 over the alphabet A = {0, 1} k.

This automaton is constructed so that its language corresponds, via the identifi-

cation of words with F-structures, to the set of F-structures that validate F. It
was the seminal discovery of Bfichi [8] that one can use automata-theoret ic meth-

ods to decide the validity and satisfiability of formulas in monadic second-order

arithmetic.

The automaton IF] associated with the formula F is obtained by induction

on the structure of F. The left automaton seen there represents [Xo + 1 = X1]

while the right one is [Xo C X1]. The automata are displayed using METAFrame's

ffgraphs [11], with transition labels 0 and 1 referring to the variables Xo and

189

Fig. 3. Automata for Atomic Formulas

X1, respectively. The top-most node is the start state and the accepting states
are shown in grey. In the right-hand automaton IX0 C XI~ the small window
displays the BDD representation of the transition label (0~1) I~0 for the loop in
the start state. The logical connectives, then, amount to specific constructions
that build more complex automata from these primitive ones. Concretely, -~
realizes the complement, A the intersection, and 3 the projection of the accepted
regular languages. Now, if IF] is the automaton obtained from this construction,
then we have for every F-structure a,

iff

where s IF] denotes the regular language accepted by IF]. This observation is
important, since it means we can use automata-theoretic decision procedures
for the minimal logic. All extensions of the logical formalism we can build on
and encode within the minimal logic, then, are guaranteed to be decidable too.
More details on the semantics of monadic second-order logic and its relation to
automata are contained in [27,28], which give a comprehensive survey.

4 T h e K e r n e l L o g i c

The advantage of a minimal logic is evident: the definition of the semantics
is easier, and proofs of correctness and completeness for richer languages with
the same expressive power can often be reduced to reasoning about the more
manageable minimal language. The gain in conceptual clarity and confidence in

190

T: : - - Id I all I empty I T U T I T N T I T Second-OrderTerms

A::=sing(T) [-~sing(T) [T ~ T] T C T [T g T Atoms
T C _ T [T = T [T # T [T + I = T [T + I # T
T < T [T < _ T] 0 e T I 0 r [S e T [$ r

F : : = t r u e [false [F A F [F V F [F=~ F [F ~::~ F Formulas
F ~t~F I Id (T , . . . ,T) I -~Id(T,.. . ,T) I ~ I d , . . . , I d : F
l e t I d (I d , . . . , I d) = F i n F I - ~ 3 I d , . . . , I d : F I A

Fig. 4. The Kernel Syntax of MOSEL

the correctness of the concepts contrasts with a loss in implementation efficiency.
The drawback of a very skinny language, like the minimal logic, is the fact that

nearly all the constructs of a typical user-level language correspond to complex
expressions. Since we cannot afford to break down frequently used user-level
constructs to the few primitives of the minimal logic, every time they are used,
we need to support a reasonable set of derived constructs by direct semantic
translations. This means that the language actually implemented in the decision
procedure will always be an extension of the minimal logic. This extended logic,
called kernel logic, is not fixed once and for all, but may be enriched at need.

The current kernel syntax of MOSEL is given in Fig. 4. The semantics of
formulas F and second-order terms T is implemented in MOSEL'S decision pro-

cedure, and the atomic predicates A are precomputed by primitive automata,
without going through an encoding via the minimal logic. The consistency of

this "semantic bypassing" of the minimal logic has been verified by hand, and,
to some extent, using MOSEL itself, as explained in the next section. The rest of
this section discusses the most important extensions made in the kernel.

In the first class of syntactic constructs, directly implemented by the kernel
for reasons of efficiency, there are a number of frequently used propositional
expressions.

Example: Equivalence. The equivalence of formulas r and r written r ~=~ r
can be expressed in the minimal logic as:

F1 ~ F2 :-= ~(-~(F1 A F2) A ~(~F1 A ~F2)).

This formulation is computationally expensive. As it involves 3 conjunctions and
5 negations, it requires 3 compositions and 5 complementations of automata.
However, since, by a design decision, the automata in MOSEL are deterministic
and complete, the automaton IF1 r F21 for the equivalence can be generated
cheaply from the automata ~F1] and IF2] in only one step.

