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Abstract

Key aspects of 36 mosquito-borne arboviruses indigenous to Africa are summarized, including lesser or poorly-known
viruses which, like Zika, may have the potential to escape current sylvatic cycling to achieve greater geographical
distribution and medical importance. Major vectors are indicated as well as reservoir hosts, where known. A series of
current and future risk factors is addressed. It is apparent that Africa has been the source of most of the major
mosquito-borne viruses of medical importance that currently constitute serious global public health threats, but
that there are several other viruses with potential for international challenge. The conclusion reached is that
increased human population growth in decades ahead coupled with increased international travel and trade is
likely to sustain and increase the threat of further geographical spread of current and new arboviral disease.
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Background
Epidemics in recent years of Zika virus (ZIKV) in South
and Central America [1–3] and yellow fever virus (YFV)
in Africa [4] and Brazil [5–7] serve as reminders of the
dramatic manner in which apparently quiescent or stable
zoonoses can flare up or spread with serious international
public health, social and economic consequences. These
events are steadily increasing in frequency, involving path-
ogens which establish foothold in new geographical terri-
tories where they become endemic after initial rapid
spread. Examples include yellow fever introduced to the
New World from Africa in the early 1600s with subse-
quent major impact [8–10], dengue virus which spread as
different antigenic variants from its probable Asia-Pacific
origin to the Americas in the 1960s and Africa in the
1980s [11–13], chikungunya which arose in Africa to simi-
larly invade extensive new areas in the mid-2000s [14–18],
West Nile virus which caused a stir when first diagnosed
in the USA in 1999 and soon spread to Canada and Cen-
tral America [19, 20], and most recently Zika virus with
an epidemic in Micronesia in 2007 [21], French Polynesia
in 2013 [22] and South America in 2015 [23].

United Nations projections indicate a likely increase in
global human population from current > 7 billion people
to a probable peak of around 9.6 billion in 2050 [24].
The consequences of such population increase will likely
favour the spread and impact of zoonoses. Large human
population increases will be associated with increasing
population density which facilitates transmission of virus
either directly or through vectors. There will also be
increased international movement of people by way of
migration, tourism or business travel thereby increasing
the likelihood of more frequent dissemination of infect-
ive sources. Similarly, there will be increased global
movement of cargo and trade goods facilitating the
spread of vectors, increased land transformation and dis-
ruption of historical ecological processes which pro-
motes contact between humans and infected wildlife or
sylvatic vectors. Finally, increased human population will
also increase breeding site and habitat formation for
virus vectors such as Aedes aegypti and Aedes albopic-
tus, especially in expanding urban environments. A dis-
proportionately high percentage of the mosquito-borne
arboviruses currently having serious public health impact
at global scale is of African origin. In addition to this subset
of arboviruses, there is substantial evidence by way of sero-
prevalence studies of a wide range of other arboviral infec-
tions which - like Zika virus in Africa historically - are
circulating within immunologically-adapted indigenous
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African populations largely having little history of serious
symptoms. These include Banzi [25, 26], Bwamba [27–32],
Bunyamwera [29, 30, 33–35], Germiston [34, 36], Ilesha
[37], Lumbo [38], Middelburg [35], Ndumu [39, 40], Ngari
[41–43], Ntaya [44], O’nyong-yong [45], Pongola [29, 30,
35], Rift Valley fever [46, 47], Semliki Forest [35], Shuni
[48], Simbu [35], Sindbis [35, 49], Spondweni [50, 51],
Uganda S [52], Wesselsbron [29, 30, 34, 35] and
Witwatersrand viruses [53]. Given the preponderance of
zoonoses of African origin that have escaped previous
endemic African settings to make geographical jumps to
other regions through anthropogenic processes that are
likely to escalate, this paper focuses on the subset of
mosquito-borne arboviral zoonoses that are already known
to exist in Africa, either with potential for continuing
expansion of range or of which very little is known except
that they infect humans or have genetic affinities which
suggest they may infect humans. When entering immuno-
logically naïve populations in new geographical settings the
public health consequences are difficult to predict.
Below we provide an outline of the relevant virus

groups and specific viruses that are known to have pub-
lic health risk or could have public health importance in
future, including the mosquito species involved in trans-
mission or found infected with these viruses.

Synoptic overview of the African mosquito-borne
arbovirues of medical importance
Mosquito-borne viruses affecting humans are concen-
trated in three families, the Flaviviridae (genus Flavivirus),
Togaviridae (genus Alphavirus), and the Bunyaviridae
(primarily genus Orthobunyavirus but with a few import-
ant outliers such as the Phlebovirus Rift Valley Fever). For
the African region, the individual viruses and their
categorization, together with key attributes, are summa-
rized in Table 1. Below follows a summary overview of the
virus families and the known African mosquito-borne ar-
boviruses in those families; the arrangement is the same as
in Table 1, i.e. alphabetically within family for ease of find-
ing and not clustered into serogroups.

Flaviviridae
Phylogenetic trees suggest that Africa was the ancestral
origin of all mosquito and tick-transmitted flaviviruses
[54–56], probably from what were initially non-vectored
mammalian viruses [55]. Flavivirus members are readily
grouped into distinct clusters, namely mosquito-borne,
tick-borne, and a group of non-vectored or no-known
vector viruses [55–58]. Their ancient history is tied to
the Old World, but in recent times their geographical
spread and epidemiologies have been significantly
affected by burgeoning human populations and global
movements. Tick and mosquito-borne flaviviruses
diverged early, with a much more rapid evolution within

the mosquito-borne viruses. Ticks change hosts and
have blood-meals relatively infrequently whereas mos-
quitoes have multiple blood-feeds off more hosts in a
much shorter time span with greater movement over a
landscape given their ability to fly. Mosquito-borne
viruses thus have greater opportunity to mutate and
spread across shorter generational spans within a greater
number of hosts, thereby facilitating evolutionary diver-
sification. Medically-important mosquito-borne flavi-
viruses can be sub-clustered into two groups. One group
comprises viruses associated with Aedes mosquitoes
several of which cause haemorrhagic disease in primates.
The other group subdivided into predominantly Aedes-
transmitted viruses often also causing haemorrhagic
symptoms, and predominantly Culex-transmitted viruses
often associated with encephalitic disease [55]. Phylo-
genetic analyses suggest multiple introductions of arbo-
viruses from the Old World to the New World in recent
millennia and that the most parsimonious explanation
for current genetic distributions indicates an “Out-of-Af-
rica” ancestry; all of the Culex-associated flaviviruses
currently circulating in Asia, Australia, Europe and the
America’s appear to have evolutionary roots in Africa
[56]. It has also been posited that, like yellow fever virus,
dengue virus similarly had its origin in Africa and was
frequently transported to the America’s during the slave
period [57, 59]. Other more deeply rooted ancestral lines
of viruses dating back 2000 to 3000 years appear to
have dispersed eastwards out of Africa and given rise
to Japanese encephalitis virus, Murray Valley enceph-
alitis virus and others [56].

Banzi virus (BANV)
Banzi virus was first isolated in 1956 from the blood
of a febrile child in South Africa [25] and subse-
quently confirmed from a febrile patient in Tanzania
[60]. Seroprevalance studies have shown BANV to be
widely distributed across southern Africa including
Angola, Botswana, Mozambique, Namibia and South
Africa [25, 34]. BANV has been repeatedly isolated
from wild-caught Culex rubinotus [49, 61] which is
regarded as the primary vector of this virus [62].
Rodents are believed to be the natural host [63].
Culex rubinotus is widely distributed in Africa and
abundant in subtropical coastal marshlands [62]. This
mosquito appears to maintain a cycle of viral transfer
between rodents but only infrequently feeds on
humans [61, 62, 64, 65]. Little else appears to be
known regarding BANV.

