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The iron-57 Mössbauer spectra of a series of Ce-filled antimonide skutterudites, CexFe42yCoySb12, wherex
varies from 0.22 to 0.98 andy varies from 0 to 3.5, have been measured at 295 K. In addition, the spectra of
Ce0.60Fe2Co2Sb12 and Ce0.82Fe3CoSb12 have been measured from 85 to 295 K and the spectra of
Ce0.35FeCo3Sb12 and Ce0.98Fe4Sb12 have been measured from 4.2 to 295 K. The spectra, all of which consist of
a simple quadrupole doublet, show no evidence for any long-range magnetic ordering of any Fe magnetic
moments. The 295-K quadrupole splitting increases linearly from 0.104 mm/s atx50.22 to 0.415 mm/s atx
50.98, an increase which results from the increasing hole concentration in the valence band of these com-
pounds. The quadrupole splitting of approximately 0.16 mm/s observed for Ce0.35FeCo3Sb12 is virtually inde-
pendent of temperature between 4.2 and 295 K and results predominantly from a lattice contribution to the
electric-field gradient. In contrast, in Ce0.98Fe4Sb12, the quadrupole splitting is constant at approximately 0.49
mm/s below approximately 70 K, and decreases withT3/2 above 70 K. The 295-K isomer shift increases
linearly from 0.345 mm/s atx50.22 to 0.386 mm/s atx50.98, an increase which results from a linear
expansion of the unit-cell volume with increasingx. The temperature dependencies of the isomer shift and of
the logarithm of the spectral absorption area in Ce0.98Fe4Sb12 and Ce0.35FeCo3Sb12 yield effective Mössbauer
temperatures of approximately 500 and 400 K, respectively, values which are substantially higher than the
Debye temperatures of approximately 300 K observed for these compounds. These differences indicate that the
high-frequency vibrations of the iron sublattice are weakly coupled to the lower frequency vibrations of both
the partially filled cerium sublattice and the antimony sublattice.@S0163-1829~99!00834-6#

INTRODUCTION

The high thermoelectric figure of merit recently observed1

for the filled skutterudite compounds of formulaLnM4X12,
whereLn is a rare earth,M is a transition metal, andX is a
pnictogen, results from a combination of a high Seebeck
coefficient2 and low thermal conductivity.3 The band struc-
ture of these skutterudites is unusual because the highest va-
lence band consists of hybridized transition-metald orbitals
and pnictogenp orbitals, whereas the lowest conduction
band consists primarily of rare-earthf orbitals; the 0.1-eV
band gap is small. The unfilled skutterudite structure,4 which
is generally given byMX3 , belongs to the body-centered-
cubic space groupIm3. The crystallographic unit cell con-
sists of eightMX3 units, with eightM atoms occupying the
8c sites and 24X atoms occupying the 24g sites of this space
group. The resulting structure is characterized by nearly
square rings ofX atoms, a feature which represents one of
the chief characteristics of the skutterudite structure.

An important feature in determining the thermoelectric
properties of skutterudites is the existence of two large voids
at the 2a positions of the unit cell, voids which are filled
with additional atoms in the filled skutterudites. The rare-
earth atom in the filled structure is sixfold coordinated by the
X-atom planar groups and is thereby enclosed in an irregular
twelvefold dodecahedral ‘‘cage’’ ofX atoms. In the case of

the phosphides,5 compounds containing La, Ce, Pr, Nd, Sm,
and Eu were formed. For arsenides6 and antimonides,7 the
void volume is larger than in the phosphides and filled skut-
terudites can be formed with rare-earth atoms up to and in-
cluding Eu, with intermediate valence Yb in YbFe4Sb12, and
with Th in ThOs4As12. As noted5 by Jeitschko and Braun,
the rare-earth atom possesses an unusually large x-ray ther-
mal parameter which is indicative of a ‘‘rattling’’ motion or
participation in a soft phonon mode.

The filled skutterudites display a rich range of physical
properties, which have been investigated by various meth-
ods. Mössbauer measurements8,9 on LaFe4P12 indicate the
presence of diamagnetic Fe, a result which is consistent with
the observation of superconductivity in this compound.10