The encoding of user-level features often requires special-purpose predicates
to be introduced in some systematic way, which thus may appear a great number

191

of times in the translated formula. Given the complexity and the frequency of

use, the explicit construction should be avoided and these predicates should

feature as atoms in the kernel language.

Example: Singleton Predicate. The encoding of first-order variables in terms of

second-order variables involves the predicate sing(X) which expresses tha t the

set denoted by X contains exactly one element. This predicate could be defined,

in minimal syntax, as follows:

sing(X) : - (3Y : Y C_ X A-~X C_ Y) A

-~ 3 Y : Y C_ X A -~X C Y A g Z : -~Y C_ Z.

In the kernel the automaton [sing(X)] is precomputed, so that sing(X) can be

used as an atom.

A third type of useful atoms concerns implicit arithmetic operations that

arise from interpreting second-order objects as binary coded natural numbers.

Example: Second-Order Less-Than Predicate. For a natural number n every

subset M _C {0, 1 , . . . , n - 1} may be taken as the n-bit binary encoding of a

natural number. With 0 as the least significant bit, the number represented by
rt--1

M is ~-~i=o ai 2~ where ai = 1 if i E M, otherwise ai -- 0. When n = 0 there is

only one subset M = 0 which is taken to represent 0. Now, a predicat e X < Y is

defined so that it holds for a structure (n, M x , My) if the number represented

by M x is strictly smaller than the number represented by My. In minimal logic
this predicate is

X < Y :_= (2 K : sing(K) A - ~ K C X A K C_ Y A

-~ (3 T : sing(T) A -~ (T C_ X =_ T C Y) A

(- - 3 Z : K C Z A 3 W : Z T I = W A W C_Z A ~ T C W))) .

(:)

In the case that X and Y denote singletons, X < Y restricts to the standard
irreflexive ordering relation < on natural numbers. This makes this predicate

very useful for first-order specifications, too, and thus is profitably included in

the kernel.' The built-in automaton IX < Y], visualized in daVind [10] is seen in

Fig. 5. The multi-root reduced ordered BDD of its edge labels is also shown, in
a separate window.

Another optimization idea to be mentioned concerns second-order terms.

Although it would be possible to restrict the arguments of atomic formulas to

second-order variables only, as in the minimal logic, in M2L(Str) usually terms

such as union and intersection are allowed too. They need not be eliminated by

formulas in the minimal logic, but can be implemented directly, as long as they
do not involve the successor function.

192

~ O & l ~

(O&l)l-o 08~1
#3 #-2

#0 #2

,)

#1 #3

,r

Fig. 5. Automata for X < Y

Example: Set Union The set union term X U Y may be simulated in the minimal

logic by a three-place formula union(X,]I, Z) defined as

u n i o n (X , Y , Z) :-- X C_ Z A Y C_ Z A--~3W : X C W A Y C W A ~Z C_ W.

However, in a typical instance like union(X, Y, Z) A F[Z] this complicated com-
putat ion can be avoided by taking account of the expression X U Y directly

in constructing the automaton for F[Z], provided that we are able to handle

complex labels (in this case X U Y for Z).

The performance gain achievable by extending the second-order term lan-

guage to the set shown in Fig. 4 is remarkable: instead of costly (global) oper-
ations on automata we need only local operations, on single edge labels. They

are much cheaper, because the operators allowed in the complex labels have an
efficient implementation in BDD based representations.

Finally, to avoid recomputations of common subexpressions a let construct

is introduced, which binds formulas to names. Through lazy computation, the

compiler ensures that the semantics of a formula is computed only when the

formula is needed. The application of a predicate defined by a let construct
is defined through the copy-rule: the predicate's automaton is copied and the

second-order argument variables substituted, taking care of complex labels,

193

formula CPU (s)
x=Y <--> EQ(X,Y) .05
X!=Y <=> NEQ(X,Y) .05
subset(X,Y) <=> SUBSET(X,Y) .05
"subset (X,Y) <=> NOT_SUBSET (X,Y) .06
sing(X) <=> SING(X)). .16
"sing(X) <=> NOT_SING(X) .17