Dengue virus (DENV)
Generally described in the literature as a virus with core
distribution in Asia, the historic origin of dengue virus
(DENV) remains somewhat elusive and may also have
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been in West Africa [57]. DENV first appeared in the
America’s more or less the same time as yellow fever,
implying that DENV and YFV may have been trans-
ported on the same slave ships along with the historic-
ally African mosquito Aedes aegypti [55]. Whatever its
historic origins, DENV was first formally described from
Japan in 1943 and Hawaii in 1945, epidemics at that
time being reported widely across the region from India
to the Pacific Islands [13]. From the Asia-Pacific region
it spread again to the Americas in the 1970s and Africa
in 1984 [13], subsequently dispersing to more than 120
countries mostly in the tropics and subtropics, where it
is now one of the most important infectious diseases in
the world and causes serious morbidity and mortality
[66–68]. DENV has been reported from 34 countries in
sub-Saharan Africa [69], fully listed in Table 1. DENV is
a complex of four phylogenetically and antigenically dis-
tinct serotypes causing dengue fever (DF) and dengue
haemorrhagic fever (DHF) in humans. All four serotypes
of DENV are believed to have evolved independently
from sylvatic origins during the preceding 1 thousand
years [70], with strong evidence that DENV was origin-
ally a monkey virus [57].
An estimated 50 to 100 million cases of dengue fever

and 250 to 500,000 cases of dengue haemorrhagic fever
(DHF) are reported throughout the world each year, mostly
among young children, with case fatality rates varying from
0.5% to 5% in Asian countries [67, 68, 71–74]. Dengue
causes more illness and death than any other arboviral
disease acquired by humans [12]. Typical symptoms of DF
include high fever, severe headache, myalgia, arthralgia,
retro-orbital pain, and maculopapular rash, resulting in in-
capacitating disease. High fever, bleedings, intense continu-
ous abdominal pain and persistent vomiting are associated
with DHF, deteriorating to circulatory failure and altered
mental status. Cases of dengue have increased in Africa
over the preceding three decades, with major epidemics in
West and East Africa in the 1990s and records of dengue
in Angola and Mozambique [74, 75]. Dengue virus is trans-
mitted among humans by Ae. aegypti and Ae. albopictus
mosquitoes, the former being the primary vector in urban
areas while Ae. albopictus is more important in peri-urban
and rural environments [68, 72, 76–78]. In addition to the
endemic and epidemic cycles in urban and peri-urban
areas involving humans as reservoir and virus-amplifying
hosts, ecologically distinct sylvatic enzootic cycles are
known from West Africa [79] and Southeast Asia, involv-
ing non-human primates and sylvatic Aedes mosquitoes
[80].

Ntaya virus (NTAV)
Ntaya virus was first isolated from mice inoculated intra-
cerebrally with a pool of mixed-species mosquitoes col-
lected in Uganda in 1951 [81]. Of the 1318 mosquitoes

comprising 20 species in the pool, 1284 were of the
genus Culex, but the identity of the vector species re-
mains unknown. Antibodies to NTAV indicate presence
of the virus in humans from multiple West, Central and
East African countries, specifically Nigeria, Cameroon,
Central African Republic, Uganda and Kenya [44].
Symptomatic infection manifests with fever, rigors, myal-
gia, and headache [44]. Serosurveys have revealed anti-
bodies in a variety of migratory birds and domestic
animals (1.6% to 13.9% in sheep, cattle, goats, pigs) in
Romania [82, 83]. NTAV is neurotropic in birds and
causes haemorrhages in the brain, lungs, liver, heart,
ovaries, and splenomegaly [84].

Spondweni virus (SPOV)
Spondweni virus was first described from virus collected
in 1955 from a pool of Mansonia uniformis mosquitoes
collected in the sub-tropical northern KwaZulu-Natal
Province of South Africa [50, 85]. Tests for antibodies
among rural people living in the area indicated very low
seroprevalence, but two laboratory workers became ill
with the virus after working with infected materials. In
addition to the initial isolation of SPOV from M. unifor-
mis, other mosquitoes hosting the virus subsequently
collected from the same area include Mansonia africana,
Aedes circumluteolus and to a lesser degree from Aedes
cumminsi and Eretmapodites silvestris [50]. The majority
of isolations from mosquitoes has been from Aedes
circumluteolus [50, 86]. SPOV infection has been con-
firmed from countries widely across sub-Saharan Africa
(Angola, Botswana, Burkina Faso, Cameroon, Ethiopia,
Ghana, Mozambique, Namibia, Nigeria, South Africa),
where patients showed symptoms of acute febrile illness
including fever, chills, headache, myalgia, arthralgia, nau-
sea, maculopapular and pruritic rash [51, 87, 88].

Uganda S virus (UGSV)
Uganda S virus was isolated from a pool of three species
of Aedes mosquitoes in Uganda in 1947 [52]. High anti-
body titres were found in 5.8% of 121 human sera from
western Uganda and in the serum of one of six wild
monkeys. Laboratory infections of rhesus, grivet and
red-tail monkeys failed to produce any clinical symp-
toms and yielded very low titre of circulating virus or
complete absence [52]. Another study indicated that
under experimental conditions the virus could be main-
tained in Ae. aegypti for up to 79 days and that these
mosquitoes appear to be efficient vectors of the virus
capable of transmission after an incubation period of less
than 10 days [89].

Usutu virus (USUV)
Usutu virus was first isolated from mosquitoes in South
Africa in 1959 [60]. Recent genetic analysis suggests
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there are at least six distinct lineages of USUV, the earli-
est possibly deriving from southern Africa going back to
at least the beginning of the sixteenth century [90].
USUV now occurs widely dispersed in Africa reaching
from Morocco through to South Africa [91]. USUV has
been repeatedly introduced into Europe over the past
50 years, migratory birds using defined flyways being the
most likely agent [90]. Using virus phylogenetic relation-
ships and geographical distributions and overlapping this
with known migratory bird flyways suggests three pri-
mary routes whereby USUV likely spread into and across
Europe: an east Atlantic pathway linking Africa with
western Europe (Spain), a Black Sea/Mediterranean
pathway to central Europe, and an East Africa/West
Asian pathway. The current range of virus distribution
in Europe suggests an initial introduction into western
Europe (Spain) in the 1950s, followed by introduction of
a separate strain into central Europe in the 1970s [90].
The virus causes large-scale die-off among Eurasian
blackbirds (Turdus merula) in Europe, but USUV has
also been found in at least 29 other species of birds cov-
ering several families and including species known to
undertake long-range inter-continental migrations such
as storks, kestrels and swallows [92]. Human infections
have been diagnosed from Africa and Europe, with
symptoms including fever and rash but sometimes also
jaundice and severe neurological impairments [93–95].
USUV has been isolated from numerous mosquito spe-
cies but vector competence remains poorly understood
[96]. The 1959 isolation of USUV in South Africa was
from Culex neavei [60], with subsequent extractions
from Culex pipiens in Kenya [93], Aedes albopictus, Ae-
des caspius, Culex perexiguus and Cx. pipiens in Europe
[96], and Culex perfuscus, Coquellittidia aurites and
Mansonia africana in Senegal [97]. Culex neavei, from
which numerous isolations of USUV have been made,
occurs widespread across Africa and has strong ornitho-
philic feeding behaviour with high vector competence
indices and is abundant at tree-top level where birds
rest, which suggests it is an important vector in Africa
[96]. In Europe Cx. pipiens is considered to be the most
important vector [92]. It appears that the virus is trans-
mitted and maintained in a sylvatic cycle that involves
mainly Culex mosquitoes and birds as the main amplify-
ing hosts, humans being occasional incidental and dead-
end hosts; USUV has also been found in bats in
Germany [90, 98].

Wesselsbron virus (WESV)
Wesselsbron virus was first isolated in 1955 as the
aetiological agent responsible for abortion and high mor-
tality among sheep during outbreaks in South Africa
[99]. The virus or antibodies to it was subsequently
found to be common in humans across much of the

tropical eastern coastal lowland of Mozambique,
Botswana [34] and northern South Africa [35, 62] as well
as in cattle, sheep and goats across the same region and
extending into Zimbabwe and Zambia [62, 100, 101].
Gould et al. [55] indicate that WESV is also present in
Thailand. Various Aedes species have been confirmed to
be involved in epizootic transmission of the virus,
namely Aedes caballus, Ae. juppi, Ae. mcintoshi, Ae. luri-
dus and Ae. unidentatus on the temperate South African
Highveld plateau while Ae. circumluteolus is likely the
main vector in the low-lying coastal areas of northern
South Africa and in Mozambique. These mosquitoes are
floodwater-breeding species, with eggs adapted to sur-
vive long dry spells, and the possibility therefore exists
that vertical transovarial transmission of virus may occur
between successive generations of mosquitoes [62].
Other wild-caught mosquitoes found to be infected with
WESV include Mansonia uniformis, Culex univittatus
and pools of mixed Aedes (Neomelaniconian) species
[100].