Iron in LaFe4Sb12 seems to carry a magnetic moment.11 Re-
cent magnetic studies12 of CeFe4Sb12 and Ce0.9Fe3CoSb12 in-
dicate that they have a Pauli susceptibility which is enhanced
over that observed in the La filled and unfilled skutterudites.
Additionally, it has been observed5 that the unit-cell volume
of CeFe4P12 is anomalously small, suggesting that there is a
tendency for the Ce to attain a tetravalent or intermediate
valence state, whereas only a very slight volume anomaly is
observed for CeFe4Sb12. The tendency of Ce to be more
trivalent than tetravalent in CeFe4Sb12 is also predicted by
the band-structure calculations.2 However, a Ce valence of
3.74 at 4.2 K was deduced3 from electrical conductivity mea-
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surements. Iron-57 Mo¨ssbauer measurements13 on
YbFe4Sb12 indicate that Fe carries no magnetic moment and
x-ray appearance near-edge structure~XANES!
measurements13 at the Yb L III edge reveal an intermediate
valence state for Yb. Obviously the question of the iron and
the rare-earth valence states2,3,13,14 has important conse-
quences in determining whether these filled skutterudites are
metallic, semiconducting, or even superconducting, mag-
netic, or nonmagnetic.

In order to investigate the electronic and dynamic proper-
ties of the Fe atoms in filled skutterudites, we have under-
taken a Mo¨ssbauer spectral study of the CexFe42yCoySb12
solid solutions. Previous studies14,15 on these compounds
have shown that the amount of Ce,x, filling the voids is a
strong function of the Fe/Co ratio; fory50, nearly all the
voids can be filled, i.e.,x is nearly one, whereas fory54,
only about 10% of the voids can be filled. It has also been
shown16 that the lattice thermal conductivity and structural
properties of these fractionally filled skutterudites can best
be rationalized if they are considered to be solid solutions of
fully filled CeFe4Sb12 andhCo4Sb12, whereh is the unoc-
cupied rare-earth site in CoSb3, such that the general sto-
ichiometric formula is (CeFe4Sb12)12a(hCo4Sb12)a , and in
the corresponding general formula, CexFe42yCoySb12, x is
12a andy is 4a.

EXPERIMENT

Samples of CexFe42yCoySb12 were prepared as described
previously15 and were the same samples as were used in the
lattice thermal-conductivity study.16 The Mössbauer spectra
were obtained between 4.2 and 295 K on a constant-
acceleration spectrometer which utilized a room-temperature
rhodium matrix cobalt-57 source and was calibrated at room
temperature witha-iron foil. The absorber thicknesses
ranged from 35 mg/cm2 for Ce0.98Fe4Sb12 to 39 mg/cm2 for
Ce0.22Fe0.5Co3.5Sb12. The resulting spectra have been fit as

discussed below and the estimated absolute errors are
60.005 mm/s for the isomer shifts, and60.01 mm/s for the
quadrupole splittings and linewidths. The isomer shifts are
reproducible to60.0025 mm/s, the quadrupole splittings are
reproducible to60.005 mm/s, and the absolute spectral ab-
sorption areas are reproducible to60.5% of the area ex-
pressed as~% effect!~mm/s!.

RESULTS AND DISCUSSION

The Mössbauer spectra have been measured between 4.2
and 295 K for Ce0.35FeCo3Sb12 and Ce0.98Fe4Sb12, between
85 and 295 K for Ce0.60Fe2Co2Sb12 and Ce0.82Fe3CoSb12,
and at 295 K for the remaining samples. A summary of the
Mössbauer spectral parameters is given in Table I and some
typical spectra, obtained at 85 K, are shown in Fig. 1. All the
observed spectra are quadrupole doublets which have been
fit with two lines of equal linewidths between 0.24 and 0.32
mm/s and essentially equivalent areas.

The reported17 hyperfine parameters for FeSb2 are quite
different from those presented in Table I and there is no
indication in the spectra for the presence of FeSb2 in any of
these compounds. Further, in no case was there any indica-
tion of magnetic ordering in any of the Mo¨ssbauer spectra,
even at 4.2 K. Thus the Fe atoms in these compounds carry
no magnetic moment and the magnetic behavior of
CeFe4Sb12 cannot be attributed18 to the magnetism of the
@Fe4Sb12#

32 polyanion. It is likely that the intermediate
valence2,3,14 Ce carries a magnetic moment just as interme-
diate valence13 Yb carries a moment in YbFe4Sb12.

In understanding the various trends in the spectral hyper-
fine parameters it is very useful to consider the Fe Wigner-
Seitz cell and its volume, which provide a well defined pic-
ture of the Fe near-neighbor environment. Thus we have
calculated19 the Wigner-Seitz cells for FeSb3, CoSb3,
CeFe4Sb12, and LaFe4Sb12 by using the previously reported
structural parameters7,20,21and the 12-coordinate metallic ra-

TABLE I. Mössbauer spectral parameters for the CexFe42yCoySb12 solid solutions.