X<Y <=> LT_second(X,Y) .65

X<=Y <=> LEQ_second(X,Y) .70

0 in X <=> ZEKO_IN(X) .56

~0 in X <=> ZER0_NOT_IN(X) .56

$ in X <=> DOLLAR_IN(X) .58

"$ in X <=> DOLLAK_NOT_IN(X) .58

total 4.17
conjunction of all formulas 1.01

Table 1. Performance of the MOSEL Compiler on the Kernel Syntax Extensions

5 Correctness of the Kernel Logic Extension

To check the consistency of the additional atomic constructs as primitives in
the kernel logic with respect to their definition in terms of minimal logic expres-
sions, we have proved in MOSEL that the defined and the computed semantics
are indeed equal. We have declared one explicit minimal logic predicate for each
additional atomic construct, and have automatically proved in MOSEL the equiv-
alence between those predicates and the built-in kernel logic primitives. Table 1
summarizes the performance of MOSEL on these theorems. For instance, it took
0.65s to verify the equivalence X<Y <=> LT_second(X,Y) where X<Y refers to
the built-in primitive and LT_second(X,Y) to its explicit definition (1) in the
minimal logic.

We checked each equivalence separately, and also the conjunction of all the
equivalences at once, measuring the pure compilation time in seconds of CPU
time on a Sparc 20. As expected, the total time required by the separate checks
(4.17 s) exceeds by far the time needed to check the conjunction formula (1.01
s). The reason is that many intermediate automata occurring in several subex-
pressions are computed only once, saving a factor of 4 on the total time.

6 User Logics: The Mona Input Language

The Mona language, close to the form introduced in [14], is given in Fig. 6. It
is a reasonably rich extension over the kernel logic that still keeps the generic
flavour of a predicate logic, so as to be independent of any specific application
domain. It maintains a three-fold type structure of first-order (t), second-order
(T), and propositional objects (F), where the latter coincide with the syntactic
class of formulas. At these type levels various term constructions are available, in

194

t : : ~

T : : =

F : : =

A : : =

D : : =

I d l O [$ I t + i l t - i

Id t all I empty I compl T
T u n i o n T] T + i I T -

Id I Id (A A) I
t = t I t < t I t <=t I T
t i n T I ~ F I F ~ g I E l F
h l l ld : F [Ex ld : F

F I T I t

F I Id (Id Id) = F ; D

t T inter T I
f

= T I T s u b T I

I F = > F

First-Order Terms

Second-Order Terms

Formulas, or

Propositional Terms

Predicate Arguments

Declarations + Formula

Fig. 6. Basic Syntax for Mona

particular all usual predicate logic connectives at the propositional level. There

is a set Id of identifiers which contains propositional, first-order, and second-

order variables, as well as predicate constants locally declared in a declaration

list. It is assumed that the type levels of the variables can be identified uniquely

by the name of the quantified variable. Thus, depending on Id, the formula Al l

I d : F can be a propositional, first-order, or second-order quantification.

The intuitive meaning of Mona's logic constructs has been presented in [14].

In MOSEL this semantics is implemented by a syntactic encoding into the kernel,

making Mona a conservative extension of the kernel logic. There are three main

translation steps involved, which are generic and generally useful for defining

user logics.

Flattening. Some functions and constants must be replaced by relations, a simple

example of which is the elimination of the successor function by the successor

relation. For instance, a formula Fi t + 1] with an occurrence of a first-order

subterm t + 1 is translated into 3 s : s = t + 1 A F[s], where s is a fresh
first-order variable that does not appear anywhere else in F or t. Considering

t + i as an abbreviation for the i terated successor function t + 1 + 1 .-- + 1, the

process may be repeated until all occurrences of successor terms t + i have been

eliminated, and the only instances of a successor are of the form x = y + 1 with

x, y variables. A similar flattening is applied to occurrences of i terated second-

order successors F[T + i], and predecessors F[t - i], F[T - i]. The first-order

constants 0 and $ are broken out in the same fashion, except if the 0 or $ in F[$]

or F[0] occur in a subformula $ E T, 0 E T, which are implemented directly in

the kernel. Otherwise, for instance, F[$] becomes 3 s : s = $ A F[s]. Another goal

of the flattening is to break out formula arguments in predicate applications.