West Nile virus (WNV)
West Nile virus was isolated and described from blood of
a febrile patient in Uganda in 1937 [102]. The disease oc-
curs widespread throughout virtually all countries in Af-
rica from Egypt to South Africa, and also the Middle East,
southern Europe, Asia, Australia and the Caribbean,
North, Central and South America [20, 103–106]. Phylo-
genetic trees constructed from a wide range of WNV iso-
lates suggest that WNV originated in Africa and dispersed
into Mediterranean countries and Europe, from there
radiating out to its current distribution [55]. It is now con-
sidered the most important causative agent of viral en-
cephalitis worldwide [104]. Infrequent outbreaks of mild
febrile disease have occurred in France, India, Israel, Egypt
and South Africa since the 1950s but the frequency, sever-
ity and geographical range has increased since the mid-
1990s [104]. The scale of outbreaks can be very large, as
demonstrated by an outbreak in 1974 which involved tens
of thousands of human cases over an area of approxi-
mately 2500 km2 in the Karoo region and Northern Cape
Province of South Africa. Following the outbreak, mean
antibody prevalence averaged 55% among humans but
rose to 85% in some locations, while antibodies were de-
tected in 53% of wild birds examined [26, 61]. WNV was
accidentally introduced into New York in 1999 where it
caused 62 cases of human encephalitis and 7 deaths. It
subsequently spread across the continental USA, Canada,
Mexico, Colombia and the Caribbean [19, 105]. In the
USA, where WNV is now endemic, a cumulative total of
17,463 cases of neuroinvasive disease and 1668 fatalities
were attributed to WNV between 1999 and 2013 [107].
Multiple genetic lineages of WNV are recognized, of

which lineages 1, 2 and 5 have been associated with
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outbreaks in humans [104]. Lineage 1 is the dominant
form and occurs in North Africa, the Middle East, Eur-
ope, India, the Americas and Australia [20, 103, 104,
108, 109]. Two sub-lineages are recognized, most within
one sub-lineage and the other often referred to as
Kunjin virus which has only been found in Australia
[104, 108]. Lineage 2 was previously considered to be a
purely Central/Southern Africa and Madagascan zoo-
nosis [108, 110, 111], but since 2004 has been confirmed
at several sites in Europe [20, 111, 112]. Lineage 5 was
designated as a distinct separate form associated with 13
human cases in India occurring between 1955 and 1982
[113]. In humans, most WNV infections are asymptom-
atic but often manifest as febrile illness with headache,
rash, fatigue, myalgia and arthralgia; severe infections
may lead to paralysis, seizures or cerebellar ataxia with
associated long-term cognitive and neurological impair-
ment [107, 114], and a mortality rate close to 10%
among patients with neuroinvasive disease [19]. Human
fatalities are mostly associated with young children and
elderly patients [115]. Other vertebrates are also suscep-
tible: a large epizootic of WNV encephalitis occurred
among equines in the USA in 2002, with 14,571 cases
reported and a case-fatality rate approaching 30% [105].
In southern Africa, WNV is frequently diagnosed among
horses, often causing neurologic disease and sometimes
fatalities [106, 109, 116]. Similar WNV infection and
deaths have been reported among horses in Italy [117]
as well as horses and donkeys in France with up to 34%
mortality among those displaying neurologic symptoms
[118]. WNV-associated mortality - sometimes very high
- has also frequently been recorded among bird popula-
tions in multiple countries [19, 105, 107, 119–122].
WNV uses a wide range of bird species as amplifying
hosts and is transmitted by various Culex mosquitoes,
including the widespread Cx. pipiens and Cx. quinque-
fasciatus [108, 123, 124]. In southern Africa the principle
vector is Cx. univittatus, with Cx. theileri as a minor
vector. In Europe the principal vector is Cx. pipiens [20,
108, 125], while in the USA the three species Cx.
pipiens, Cx quinquefasciatus and Cx. tarsalis are primary
vectors dominating in different parts of the mainland
USA [104, 126, 127]. Because viraemia is typically low in
humans and equines, the mosquitoes get their infections
from birds from where it is passed on to humans in sub-
sequent blood-feeding. For this reason human and
equine epidemics of WNV are usually associated with
concurrent bird epizootics [62, 128].

Yellow fever virus (YFV)
Yellow fever virus originated in Africa and spread with
the slave trade dating back to at least 1650 [8, 58, 129].
Barbados in the Caribbean was uninhabited in the early
1600s but then heavily planted with sugarcane to satisfy

burgeoning European demand. Large numbers of slaves
were imported from Africa along with Ae. aegypti and
YFV-infected people, subsequently infecting mainly non-
immune white overseers on the islands. Major outbreaks
of YF occurred from 1647 to 1650 and again in the
1690s, driving many whites to North America where
they established a new focus for YF to spread more
widely across the Caribbean and South America. The
impact of YFV was manifested most heavily during con-
struction of the Panama Canal, which began in 1881.
Soon two out of every three Europeans working on the
project died from either yellow fever or malaria and ul-
timately approximately 30,000 would die before the
Canal initiative collapsed. Following the Spanish-
American War in 1898, approximately 80% of American
occupying forces in Cuba contracted yellow fever. The
American Congress established a Commission headed
by Walter Reed to investigate YF and in 1900 the link
with Ae. aegypti was established and measures for mos-
quito control implemented. America took over the half-
completed Panama Canal and finished the project in a
decade, with approximately 2% of the workforce in hos-
pital at any given time due to a combination of yellow
fever and malaria [10]. YF continues to cause periodic
outbreaks in Africa where it is known from 28 countries
(Table 1). Epidemics can be extensive such as in Ethiopia
between 1960 and 1962 estimated to have involved
around 100,000 cases with 30,000 deaths, and another
surge between 1984 and 1990 during which 22,647 cases
were reported from Africa, of which 21,299 were from
Nigeria [130]. A recent outbreak involving all 18 prov-
inces in Angola commenced in December 2015 and by
July 2016 had resulted in more than 3552 cases with 355
mortalities [4, 131]. Typically only about 15% of persons
infected with YFV develop clinical symptoms and the
majority of those have mild disease and recover quickly.
Usual presentations include sudden onset of fever, head-
ache, muscle pain, backache, general weakness, red eyes,
nausea and vomiting, lasting 2–4 days usually followed
by uneventful recovery. However, severe disease can de-
velop following a brief period of remission of symptoms
lasting up to 24 h after which a second “toxic” phase sets
in associated with high fever, vomiting, epigastric pains,
jaundice, haemorrhagic diathesis (hematemesis), coma
and death [129, 130]. Under African sylvatic conditions
YFV is transmitted primarily by Aedes africanus, Ae. fur-
cifer/taylori, Ae. luteocephalus, Ae. metallicus, Ae. vitta-
tus and Ae. opok [58, 130, 132, 133]. In South America a
sylvatic cycle has also been established involving several
Haemagogus, Aedes and Sabethes mosquitoes [58]. This
sylvatic source is now the primary form of YFV infection
in South America, and the disease has had no significant
urban transmission in recent decades [8]. The sylvatic
reservoir hosts in Africa are a range of primates
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including monkeys of the genus Cercopithecus, chimpan-
zees (Pan spp.), mangabey (Cercocebus spp.), baboons
(Papio spp.), bush babies (Galaga spp.), and possibly
hedgehogs (Erinaceus spp.), while in South and Central
America the reservoir hosts involved are capuchin (Cebus
spp.), spider (Ateles spp.), and howler (Alouatta spp.)
monkeys and marmosets (Hapale spp.). Infected forest
primates have a period of viremia lasting 1–6 days during
which time they may transmit virus to mosquitoes, pre-
sumably then developing lifelong immunity. All African
non-human primates except bush babies appear to be
relatively tolerant to YF virus infection, in most cases de-
veloping mild symptoms but rarely leading to fatal disease.
In Central and South American monkeys and marmosets,
fatal infections are the rule and extermination of focal pri-
mate populations rather than development of an immune
population commonly accounts for the termination of epi-
zootics. Experimental studies have shown that Asian mon-
keys are very susceptible to YF virus infection, commonly
developing acute and fatal disease [9]. Yellow fever is now
overwhelmingly transmitted between humans by Ae.
aegypti as a domestic/peri-domestic disease [11]. Gener-
ally, more than 90% of cases occur in sub-Saharan Africa
[134], where an estimated 51,000 to 380,000 severe cases
of yellow fever occur each year with 19,000 to 180,000
deaths [67, 135]. Given the widespread distribution and
abundance of Ae. aegypti in Southeast Asia, with high
human population densities ideal for disease spread, it
remains a perplexing anomaly why yellow fever has not
made the jump to that region [136–138]. China has an
increasingly strong expatriate community in Africa,
including Angola from where a number of returning
workers have been diagnosed with imported YFV in
various parts of China, but thus far have not resulted in
establishment of local infectious foci and local trans-
mission [138].

Zika virus (ZIKV)
Zika virus was first described from a sentinel rhesus
monkey placed in the Zika Forest in Uganda in 1947,
and from Aedes africanus mosquitoes collected in the
same forest in 1948 [139]. Subsequent serological and
other studies showed ZIKV to be widespread across the
eastern and western parts of Africa, with a relatively low
seroprevalence of 0.5% in French Equatorial Africa in
1954 but a much higher prevalence of 38% in a 1971–
1975 survey in Nigeria [140]. Other studies indicate that
ZIKV has been circulating widely over Africa for de-
cades, with exposure to the virus in at least 25 countries
across the continent [141]. Until recently southern
Africa south of the Zambezi River was considered to be
free of Zika [142, 143]. However, an overlooked publica-
tion in Portuguese [30] reported on serosurveys showing
that 10 of 249 (4%) persons sampled at 22 localities

along the length of Mozambique tested positive for Zika
neutralizing antibodies [29]. Genetic investigations re-
vealed a distinct strain of ZIKV which has been circulat-
ing across much of Asia since at least 1951, including
India (1952), Thailand (1954), the Phillippines (1953)
and Indonesia (1951); it is suspected that this lineage of
ZIKV was probably already present in Asia during
World War 2 but misdiagnosed as the far more com-
mon dengue, there being extensive cross-reactivity be-
tween Zika antibodies and dengue virus [21, 23]. ZIKV
remained endemic in Africa and Asia for decades, until
the Asian ZIKV lineage caused an epidemic on Yap Is-
land (Federated States of Micronesia) in 2007 [21], and
from there jumped to French Polynesia in late 2013 [22],
spreading to a series of Pacific Islands between 2014 to
2016 [1] and to Brazil in early 2015 [3, 23], now advan-
cing across South America and into Central America [1].
The average rate of spread of Zika within Brazil after ini-
tial introduction has been calculated as approximating
42.1 km/day [3]. Three distinct genotypes of ZIKV are
recognized: West African (Nigerian cluster), East African
(MR766 prototype cluster) and Asian. It has been postu-
lated that ZIKV originated in East Africa from where it
spread to West Africa and Asia [144]. The majority of
ZIKV infections are asymptomatic [87]. Clinical symp-
toms of ZIKV illness are typical of many other arboviral
infections such as chikungunya and dengue, and include
fever (usually mild), rash, arthralgia, arthritis, myalgia,
headache, conjunctivitis, and edema; severe cases requir-
ing hospitalization are uncommon and fatalities rare [87,
140]. However, it is the consequences of infection in
pregnant women many of whom give birth to babies
with a range of eye, cardiac and neurological anomalies
such as microcephaly that is the major concern [1].
ZIKV infections have also been linked to Guillain-Barré
syndrome in at least seven South American countries
[145, 146]. Historically ZIKV was likely to have been
maintained in Africa as a sylvatic cycle involving non-
human primates and Aedes mosquitoes, with humans as
incidental hosts. Elsewhere however, sylvatic cycles ap-
pear not to exist but transmission flourishes as a
human-mosquito-human cycle in impoverished urban
settings, involving Ae. aegypti and to a lesser extent also
Ae. albopictus as primary vectors [1]. ZIKV has been iso-
lated from a wide range of mosquitoes, including at least
17 species of Aedes, the malaria vector Anopheles gam-
biae, two species of Eretmapodites, and Mansonia uni-
formis [21]. Despite some earlier conflicting reports, it
has nevertheless been shown that Culex quinquefascia-
tus, and possibly other Culex species, are not effective
vectors [147–149] and also An. gambiae and Anopheles
stephensi [147].
Additional flaviviruses for which some mosquito host

data could be found are listed and basic data provided in
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Table 1, but not outlined here as very little is known
about them; these include Bagaza, Bouboui, Kedougou
and Yaounde viruses.

Togaviridae
The genus Alphavirus of the Togaviridae comprises a
large group of medically-important mosquito-borne
viruses somewhat complex in the origin, dispersal and
ecology of member species. Current phylogenetic tree
analyses and supporting indicators suggest that alpha-
viruses may have arisen from an ancestral aquatic habi-
tat, as reflected in the Southern elephant seal virus SESV
and various fish viruses, a poorly studied field. Spread
then expanded from southern oceans to both the New
World and Old World, invading terrestrial hosts, with
historical repeated re-introductions across the globe pre-
dating significant-scale human shipping and other trans-
port likelihood. Zoonotic hosts are likely to have assisted
this spread, in particular birds, but the picture and its
underlying evidence requires further study [150]. Unlike
flaviviruses which have clear evolutionary and ecological
relationships with specific vector groups, the alpha-
viruses are less clustered. Aedes and Culex mosquitoes
are important vectors, but with other genera such as
Anopheles also involved. Alphaviruses have subgenomic
promoters and dual polyproteins that facilitate more fre-
quent changes in host range and vector range, plus a
capacity for more mutations to be incorporated [150].
This has epidemiological consequences that make for
more rapid spread of alphaviruses and also genetic
recombination.

Chikungunya virus (CHIKV)
The first accurately diagnosed outbreak of Chikungunya
(CHIKV) was described from an epidemic in Tanzania
in 1952 [17]. Multiple subsequent outbreaks occurred in
Africa and SE Asia in the period after 1953 [14, 151].
However, a surge of spread and large outbreaks from the
mid-2000s initiated concern, associated with a mutation
within CHIKV, enabling it to more easily multiply within
the midgut of vector mosquitoes and leading to a 100-
fold increase in viraemia within the salivary glands [14,
152, 153]. Three genotypes are recognized: East/Central/
South African, West African, and Asian [15]. Commen-
cing in 2004, near global explosive epidemics occurred
originating from the East/Central/South African lineage,
spreading to Indian Ocean islands, India, Asia, and also
Europe and the Americas, where it affected millions of
people. An outbreak in the Indian Ocean island of La
Reunion in 2005–2006 infected 266,000 people, approxi-
mately one-third of the human population. In India in
2006–2007 an epidemic of CHIKV resulted in 1.42 mil-
lion reported cases [16]. Thailand reported in excess of
49,000 cases for 2008–2009 [154]. CHIKV had not been

known from the Americas prior to 2013, but the pres-
ence and autochthonous transmission of the virus was
reported from the Caribbean island of St Martin in
December 2013, and then very rapidly spread within the
next year to be reported from 43 countries or territories
in the Americas with more than 1.1 million suspected
cases. During the period January 2015 to November
2016 an adiitional 1.2 million cases were reported from
the region [154]. CHIKV is now widespread across the
globe, giving rise to increasing concern as a public
health threat. Phylogenetic studies indicate that the east-
ern half of Africa is the historic origin of CHIKV from
where it subsequently spread; CHIKV is closely related
to two other arboviruses of African origin, o’nyong-
nyong and Semliki Forest viruses [17, 18]. In Africa,
local transmission of CHIKV has been reported from
most sub-Saharan countries [155], with a full list of af-
fected countries listed in Table 1. Symptoms of CHIKV
include fever, rash, arthralgia, myalgia and headache, and
may in rare instances lead to severe manifestations of
neurological disease, myocarditis, and multi-organ fail-
ure, which may be fatal [156]. Infection is usually not
life-threatening, but can persist for years associated with
pain and swelling mostly in the wrists, hands, ankles and
feet [157]. Important sylvatic vectors in Africa are Aedes
africanus, Ae. furcifer, Ae. cordellieri [62, 158], also Ae.
taylori, Ae. neoafricanus and Ae. luteocephalus [151],
but under urban conditions Ae. aegypti and Ae. albopic-
tus are the main vectors [156]. Aedes albopictus is ac-
knowledged as the most important global vector of
CHIKV [159], in large part due to a genetic mutation
within the virus which enabled it to increase transmissi-
bility to Ae. albopictus but with little impact on infectiv-
ity to Ae. aegypti [17]. Historically, CHIKV was
maintained in an enzootic sylvatic cycle in Africa involv-
ing wild primates and forest-dwelling Aedes mosquitoes,
with an abundance of serological presence in wild pri-
mates and humans throughout the moist forests and
semi-arid savannas of Africa [18, 151]. Since the spread
of CHIKV from Africa to other geographical regions, en-
demic/epidemic transmission cycles have been estab-
lished with Ae. aegypti and Ae. albopictus mosquitoes
transmitting the virus to humans in a mainly urban
human-mosquito-human cycle [14].

Middelburg virus (MIDV)
Middelburg virus was isolated in 1957 from pools of Ae-
des mosquitoes during an outbreak of disease among
sheep in the Middelburg area of the Cape Province in
South Africa [160]. Subsequent antibody surveys in what
is now the KwaZulu-Natal Province of South Africa
showed positive reactions for MIDV in humans, cattle,
sheep and goats [35, 101]. Tissue samples from 623
horses with unexplained febrile and acute neurologic
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infections sent in by veterinarians across South Africa
for diagnostic assays between 2008 and 2013 indicated
44 (7.1%) positive for MIDV, several co-infected with
other viruses such as SHUV and WNV [161]. In horses,
symptoms of infection can be severe and resemble that
of African Horse Sickness [162], including fever, stiff-
ness, swollen limbs, hyperreactiveness, and depression,
frequently associated with neurological manifestations
such as paralysis, recumbency and seizures, occasionally
ending in death [161, 163]. Specific mosquito species
that have been found to host the virus include Aedes
caballus and Mansonia africana [164]. Aside from South
Africa, MIDV has also been recorded from Zimbabwe,
Cameroon, Kenya, Senegal and the Central African
Republic [164, 165].