For instance, if predicates P(a, b), Q (c) are declared with propositional variables
a, b, c, then these may be instantiated with formula arguments as in P (X C_

Y, Q($ 6 Z)). This subformula can be replaced by 3a, b, c : (a ~:~ X C_ Y) A (b ~:~

Q(c)) A (c r $ E Z) A P(a, b). A logically equivalent but more efficient flattening

is le t R (X , Y) = X C_ Y in le t S (Z) = $ E Z in P [R (X , Y), Q[S(Z)]], where
P[_, _] and Q[_] represent the syntactic expansions of the definitions of P and Q.

195

Type Embedding. Propositional as well as first-order variables and quantifiers
are encoded within the second-order fragment. Formally, every propositional
variable a, b, c,... can be represented by some uniquely associated second-order
variable A, B, C , . . . and every first-order variable x, y, z, . . . is represented by
some associated second-order variable X, Y, Z,. . . The way these representation
variables are introduced differs in both cases, following different semantic encod-
ing techniques.

The idea in the propositional case is to represent the t ruth value of (the

object referred to by variable) a by the last bit of (the bit sequence referred to
by) the associated A. This divides the second-order objects into two equivalence
classes, one representing true and the other representing false. The object A
belongs to the true class if the predicate true(A) := $ E A holds 2. The predicate
true(A) is introduced to replace every occurrence of the associated propositional
variable a as a subformula. To give an example, 3a, b : (a <=~ X C_ Y) A (b r
Q(c))AP(a, b) is translated into 3A; B : (true(A) vv Z C Y)A(true(B) r Q(c)A
P(A, B). Another method is to eliminate propositional quantifiers altogether,

e.g. by replacing 3a : r by r Vr where true and false are some
canonical choice for the propositional t ruth values. Which of the possibilities is
more efficient depends on the particular case.

First-order objects are encoded by singleton subsets [27]. Technically speak-
ing, we may say that the first-order type is treated as a subtype of the second-
order type, whereas propositions are a quotient. Again, the representation vari-
ables X, Y, Z , . . . are substituted systematically for all occurrences of x, y, z , . . . ,
but now some adjustment has to be made to the quantifiers. We replace 3x : F
by 3X : sing(X) A F and Vx : F by VX : sing(X) ~ F, where sing(X) is the
singleton predicate stating that the set denoted by X consists of exactly one el-
ement. Apart from translating variables and quantifiers we also need to replace
the atomic predicates t E X, t = 0, t = $, by T C_ X, 0 E T, $ E T , respectively.

Normalization. We produce an equivalent positive normal form by standard

methods. Thus, universal quantifiers V are replaced by ~3~, DeMorgan's laws
are applied to push negation inwards, and double negations are removed.

Flattening, type embedding, and normalization, are only three examples of
many different translation steps that may be necessary to compile a user logic
formula into a well-formed formula of the kernel logic. This process is non-trivial
and requires special care to ensure the soundness and efficiency of the decision
procedure. In general, soundness of the compilation from a user logic into the
kernel logic requires additional constraints. Logically speaking, we translate into
a special theory of the kernel logic, rather than into the kernel logic itself. In the
case of Mona, for instance, the standard semantics of the first-order constructs
is not preserved by the translation unless the constraint 3X : 3Y : X r Y elim-

2 Alternatively, any other formula that partitions the second-order objects into two
classes may be used instead.

196

inating empty models (strings) is added 3. Concerning efficiency it is important
not to hard-wire one fixed translation strategy, but to support a combination of

logically equivalent methods, so that for a particular application or formula the
optimal solution can be assembled.

7 Application Logics: Modelling Hardware in Mona-HW

Hardware primitives for sequential circuits, like e.g. elementary gates and mem-
ory elements (say D-type flip-flops) have been defined as predicate macros on top
of Mona. An example of a fairly complete library can be found in [18]. Building
on these predicates, higher abstraction levels can be captured too, so that more
complex predicates represent entire circuits or families of circuits.