Ndumu virus (NDUV)
Ndumu virus was first described in 1961 from pools of
mosquitoes captured in the northern KwaZulu-Natal
area of the eastern seaboard of South Africa [40]. Intra-
cerebral and intraperitoneal injection into new-born and
adult mice was fatal with lesions typical of viral enceph-
alitis. A non-immune vervet monkey Cercopithecus
aethiops pygerythrus inoculated intracerebrally devel-
oped viraemia but no signs of illness. Serological tests
on rural people in eight widely scattered locations sug-
gest that NDUV is endemic over a large area of southern
Africa but no known associated morbidity [39, 40]. The
mosquitoes from which virus was obtained in South
Africa were Mansonia uniformis and Aedes circumlute-
olus [40]. In Kenya, a survey at three different habitat
locations during which a total of 450,680 mosquitoes
were captured, revealed that most mosquitoes and most
virus was present at a floodwater location and especially
from the floodwater-breeding Aedes mcintoshi, Aedes
ochraceus and Aedes tricholabis, which yielded high
levels of NDUV but also other viruses such as Sindbis,
Babanki, Usutu, Bunyamwera, Pongola and Ngari; lakes
and other large bodies of water were dominated by other
genera of mosquitoes and some NDUV isolates were
obtained from Culex rubinotus and Mansonia species
[93, 166].

O’nyong-nyong virus (ONNV)
O’nyong-nyong virus was isolated as the cause of a
major epidemic of dengue-like illness in 1959–1962 in-
volving approximately 2 million people, commencing in
north-west Uganda and spreading to adjoining Congo,
Sudan, Kenya and Tanzania, ultimately reaching
Mozambique to the south and Senegal to the north-west
[45, 167]. During 1996–1997 a second epidemic of
ONNF occurred, restricted to south-central Uganda but
with high infection rates of between 45 and 68% of
people in affected regions; symptoms of the disease

included acute fever with associated polyarthralgia but
no known fatalities [45]. Initially suspected of being a
new and separate virus, the closely-related Igbo-Ora
virus which occurs in west-central Africa manifests with
very similar symptoms; genetic analyses suggest it is a
strain of ONNV [168]. ONNV has been repeatedly iso-
lated from Anopheles funestus and Anopheles gambiae in
different areas, and the fact that ONNV is absent from
one particular area in Uganda from which the two mos-
quito species are also absent but both occur in neigh-
bouring regions provides strong evidence that the main
vectors are indeed these two anthropophilic mosquito
species [167]. ONNV is unique among the mosquito-
borne viruses in that it is the only known virus with
Anopheline mosquitoes as primary vectors, unlike other
viruses that have primarily Culicine vectors [151]. How-
ever, ONNV has also been found in one pool of Manso-
nia uniformis, a common and widespread mosquito in
Africa which also readily feeds on humans, thus demon-
strating the potential for this species to play a role in
ONNV epidemiology [169]. A vertebrate reservoir host
for ONNV is not known [151].

Semliki Forest virus (SFV)
Semliki Forest virus was first isolated from Aedes abnor-
malis-group mosquitoes captured in 1942 in Uganda
[170]. SFV was also isolated from Aedes argenteopuncta-
tus mosquitoes collected in central Mozambique in 1959
[171]. Mice injected with SFV invariably developed
hind-leg paralysis and convulsions followed by death
[170, 171], while rabbits showed fever and paralysis
[170]. Rhesus monkeys injected with SFV did not show
any subsequent symptoms [170] but infected vervet
monkeys showed fever with no other symptoms [171].
Little appears to be known regarding clinical symptoms
in humans, although serosurveys from rural inhabitants
in the coastal lowlands of northern South Africa and in
central Mozambique revealed SFV positivity rates of 6%
and 5%, respectively [171]. Apart from South Africa and
Mozambique already mentioned, SFV is also known
from Cameroon, Central African Republic, DR Congo,
Nigeria, Senegal and Uganda [164].

Sindbis virus (SINV)
Sindbis virus was first isolated in 1952 from a sample of
Cx. pipiens and Cx. univittatus mosquitoes captured in
the Sindbis Health District north of Cairo [172]. SINV
has since been found to occur widespread within a geo-
graphical block running from South Africa up through
Africa with known isolations from Uganda, Kenya,
Cameroon and Egypt, then through Israel and fanning
out deeply into Europe, reflecting migratory bird path-
ways [115, 173, 174]. There is another north–south
block of SINV presence between China and the
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Philippines down to Australia [173, 174]. In Finland
SINV is also known as Pogosta disease and causes regu-
lar epidemics involving hundreds or even thousands of
human cases, usually in late summer, and similar disease
occurs in Sweden (where it is known as Ockelbo disease)
and Russia (Karelian fever). SINV was not detected in
Finland during seroprevalence surveys for mosquito-
borne viruses in humans prior to 1965 [175], then be-
came prevalent and rose considerably between 1981 and
1985, with 0.6% seroprevalence in pregnant women in
1992 [176], rising to 5.2% in a sample of 2529 people
tested between 1999 and 2003 in Finland, suggesting
that SINV may have been newly introduced into north-
ern Europe sometime during the 1960s to 1970s [177].
In South Africa, during the same outbreak of West Nile
virus in 1974 as discussed under WNV above, 16% of
the affected human population showed antibodies to
SINV [49]. Another dual outbreak of West Nile virus
and SINV in 1983 and 1984 in the Witwatersrand -
Pretoria area of South Africa resulted in hundreds of
Sindbis human cases, but no fatalities. Also in South
Africa, tissue samples from 623 horses with unexplained
febrile and acute neurologic infections across the coun-
try during 2008–2013 showed 1.3% PCR-positive for
SINV, 3 of 8 infected horses dying from neurologic
sequelea [161]. The disease typically is associated with
arthralgia, rash and malaise in humans [106, 110]. In
southern Africa SINV cycles within a range of species of
wild birds with Cx. univittatus mosquitoes as the main
vectors in the temperate inland plateau regions, while
another bird-feeding species Culex neavei is the primary
vector in the coastal lowlands of north-eastern South Af-
rica. Both species of mosquitoes are capable of transmit-
ting SINV to humans, although Cx. univittatus is a
more efficient vector and accounts for the higher preva-
lence of human cases in the higher-lying inland areas of
southern Africa [62]. In Kenya SINV has also been iso-
lated from a range of Culex species [93]. There is evi-
dence from genetic studies that migratory birds play a
major role in the transcontinental movement of SINV,
infecting mainly Cx. pipiens, Cx. torrentium and Culiseta
morsitans mosquitoes upon arrival in northern Europe
[177]. In Sweden a sero-survey in birds specifically for
SINV showed antibody prevalence of 2% in 2002, 8% in
2003, 14% in 2004, and 37% in 2009; highest prevalence
was within birds of the family Turdidae [178].
Babanki virus is listed under Togaviridae in Table 1 as

some basic data are available, but insufficient for discus-
sion in this section.

Bunyaviridae
The Bunyaviridae is a large family with medically-
important arboviruses clustered into the genera Ortho-
bunyavirus (mainly mosquito-borne), Phlebovirus

(mostly sand fly-borne but some mosquito-borne) and
Nairovirus (mainly tick-borne). Phylogenetic reconstruc-
tion suggests ancestral associations with arthropods at
deep nodes indicative of an arthropod origin for all
bunyaviruses [179]. Extensive and rapid genetic reassort-
ment within these 3-segmented viruses has resulted in
evolutionary proliferation and diversification of virus
species, also affecting pathogenicity, host range and vec-
tor range [180, 181]. This apparent ease and frequency
of genetic reassortment has given rise to occasional un-
certainty about assigning some genetically-overlapping
viral isolates and could give rise to misunderstandings
about disease outbreak descriptions; examples include
Batai virus (BATV) and Ngari virus (NRIV) which are al-
most indistinguishable [41]. The majority of medically-
important mosquito-borne viruses in this family occur
within the genus Orthobunyavirus, most transmitted by
Culex mosquitoes. Aedes also form an important group
of vectors and Anopheles to a lesser extent. Rift Valley
fever with an exceptionally wide range of non-specific
mosquito vectors is somewhat of an anomaly among
the primarily sandfly-transmitted viruses in the genus
Phlebovirus [181].

Viruses in the genus Orthobunyavirus (Bunyaviridae)
Bunyamwera virus (BUNV). Bunyamwera virus was
first isolated in 1943 from Aedes mosquitoes in the Sem-
liki Forest of Uganda [182] and in 1955 a different strain
from Aedes circumluteolus mosquitoes in the northern
coastal area of KwaZulu-Natal Province in South Africa
[183]. Virus was subsequently obtained from the same
KwaZulu-Natal Province area from an adult male mos-
quito catcher presenting with severe headache, neck
stiffness and fever [33], while another study in the same
area in the 1950s showed 54% seropositivity in adult
humans [35]. Serology also indicated BUNV to be com-
mon in the Okavango Basin of Botswana and Caprivi
Region of Namibia [34]. Ae. circumluteolus was com-
monly found to be infected with the virus and is likely
to be important in human-human transmission, even
though it is only poorly attracted to people. Neutralizing
antibodies were found in a range of water birds in
KwaZulu-Natal Province of South Africa [183].