The expressive power of M2L(Str) captures only one-dimensional structures
(linearly or circularly arranged). This is due to the interpretation of the logic over
strings, which implies that the parameterization allowed to express generalized
behaviours is limited to the generic "length" of strings. Since strings may be
taken to assume different meanings (in [16,17] sampled waveforms for control

circuits, in [18] the bitwidth of a datapath), a degree of freedom in the use of
the logic is still left to the application designer.

The M2L(Str) logic and its fully automatic decision procedure have allowed
us to capture, in a common framework, a wide spectrum of abstraction lev-
els, ranging from generic architecture or protocol levels [17] to the hardware-
oriented register transfer and gate levels [16,18]. In particular, both behavioural
and structural description styles are supported, and from both it is possible
to carry out model-based analysis, verification, and error detection. Moreover,
register-transfer and gate level circuits can be automatically obtained from the
models with current synthesis techniques.

The fully automatic treatment of relevant classes of parametric Circuits of-

fered by the M2L(Str) logic is a central feature for the practicability of the

method in an industrial environment: only push-button techniques are in fact

widely acceptable by hardware designers. Moreover, user interaction must be

possible completely within the application level. We envisage a hierarchy of ap-

plication level formalisms the syntax of which may coincide with decidable sub-

sets of several widespread HDLs. Adequate candidates for automatic translation

are e.g. register-transfer and gate level subsets of VHDL and of Verilog, which

could be dealt with on the basis of our library of M2L(Str) predicates. 4 But also

the full BLIFF language, a standard language for the definition of netlists and

gate-level components has a semantics contained in M2L(Str), and its translation

into MOSEL kernel logic has already been started.

Similarly, it is important to be able to visualize results in a standard way: in

our case, hardware designers and design tools are accustomed to design and ma-

nipulate finite state automata, which are therefore one of MOSEL'S input/output

3 The absence of this constraint in Version 0.2 of Mona system caused some confusion
concerning the actual semantics of formulas.

4 Information is available at http:/ /brahms, fmi. uni-passau, de/bs /projects / .

197

formalisms, and are used to BDD representations of Boolean functions, which
are also generated and visualized by the system.

8 I m p l e m e n t a t i o n

The current implementation of MOSEL, which is object-oriented and programmed
in C++, features three groups of components: decision procedures, translators

between different logics, and graphical visualization modules.

Semantic Decision Procedures. The decision procedure Mosel_dpsf is imple-
mented as a compiler that transforms the abstract syntax tree derived by trans-

lation from a kernel logic input formula into the corresponding semantic model,
which is a finite state automaton:

Mosel_dpsf : abstract syntax tree ---+ automaton.

Abstract syntax tree and automata are implemented as C++ classes, each con-
struct's specific compilation is implemented as a method of the abstract syntax
tree class and the resulting automaton is an object of the automaton class. Fol-
lowing other hardware verification and synthesis tools, our decision procedure,
thus, is largely independent from the concrete input syntax, since it works di-
rectly on an object-oriented abstract syntax tree.

Logic Translations. In order to couple this compilation kernel with the environ-
ment, a series of interfacing modules translate each of the several logics into the

abstract syntax trees accepted by the actual compiler. Concretely, they cooper-
ate to transform an ASCII representation of logic formulas into an object of the
abstract syntax class.

Graphical Visualization. Several alternative graphic tools can be used to dis-
play the automata generated within MOSEL. As in Mona, it is possible to use
the daVind [10] tool to show the structure of the automata as well as the con-
crete BDD encoding of the edge labels. An example is given in Fig. 5. Moreover,
the bidirectional link of MOSEL'S automata to METAFrame's ffgraphs library [11]
makes it possible to read and generate automata not only for display, but also
to result from or to be fed into other algorithms and tools of the METAFrarne
environment. This way graphs are not a pure visualization commodity, but an
alternative import/export mechanism, crucial for the cooperation between het-
erogeneous tools.

Additional powerful graph manipulation features of METAFrarne like the
window-in-window browser shown in Fig. 3 (right) are now accessible (see also [4]).
As an example, by clicking on an edge of the graph, the representation of its
label as BDD is shown locally, but in a separate virtual window which can be
moved, edited, and steered through the menu bars and commands of the outer
window. The graphical display of the automata is implemented by a method of
the automata class.