Bwamba virus (BWAV). Bwamba virus was first recov-
ered from febrile road construction workers in the
Bwamba Forest (Bundibugyo) region of Uganda in the
late 1930s; affected persons typically manifested rapid
onset of illness with moderately severe symptoms of
fever, headache and backache [31, 32]. Human fatalities
have been recorded [28]. BWAV has also been isolated
from human patients in multiple other countries in
Africa, including Nigeria, Cameroon, Central African
Republic, Kenya, Tanzania, Mozambique and South
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Africa [27]. Despite very low rates of diagnosis and
reporting, it is said to be among the most common
arthropod-borne diseases in Africa [27], with seroposi-
tivity in excess of 90% in some populations [28]. Virus
has been isolated from a range of mosquitoes, primarily
the anthropophilic Anopheles funestus and An. gambiae
but also Aedes furcifer and other Aedes species, as well
as Anopheles coustani and Mansonia uniformis [31].

Germiston virus (GERV). Germiston virus was first iso-
lated in 1958 from mosquitoes collected at a reed-
fringed lake in the town of Germiston close to Johannes-
burg, South Africa. Virus was obtained from a mixed
pool of Culex theileri/Culex rubinotus and another pool
of pure Cx. rubinotus. Two laboratory workers became
infected while conducting serological studies, one ex-
periencing fever, severe headache and lower back pain,
the other with less severe symptoms. Laboratory tests
excluded possibility of infection with the closely related
Bunyamwera or other viruses [36]. Antibody surveys in-
dicated GERV to be common among residents in the
Okavango Basin of Botswana and Caprivi Region of
Namibia [34].

Ilesha virus (ILESV). Ilesha virus was recorded for the
first time in 1957 from a hospitalized young girl in west-
ern Nigeria [37]. The virus has subsequently been iso-
lated from patients in Cameroon, CAR, Nigeria, Senegal,
Uganda as well as Madagascar, and antibodies found in
persons from Ghana and Niger [184]. Infection with
ILESV is accompanied by fever, headache, myalgia of
roughly 1 week duration, and in at least two of the very
few cases on record led to fatal meningo-encephalitis or
fatal haemorrhagic fever [37]. The virus has also been
isolated from Anopheles gambiae mosquitoes in Central
African Republic [185].

Lumbo virus (LUMV). Lumbo virus was isolated from
coastal salt-water breeding Aedes pembaensis in north-
eastern Mozambique in 1959 and 1960, with 100% mor-
tality when inoculated into mice, but primate vervet
monkeys, yellow baboon and bush babies developed
antibodies without evident illness; 12.5% of a sample of
128 human sera collected in northeastern Mozambique
and northern Kwazulu Natal, South Africa, contained
neutralizing antibodies [38].

Ngari virus (NRIV). Ngari virus was first isolated from
Aedes simpsoni mosquitoes in 1979 and from humans in
1993, both in Senegal [186]. The virus was associated
with a large-scale outbreak of febrile disease in Sudan in
1988 (in some publications incorrectly ascribed to the
closely-related BATV) and in Kenya, Tanzania and
Somalia in 1997–1998 [41]; in both sets of outbreaks the

events were preceded by unusually heavy rain and flood-
promoted mosquito breeding. In the Sudan outbreak at
least 18% of the 77,500 febrile cases were clinically diag-
nosed as malaria, but virus isolates and immunoglobulin
from a sample of 195 sera suggest at least 7% were due
to NRIV. The large outbreak in Kenya and Somalia in-
volving around 89,000 human infections with 250 deaths
was ascribed to Rift Valley fever, but 27% of a sample of
approximately 115 acute haemorrhagic cases was due to
NRIV based on PCR and/or IgM antibody, while RVF
could only be confirmed in 23% of such haemorrhagic
cases [41, 43]. NRIV is stated to be more virulent than
BUNV and BATV and is associated with hemorrhagic
fever [42]. The virus has also been found in sheep and
goats in Mauritania [42].

Shuni virus (SHUV). Shuni virus was first isolated in
1966 in Nigeria as part of surveys covering livestock,
mosquitoes and Culicoides biting midges [48, 164]. It is
a cause of neurological disease and associated mortality
in domestic and wild animals. Symptoms in horses in-
clude depression, anorexia, ataxia, tremors, convulsion,
and recumbency with paddling of legs. RT-PCR assays
on tissue samples submitted by veterinarians in South
Africa indicated 8% SHUV positivity in a sample of 26
horses with fever and 6% of 86 horses with nervous dis-
ease [187]. In 2014 two herds of sheep in Israel were
noted to show arthrogryposis-hydranencephaly syn-
drome; 27 tissue samples from these sheep (15 individ-
uals) as well as cattle and goats showed 85% positive
for Shuni virus by PCR [188]. SHUV sero-prevalence of
3.9% was found in a sample of 123 South African veter-
inarians working with horses and wildlife [48]. Shuni
virus has been isolated from pools of Culex theileri
mosquitoes collected near Johannesburg in South
Africa [26].

Witwatersrand virus (WITV). Witwatersrand virus was
isolated from a pool of 20 Culex rubinotus mosquitoes
collected at the same lake as Germiston virus was dis-
covered, also in 1958, near the city of Johannesburg,
South Africa [53]. WITV was subsequently found to be
present fairly regularly in pools of C. rubinotus collected
in South Africa and Zimbabwe, suggesting that this mos-
quito is a maintenance vector for WITV and also several
other viruses such as Banzi (Flavivirus) and Germiston
(Orthobunyavirus) viruses [61]. Nothing is known re-
garding the significance of WITV for human health, al-
though a serological survey in the north-eastern coastal
area of South Africa and in Mozambique suggested the
virus to be present in humans in those areas; no anti-
bodies were detected from humans in the Johannesburg
Witwatersrand area in which the virus was first
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discovered. Injection of WITV into infant and adult
mice proved lethal [53].
Additional viruses with little published data are listed

in Table 1, including Batai, Nyando and Pongola.

Viruses in the genus Phlebovirus (Bunyaviridae)
Rift Valley fever (RVFV). First described from Kenya in
1931 [189], Rift Valley fever virus (RVFV) has been diag-
nosed widely across Africa (see Table 1), Madagascar
and the Arabian Peninsula [190, 191]. It gives rise to
periodic outbreaks sometimes with dramatic impact,
such as an outbreak in South Africa in 1950–1951 caus-
ing the death of more than 100,000 sheep and 500,000
abortions. Outbreaks also occur amongst other domestic
animals such as goats and cattle, major events having
occurred in Mozambique, Namibia, Zambia, Zimbabwe
and several other southern and eastern African countries
[46, 47]. Human infections are regularly associated with
such epizootics, including an unprecedented outbreak of
up to 200,000 cases and 598 fatalities amongst people in
the Nile valley and delta in Egypt in 1977–1978. RVF is
mostly recognized from high rates of abortion and high
mortality in new-born offspring in domestic ruminants
such as sheep, but with associated low numbers of infec-
tions and deaths in humans [46, 47]. The disease usually
presents itself in humans as mild febrile illness typically
with malaise, headache, myalgia, nausea, but can lead to
serious complications and death. In a major study to
determine vectors of RVFV in Kenya, some 164,626
identified mosquitoes (of 297,000 collected) were sorted
in pools of which the following species tested positive, in
descending order of frequency: Aedes mcintoshi/circum-
luteolus (26 pools), Aedes ochraceus (23 pools), Manso-
nia uniformis (15 pools); Culex poicilipes, Culex
bitaeniorhynchus (3 pools each); Anopheles squamosus,
Mansonia africana (2 pools each); Culex quinquefascia-
tus, Culex univittatus, Aedes pembaensis (1 pool each)
[192]. Various species of Aedes, Culex and also Eretma-
podites have also been found positive for RVFV in other
studies [26] and also Mansonia africana [191]. In south-
ern Africa RVF virus has been isolated from a number of
Aedes species either from the field or under experimen-
tal conditions, the key species most likely to have im-
portant roles in virus transmission being Ae. caballus,
Ae. juppi, Ae. mcintoshi and Ae. circumluteolus. These
Aedes species probably serve to initiate early-season in-
fection in ruminant hosts which is then expanded into
epizootic proportions by more prolific Culex species
breeding in large bodies of water, such as Culex theileri,
Cx. zombaensis and Cx. quinquefasciatus [62, 193].
There is some evidence that RVF virus is carried trans-
ovarially to subsequent generations of Aedes mosquitoes
via eggs that can withstand extended periods of drought
[194]. These so-called floodwater breeding Aedes species

lay their eggs in seasonal pans that dry up during the
dry season and the eggs hatch once rain returns the next
season or even in subsequent years. Significant effort has
been devoted towards developing mathematical and cli-
mate models to predict RVF outbreaks [195, 196].
The preceding outline of viruses isolated from Africa,

known to infect humans and vectored by mosquitoes,
demonstrates not only that several of these viruses have
made intercontinental jumps to become major public
health challenges, but also that a good number remain
in quiescent mainly sylvatic situations with unpredict-
able potential for future impact, maintaining an “under-
the-radar” presence but known to be infective to
humans. Table 1 summarizes the discussion above.
Below is an outline of the ecological context and other
factors that play a role in the potential future spread of
one or more of these viruses.

Predisposing factors favouring the survival,
spread and incidence of mosquito-borne
arboviruses
Three things are usually necessary for transmission,
maintenance and spread of arboviral diseases: the patho-
gen (virus), the vector (mosquito or tick etc.), and an ap-
propriate virus-replicating host (bird, primate etc.). All
three elements must have contact with each other suffi-
ciently often for the virus to make its way along the next
link in the cycle to ensure perpetuation of the virus,
otherwise local infection and ultimately the species of
virus will die out. Sometimes the virus finds alternative
pathways for more direct transmission, such as directly
between humans through sperm or blood transfusion as
with Zika, but these are the exception. Sometimes mos-
quitoes transmit the virus to a dead-end host, as is the
case with many of the arboviruses listed in this paper,
where humans are accidental infections that play no es-
sential part in the natural cycling and maintenance of
the virus, but it has major consequence because it causes
disease or death in humans. The infected humans do
not build a sufficiently high viraemia to re-infect other
mosquitoes which would enable environmental increase
in the virus and therefore increase transmission oppor-
tunity and survival chances of the virus; instead the virus
is “wasted” in infecting a human which does not lead to
onward passage.
However, sometimes an event or situation arises that

brings about a quantum jump in the ability of the virus
to increase its spread, break out of the historic limiting
conditions that restricted its localized distribution and
smouldering low-impact presence. These events lead to
epidemics and pandemics and major shifts in geograph-
ical, economic and health impact. Such break-outs from
historic constraints may be temporary or permanent.
They include events such as adaptive shifts that enable
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mosquito populations to depart from a previous sylvatic
existence to a strongly human-adapted co-existence,
genetic mutations that enable a new strain of virus to
more effectively infect and be transmitted by a particular
mosquito, mutations that result in entirely new species
of viruses that have set up new diseases, and new modes
of international transport being provided to mosquitoes
pre-adapted to take advantage of such transport. A range
of these predisposing factors favouring increase and
spread of arboviruses is discussed below.

Human population growth and its ramifications
The more people there are and the more densely they
are spaced, the more hosts and easier accessibility there
is for blood-feeding anthropohilic mosquitoes especially
in urban environments. Higher human population num-
bers also mean more waste which creates habitat for
container breeders such as Aedes, or polluted pools and
streams for Culex, usually in the extensive poorer and
less sanitary city areas with household incomes not
allowing adequate personal protection from mosquitoes.
It took hundreds of thousands of years for the human
population to reach a total of 1 billion people, which it
did in the year 1800; it then took 150 years to grow to
2.5 billion people in 1950 [197]. Just short of 70 years
later, the global population now stands at over 7 billion
people and is projected to reach 8.1 billion by 2025 and
9.6 billion by 2050 [24]. This rapid and massive popula-
tion growth is associated with increasing urbanization
and international migration [197]. In 2014, close on 54%
of people lived in urban areas, and projections are that
by 2050 about 66% of the global population will reside
in cities [198]. Most populations in sub-Saharan Africa
are anticipated to double in size [24], translating into in-
creased human movement into historic forested areas to
access more land and therefore exposure to the multiple
arboviruses existing in sylvatic cycles. It is self-evident
that these population increases, increasing urbanization,
and increased international traffic will provide very sig-
nificant opportunity for an increase in spread and
growth of mosquitoes and virus and associated arboviral
disease.

Global trade, tourism and other opportunities for
geographical leaps
Trans-national and intercontinental transfer of infected
vector mosquitoes or their eggs are among the most im-
portant methods for rapid geographical leaps in distribu-
tions of arboviruses. Examples include transport of Ae.
aegypti in ships centuries ago to spread yellow fever
from Africa to South America, still ongoing since that
time [8, 58, 129, 136, 199, 200], and Ae. albopictus pri-
marily via the used-car tyre export trade [78, 201–205].
It is precisely this feature of international spread through

human-facilitated means [76, 206] that has made den-
gue, chikungunya, Zika and other viruses such global
public health threats and brought Ae. aegypti and Ae.
albopictus such importance as probably the two most
important disease transmitters on the planet. Were it
not for the international spread of these two mosquitoes
by human assistance the arboviruses they transmit
would not have anywhere near the impact and import-
ance they currently have, and the diseases would likely
still have been confined to their original pockets of his-
toric endemic distribution. West Nile virus too, a Culex-
associated arbovirus using birds as amplifying host,
made the jump to North America [173], apparently from
Africa or the Middle East as suggested by genetic evi-
dence [159] and is suspected to have happened via mos-
quitoes on board aircraft [173].
Aircraft passenger numbers have increased on average

nearly 9% per annum in the half-century preceding the
mid-2000s [207]. With well over 1 billion foreign arrivals
in 2016, international tourism trends have continued to
grow. The number of tourists travelling to Asia and the
Pacific increased by > 8% in 2016, equalled by > 8%
tourism growth into Africa [208]; these are precisely the
regions with the greatest reservoirs of arboviruses in the
world and projections are that the rises in tourism
trends will be sustained [208].
Growth in world trade, despite being referred to as

“sluggish”, has shown overall rise in preceding years
and is expected to increase by 3.6% in 2017 according
to World Trade Organization economists [209]. Ship-
ping traffic increased by more than 27% in the period
1993 to 2006 [207]. The middle class is growing in
the emerging economies of Asia, Africa and Latin
America, and as disposable income increases, so too
does the demand for imported products, directly cor-
related with shipping [210]. Upon arrival at a new
destination, some anthropogenically-relocated vectors
- including Ae. aegypti - have shown strong competi-
tive ability to displace local mosquito species, enab-
ling them to establish a foothold and disperse [211].
With a steadily expanding human population and a

larger middle class with increasing disposable income,
international traffic to satisfy tourism and import de-
mands will continue to provide opportunity for move-
ment of vectors and virus, including from Africa where
a range of viruses of as yet unknown potential for public
health impact are known to occur. Such opportunity for
movement of disease is not limited to trade and tourism,
as there is a steadily increasing number of people visit-
ing friends and relatives, pilgrimages, humanitarian and
other volunteer work, large numbers of politically and
ecomically displaced refugees, all contributing to the po-
tential for infected persons to carry pathogens to other
geographical shores and infect local vectors [212]. The
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international or regional movement of livestock, often
done informally and laissez faire across national bound-
aries between countries, is a serious risk factor for
spread of virus such as Rift Valley fever where local
comptetent vectors may be present in as-yet uninfected
countries [213].

Vertical trans-generational transmission of virus
Transmission of virus between mosquitoes, birds,
humans and other vertebrates is known as horizontal
transmission, but there is also trans-generational vertical
transmission of virus within some vector species allow-
ing passage of infective virus from adult mosquitoes to
offspring [214]. The terms “transovarial transmission”
and “vertical transmission” are sometimes used inter-
changeably by some authors, despite transovarial passage
being a subset of vertical transmission. Such vertical
transmission of virus from one generation of mosquitoes
to the next appears uncommon among mosquito-borne
alphaviruses, has intermediate occurrence in flaviviruses
but high frequency among bunyaviruses [215]. Alpha-
viruses have been found on the egg-surfaces but the egg
rarely becomes infected, apparently due to absence of
virus in the ovarioles themselves but presence in the lat-
eral and common oviducts where contamination could
occur. A similar situation exists in several flaviviruses
that have been studied, where eggs become infected by a
poorly understood mechanism, which is also not transo-
varial as the follicles are not involved in infection and in-
stead the mature egg is somehow infected during
oviposition. True transovarial transmission happens
among several bunyaviruses, by way of germinal tissue
infection. The latter method results in very high vertical
transmission rates [215].
Among flaviviruses, vertical transmission of dengue-2

virus (DENV-2) in Ae. albopictus has been demonstrated
in laboratory studies in India [216]. Angel and Joshi
[217] collected larvae from pots and other containers in
domestic and peri-domestic areas in Jodhpur, Jaipur and
Kota districts in India, reporting vertically transmitted
dengue virus in up to 13.3% of Ae. aegypti, 18.7% of Ae.
albopictus, and and 20% of Ae. vittatus adults reared
from such collected larvae. Natural vertical transmission
of dengue virus has also been demonstrated in north-
eastern Brazil, the authors reporting DENV-2 and
DENV-3 from Ae. albopictus, and DENV-2 from Ae.
aegypti, these mosquitoes having been reared from lar-
vae and pupae collected in households in Fortaleza city
[218]. Experimental transovarial and vertical transmis-
sion of YFV has also been confirmed for Ae. aegypti in
several studies [219–221], while natural vertical trans-
mission of YFV by Ae. aegypti was confirmed in Senegal,
Africa [222]. Such vertical transmission is not limited to
Aedes however. Experimental and natural vertical

transmission of WNV has been reported for Culex tar-
salis and Culex pipiens complex in California, including
multiple examples of female Culex passing WNV to pro-
geny [223]. Experimental vertical transmission of WNV
was also demonstrated in Culex tritaeniorhynchus, and
also in Ae. aegypti and Ae. albopictus [224]. Haemagogus
equinus females were also experimentally infected in
Panama with DENV-1 and this was successfully passed
to egg-stage and subsequently to fourth-stage larvae
[225].
Among the alphaviruses, vertical transmission of

CHIKV has been confirmed in Aedes aegypti mosquitoes
in northern India [226], and in Thailand it was vertically
transmitted experimentally to F5 and F6 generations of
Ae. aegypti and Ae. albopictus, respectively, with Ae.
albopictus being more susceptible and with greater abil-
ity for vertical transmission [227].
At least one publication suggests that trans-

generational vertical transmission of virus, at least in the
case of dengue, is unlikely to be important in the epi-
demiological persistence of dengue viruses [228].