198

Mosel Mona

X X

/Y% I/
sO sl .~

Fig. 7. Automata Representation in MOSEL and in Mona

Implementation of the Automata

Our choice of implementation for the automata is driven by considerations of

memory efficiency and efficiency of the operations on the chosen data structure.

Automata Representation. The automata generated from M2L(Str) formulas

are deterministic and complete. Both properties are essential for an efficient

implementation of negation.
The size of the edge labels' alphabet being exponential in the number of used

second-order variables, an explicit enumeration of the letters is excluded. Rather,

edge labels are represented by Boolean functions characterizing the transitions,

which in turn are implemented via BDD techniques [1,6,7,23]. The solution cho-

sen here, as already for Mona, is a hybrid representation of the automata: graphs

with edges encoded as Boolean functions and implemented via BDDs. This is

widely sufficient if the complexity of the automata is mainly due to complex

edge labels, as in our application, rather than to intricate structure.

Data Structure. An automaton has exactly one pointer to the start node. Each

state of the automaton is a node of the graph. Each node has a flag to indicate

whether it is a final state and a flag used during recursive traversal of the graph.
Moreover, each node has a pointer to a list with an element for each outgo-

ing edge. Each edge is represented by a pointer to the reduced ordered BDD

representing its label, and a pointer to the corresponding successor node.

At the data structure level MOSEL and Mona differ: as visualized in Fig. 7

on a small example, instead of reduced ordered BDDs, Mona uses a kind of

BDDs with multiterminal nodes. The edge label function, thus, is not available
separately for each successor state, with transparent transitions between the

nodes as in MOSEL, but for each node there is only one BDD whose terminals

are the successor states, enumerated from 1 to n, and the graph is a collection

of such isolated portions.

199

Our reason for not choosing this solution is that it is only efficient (i.e.,
admits sharing of BDDs) if there are several nodes whose incoming edges are
identically labelled. Otherwise, MOSEL'S solution is preferable, since all common

subexpressions can be shared, independently of the state the edges lead to (this
kind of sharing is in fact more likely to happen), and the graph structure is
better preserved.

Automata Minimization Algorithm. Of the three nontrivial operations on au-
tomata, the composition and the determinization via powerset construction can
be implemented in the standard way. The efficient n log n algorithms for mini-

mization [12,22] cannot be used directly, since they presuppose the alphabet to
be relatively small wrt. the automaton, so that the algorithm can be applied suc-
cessively for all the letters of the alphabet. Since this is not feasible in our case,
we have developed a generalization of the method to BDD-labeled transitions.

9 E m b e d d i n g MOSEL in METAFrame

From a system-level point view, MOSEL is applicable in a broad spectrum of sce-
narios. Not only can each of its components be used as a stand-alone tool, it can
also be used as a component in the construction of other complex heterogeneous
analysis or verification tools within MEWAFrame. METAFrame [25] is an environ-
ment designed to support the systematic and structured computer aided gener-
ation, analysis, verification, and testing of application-specific complex systems
from collections (repositories) of reusable components. In particular, it offers a
large grain synthesis approach through its synthesis component [26].

To this end we have extended METAFrame's repository of available tools by
checking in the Mosel_dpfs decision procedure and each of the new logic transla-
tion and output processing modules.

Example : Synthesis of a generic M2L(Str) checker in METAFrame

We show on a simple but concrete example how the user can synthesize with

METiFrame a system for checking the correctness of M2L(Str) formulas.

Specification. The problem is informally described as

Display on screen the result of checking a formula given in Mona syntax

and .mona, f i n a l l y screen is the corresponding input formula to the syn-
thesis component. Since each module is interpreted as a transformer from its
input formats into its output formats, characterized by means of their actual file
extensions (e.g. module latex transforms a .tex input file into a .dvi output file),
this formula means that, starting with an input contained in a .mona file, we want
to reach eventually, possibly after an unspecified number of transformations, a
display on a screen.