Dessication-resistant eggs
The ability to pass virus on from one mosquito gener-
ation to the next by way of infected eggs (vertical trans-
mission) is a major adaptive advantage to increase the
likelihood of virus survival in the environment, helping
to reduce the chances of local extinction of the virus at
a particular geographical focus. However, the combin-
ation of this trait - successful passage of viable virus
from one female mosquito via the eggs and larvae to the
next generation of adult females - with eggs that are also
desiccation resistant adds a truly powerful dual mechan-
ism not only for survival of virus but also geographical
spread. This phenomenon of some mosquitoes being
able to lay eggs that can survive variable periods of
complete drying out and hatch at the next inundation by
rain or floods or humans watering a garden, and even
have staggered hatching events spread over multiple in-
undations, is probably the single most important
biological trait that (in combination with strong anthro-
pophily) has allowed such effective global spread of Ae.
aegypti and Ae. albopictus and as a consequence also
their associated diseases of DENV, CHIKV, YFV and
others.
The phenomenon of being able to lay drought - or

desiccation-resistant eggs is best known within the Aedes
subgenus Stegomyia, species of which tend to be con-
tainer breeders laying eggs in small volumes of water
subject to drying up, hence placing an evolutionary ad-
vantage on populations which developed the ability to
survive such episodes of drying up. These species now
even lay their eggs above the water-line in small pools,
effectively encouraging drying out and survival until the
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next inundation or flooding event when more water is
likely to be available for the full larval development
period [229].
The ability to lay desiccation-resistant eggs has been

proven for multiple Aedes (Stegomyia) species, including
Ae. aegypti and Ae. albopictus [229–231]. Aedes aegypti
eggs have been shown to survive under very different
humidity regimes, with a mean dry-egg survival period
of 128 days at 88% relative humidity, while Ae. albopic-
tus generally had lower survival with mean of 78 days at
88% RH [229]. Other studies have confirmed survival of
Ae. aegypti dry eggs up to or exceeding 4 months in
Tanzania [232, 233] or 5 months in Queensland,
Australia [234] under outdoor natural conditions; re-
ports also exist for egg survival of Ae. albopictus exceed-
ing 5 months [235]. It is therefore clear that both Ae.
aegypti and Ae. albopictus could easily survive extended
periods of trans-oceanic transport as dry eggs in car-
tyres or other containers.
One of the enduring puzzles has been how RFV is

maintained between epidemics which may have a decade
or more separating such events; speculation has long
existed that transovarially-infected or vertically transmit-
ted eggs of Aedes that are drought-resistant and survive
for many years may be responsible or contribute to such
inter-epidemic survival [194, 196].

Virus mutations
Virus evolution by way of mutation, genome segment
reassortment or recombination is one of the contribu-
tory factors to the occurrence of emergent and/or re-
emergent viral diseases [236]. High frequency reassort-
ment can occur when mosquitoes are infected with two
viruses most likely arising from interrupted feeding and
moving from one host to another to complete a blood-
meal, or separate infected bloodmeals one or 2 days
apart. That such reassortment does happen is well estab-
lished, for example Ngari virus which is a reassortment
between Bunyamwera and Batai virus [43, 236]. Reas-
sortments of different strains of Rift Valley fever virus
have also been found in East Africa [237]. The single-
stranded RNA bunyaviruses are particularly prone to
produce genetic variants and many of these variants
have been detected from field situations [238]. Not only
are reassortments able to produce new viruses with new
epidemiologies, virulence and pathologies, but relatively
minor mutations are also capable of dramatically affect-
ing vector susceptibility enabling quantum improve-
ments in transmission efficiency in previously inefficient
vectors or even new vectors to transmit the virus. A case
in point is the single amino acid change in the EI enve-
lope glycoprotein of chikungunya virus. CHIKV historic-
ally had an alanine amino acid at position 226 in EI and
this virus was transmitted mainly by Ae. aegypti; a single

mutation resulting in a valine amino acid at position 226
greatly enhanced virus replication within - and transmis-
sion by - Ae. albopictus [153, 239, 240] and led to the
widespread dispersal of CHIKV in regions of Asia where
Ae. albopictus predominated [236], as well as an out-
break in northern Italy where Ae. aegypti did not occur
[241]. These events all potentially contribute to the sur-
vival, spread and increased incidence of mosquito-borne
arboviruses.

Vector mutations and adaptations
Not only do the viruses that cause disease mutate or show
adaptive selection for optimized transmission, but so do
the vectors. Aedes aegypti is one example. This historically
forest-dwelling zoophilic species adaptively transformed
into a highly anthropophilic urban-adapted “domesti-
cated” form responsible for transmitting several of the
most serious public health challenges on the planet. The
“domestication” adaptation enabled Ae. aegypti aegypti to
spread with humans to almost all tropical and sub-tropical
parts of the world, where it is now a major vector for den-
gue, chikungunya, and yellow fever in some regions [242,
243]. Other examples also exist of adative shifts that en-
able vector mosquitoes to evade control attempts, result-
ing in dramatic resurgence in disease. Such examples are
common especially in malaria control, where vector resist-
ance to pyrethroid and other insecticides has evolved on
numerous occasions in multiple countries, causing serious
setbacks in disease control programmes [244–249]. Simi-
lar and escalating trends of insecticide resistance have also
been recorded for non-anopheline species, such as Ae.
aegypti [250–254], to some extent in Ae. albopictus [251,
254, 255] and various Culex species including Cx. pipiens
[256] and Cx. quinquefasciatus [256–258].

Climate change
Climate change embraces the suite of projected climatic
parameters that are already in the process of shifting
from historic norms and “natural” background long-
term cycles, these changes brought about by massive an-
thropogenic emmissions of gases that affect meteoro-
logical processes. The expert Intergovernmental Panel
on Climate Change (IPCC) produces periodic assess-
ment reports which consistently show a steady warming
of the planet that is set to continue for the remainder of
this century [259]. The consequences of these “green-
house-effect” rising temperatures will be fundamental
and wide-ranging changes in average daily temperatures,
precipitation, flood and drought events and various
other climate-related parameters, but with a broad likeli-
hood that these changes will in many geographical re-
gions favour the spread of disease vectors and their
abundance [239, 260]. However, the interaction of

Braack et al. Parasites & Vectors  (2018) 11:29 Page 19 of 26



various factors is complex, making predictions of likely
vector increases or disease spread difficult [236, 261].
Global warming and other climate change-related fac-

tors have already resulted in predictions of further
spread of Ae. albopictus in Europe by 2030 [236, 261,
262]. The spread and establishment of arboviruses such
as RVFV in Europe and the USA has also been discussed
in relation to climate change [239].

Conclusions
The literature reviewed in this paper shows that there is a
substantial number of mosquito-borne arboviruses
present in Africa, and that several of these have already in
preceding centuries or decades escaped from their historic
African areas of origin to become serious public health
threats at global scale. Zika is currently the most recent
example of this. Many of these mosquito-borne arbovi-
ruses remain quiescent but almost certainly some of them
must surely have the potential to break out under “Perfect
Storm” conditions to invade other geographical regions
with unknown consequences. Variour factors increase this
likelihood, including expanding human populations that
of necessity clear forests and woodland for cropland and
increased needs of sustenance, thereby placing themselves
within reach of sylvatic disease cycles, plus the ever-
increasing international travel and ease with which in-
fected vectors or people can carry virus to every inhabited
corner of the globe. It is therefore incumbent upon na-
tions and governments to maintain and indeed increase
vigilance against the insidious infiltration of vectors and
viruses. All it takes is for a few infected mosquitoes or
people or animals to establish the vector or virus which
slowly simmers and grows until it emerges as a full-blown
outbreak and public health emergency. This is the historic
pattern of most of these diseases, be it yellow fever, den-
gue, chikungunya, West Nile virus, Zika and several
others. Africa appears to be not only the ancestral cradle
of humankind, but also the spawning ground of many
zoonotic diseases, especially arboviruses. It is very likely
that Africa has the greatest potential for novel zoonoses
and for the next export of a previously quiescent pathogen
to invade elsewhere on a rapidly changing planet.
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