200

Fig. 8. Synthesizing M2L(Str) Tools in METAFrame

Synthesis. Given this specification, METAFrame provides the graph of Figure 8
which represents the set of all satisfying tool-compositions which can be built
on the basis of the underlying repository. Every path from the start to the suc-
cess node in the graph of Figure 8 (right) is a possible solution to our synthesis
problem. A path represents a heterogeneous program whose transitions repre-
sent modules and whose nodes are labelled by intermediate types (here the file
extensions).

While Mona offers only a single monolithic solution, as shown by the leftmost
path, several alternatives are offered by the MOSEL tool-set: though sharing the
Mosel_dpfs decision procedure, a flexible series of converters (even polymorphic,
as in the case of Mona2Mosel) allows for alternatives. The display capabilities
are enhanced too. Note that all the solutions contain (necessary) modules which
are not mentioned in the specification, but are filled up at need by the synthesis
algorithm.

201

Execution and Compilation. A direct execution of the chosen tool compositions is
possible via interpretation of the corresponding program. Satisfactory solutions
can be made persistent through compilation into a new module that can be saved
in the component repository for later reuse. For example, it is possible to store
the partial solution corresponding to the tool composition

Mona2Mosel ~ kernel2abst ~ Mosel_dpfs

highlighted with the thick line in Fig. 8 (right) to yield a MOSEL-based Mona

simulator called MyMona.

Running the query a second time, and asking only for minimal length solution
paths, we obtain the solution graph of Fig. 8 (left).

10 F u t u r e W o r k

Future work will follow several threads. As an alternative to the Mona user logic
we plan to implement a typed predicate logic with facilities for user-specific
extensions. At the application layer we are working on the embedding of stan-
dard HDL languages, like BLIFF. Furthermore, future extensions of MOSEL will
support other semantic theories like finite trees, or finite sets.

The construction being still under way, it is too early to give a detailed
assessment of the efficiency of MOSEL. Our first experiments show that our
system outperforms Mona at the kernel level but that it is slower at the level of
Mona syntax. Thus, in the further development of the system the focus will be
primarily on improving the compilation algorithms rather than the basic decision
procedures.

References

1. S. Akers: "Binary Decision Diagrams," IEEE Trans. on Comp. Vol.C-27, 1978, pp.
509-516.

2. D. Basin, N. Klarlund: "Hardware Verification using monadic second-order logic,"
Proc. CAV '95, Liege (B), July 1995, LNCS N. 939, Springer Verlag, pp. 31-41.

3. N. Bjorner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. Manna, H. Sipma, T.
Uribe: "STEP: Deductive-algorithmic verification of reactive and real-time systems,"
Proc. CAV'96, New Brunswick, NJ (USA), Aug. 1996, LNCS N. 1102, Springer
Verlag, pp. 415-418.

4. M. vonder Beeck, V. Braun, A. Claflen, A. Dannecker, C. Friedrich, D. Koschfitzki,
T. Margaria, F. Schreiber and B. Steffen: "Graphs in MEwAFrame: The Unifying
Power ofPolymorphism," Proc. TACAS'97, Enschede (NL), April 1997, in this same
Volume of LNCS, Springer.

5. J. Burch, E. Clarke, K. McMillan, D. Dill, L. Hwang: "Symbolic model checking:
102~ states and beyond," Proc. LICS'90, Philadelphia, 1990, pp. 428-439.

6. R.E. Bryant: "Graph-based algorithms for Boolean function manipulation," IEEE
Trans. Computing, vol. C-35(8), August 1986, pp. 677-691.

7. R. E. Bryant: "Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams," ACM Computing Surveys Vol. 4, 1992, pp. 293-318.

202

8. J.R. Bfichi: "Weak second-order arithmetic and finite automata," Z. Math. Logik
Grundl. Math., Vol. 6, 1960, pp. 66-92.

9. A. Church: "Logic, arithmetic and automata~" Proc. Int. Congr. Math., Almqvist
and Wiksells, Uppsala 1963, pp. 23-35.

10. daVinch the tool is available via ftp at site f tp : / / f tp .un i -b remen .de /pub /
graphics/daVinci

11. C . Friedrich: "The ffgraph library," Techn. Rep. MIP-9520, Fakult~t ffir Mathe-
matik und Informatik, Universit~t Passau, December 1995.

12. J. Hopcroft: "An n log n algorithm for minimizing states in a finite automaton,"
Proc. Int. Symp. on Theory of Machines and Computations, Technion, Haifa (IL),
Aug. 1971, pp.189-196.

13. P. Kelb: "Abstraktionstechniken fiir automatische Verifikationsmethoden," Ph.D.
Diss., Univ. of Oldenburg (Germany), Dec. 1995, Shaker Verlag, Aachen (D).

14. J. Henriksen, J. Jensen, M. Jcrgensen N. Klarlund, R. Paige, T. Rauhe, A. Sand-
holm: "Mona: Monadic second-order logic in practice," Proc. TACAS'95, ~rhus
(DK), May 1995, LNCS 1019, Springer V., pp. 89-110.

15. N. Klarlund, M. Nielsen, K. Sunesen: "A Case Study in Verifcation Based on Trace

Abstractions," in M. Broy, S. Merz, K. Spies (eds.), Formal Systems Verification -
The RPC-Memory Specification Case Study, LNCS N. 1169, Springer V., Nov. 1996.

16. T. Margaxia, M. Mendler: "Automatic Treatment of Sequential Circuits in Second-

Order Monadic Logic", 4th GI/ITG/GME Worksh. on Methoden des Entwurfs und
der Verifikation digitaler Systeme, Kreischa (D), March 1996, Shaker Verlag.

17. T. Margaria, M. Mendler: "Model-based Automatic Synthesis and Analysis in
Second-Order Monadic Logic," Proc. AAS'97, ACM/SIGPLAN Int. Worksh. on Au-
tomated Analysis of Software, Paris (F), Jan. 1997, pp.99-112.

18. T. Margaria: "Fhlly Automatic Verification and Error Detection for Parameterized
Iterative Sequential Circuits", Proc. TACAS'96, Passau (D), March 1996, LNCS
N.1055, Springer Verlag, pp. 258-277.

19. T. Margaria: "Verification of Systolic Arrays in M2L(Str)," Techn. Rep. MIP-9613,
Fakult~t ffir Mathematik und Informatik, Universit~it Passau, July 1996.

20. O. Matz, A. Miller, A. Potthoff, W. Thomas, E. Valkema: "Report on the Program

AMoRE', Techn. Rep. Nr. 9507, Inst. fiir Informatik und Praktische Mathematik,
Universit~t Kiel (D), 1995.

21. J.K. Ousterhout: "Tel and the Tk Toolkit," Addison-Wesley, April 1994.
22. R. Paige, R. Tarjan: "Three partition refinement algorithms," SIAM Journ. of Com-

putation, Vo1.16, N.6, Dec. 1987, pp.973-989.
23. K. S. Brace, R. L. Rudell, R. E. Bryant: "Efficient Implementation of a BDD

Package," Proc. DAC'90~ Orlando, FL, June 1990, pp. 40-45.
24. B. Steffen, T. Margaria, A. Clat3en, V. Braun: "Incremental Formalization: A Key

to Industrial Success ", In "SOFTWARE: Concepts and Tools", Vol. 17, No 2, pp.
78-91, Springer Verlag, July 1996.

25. B. Steffen, T. Margaxia, A. Clafien, V. Braun: "The METAFrame'95 Environmen#',
(Experience Report for the Industry Day), Proc. CAV'96, Juli-Aug. 1996, New
Brunswick, N J, USA, LNCS N.1102, Springer Verlag, pp.450-453.

26. B. Steffen, T. Margaria, A. ClafJen: "Heterogeneous Analysis and Verification .for
Distributed Systems", In "SOFTWARE: Concepts and Tools", vol. 17, N.1, pp. 13-
25, Springer Verlag, 1996.

27. W. Thomas: "Automata on infinite objects," In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, vol. B, p. 133-191. MIT Press/Elsevier, 1990.

28. W. Thomas: "Languages, automata~ and objects," to appear in the forthcoming
new edition of the Handbook of Theoretical Computer Science, MIT Press/Elsevier.