Compound T, K d, mm/sa DEQ , mm/s G, mm/s M, g/molb QD , Kc

Ce0.22Fe0.5Co3.5Sb12 295 0.345 0.104 0.25 - -
Ce0.35FeCo3Sb12 4.2 0.456 0.163 0.32 72 550

85 0.456 0.169 0.32
295 0.356 0.168 0.28

Co0.47Fe1.5Co2.5Sb12 295 0.358 0.252 0.27 - -
Ce0.60Fe2Co2Sb12 85 0.480 0.480 0.28 72 500

295 0.366 0.282 0.28
Ce0.71Fe2.5Co1.5Sb12 295 0.375 0.335 0.25 - -
Ce0.82Fe3CoSb12 85 0.482 0.439 0.26 74 520

295 0.383 0.373 0.29
Ce0.93Fe3.5Co0.5Sb12 295 0.382 0.398 0.24 - -
Ce0.98Fe4Sb12 4.2 0.491 0.516 0.24 69 520

85 0.487 0.505 0.26
295 0.386 0.415 0.28

LaFe4Sb12 295 0.391 0.382 0.24 - -

aThe isomer shifts are reported relative to room-temperaturea-iron foil.
bObtained by using only the higher temperature data points; see text.
cObtained by using theM values given and the complete temperature dependence of the isomer shift; see text.
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dii of 1.28 Å for P, 1.26 Å for Fe, 1.25 Å for Co, 1.59 Å for
Sb, 1.87 Å for La, and 1.81 Å for Ce. The results of these
calculations are given in Table II.

When interpreting the various Mo¨ssbauer spectral hyper-
fine parameters it is important to realize that the materials
under study can be considered either as having a random
distribution of Ce and Fe throughout the lattice or a nonran-
dom association of Fe with Ce, but only on an immediate
near-neighbor distance scale. In the former case there would
be a variation in the structural environment about an Fe site
that could, at least in part, account for variations in the hy-
perfine parameters. In the latter case the various compounds
can be considered as solid solutions16 of fully filled
CeFe4Sb12 and hCo4Sb12, with the general formula
(CeFe4Sb12)12a(hCo4Sb12)a , where h represents a va-
cancy. Hence there would be relatively little change in the
structural environment about an Fe site withx and the ob-
served changes in the hyperfine parameters would have to be
predominantly electronic in nature. As will be demonstrated
below, we believe the latter case predominates.

Linewidth. As is evident in Table II, the Fe 8c site in
these compounds has only Sb 24g sites as near neighbors
and, more specifically, it does not have another Fe or Co 8c
site as a near neighbor. Thus the replacement of Fe by Co on
the 8c site yields little change in the near-neighbor environ-
ment about the Fe 8c probe atom and, indeed, there is no
evidence for the broadening of the Mo¨ssbauer spectral line-
width with increasing amounts of Co; see Table I. If Ce is
randomly but uniformly distributed throughout the lattice
then the Fe 8c site may have either zero, one, or two Ce near
neighbors. However, the narrow observed Mo¨ssbauer spec-
tral linewidths do not reflect this possibility and hence sup-
port the presence of the (CeFe4Sb12)12a(hCo4Sb12)a solid
solutions.16

Quadrupole interaction. The quadrupole interaction,
which for iron-57 is identical to the quadrupole splitting
DEQ , is related to the electric-field gradienteqat an iron-57
nucleus by the relationshipDEQ5(1/2)e2qQ(11h2/3)1/2,
whereQ is the iron-57 nuclear quadrupole moment andh is
the asymmetry parameter. The virtually linear increase of
DEQ with x in CexFe42yCoySb12 and the close to linear in-
crease ofDEQ with the increasing number of holes per for-
mula unit14 are illustrated in Fig. 2.

The electric-field gradienteq at a site in a noncubic me-
tallic lattice arises22 from two independent contributions, the
lattice contributioneqlatt and the nonspherical conduction-
electron distribution contributioneqce and is given by

eq5~12g!( eqlatt1~12R!( eqce, ~1!

where the Sternheimer antishielding factors (12g) and (1
2R) describe the amplification of each contribution by the
closed electron shells of the probe atom.

In order to determine the relative importance of the two
contributions to the electric-field gradient described in Eq.
~1!, we have used the positions of the six near-neighbor Sb
atoms, with an assumed charge of13, to calculate, with the
point-charge approximation, the expected lattice contribution
to the electric-field gradient at the Fe site in CeFe4Sb12. It is
always difficult to assign charge states to atoms in interme-
tallic compounds and, in this case, we have used13 for Sb
because it is consistent with the observed20 Mössbauer spec-
tra of CoSb3 and because this value yields an upper bound
value of 0.08 mm/s for the Sb contribution, a value which is
expected to be virtually independent of temperature andx.
The only additional lattice contribution would result from the
presence of two near-neighbor Ce atoms at a distance of
3.956 Å, atoms that are found to be formal Wigner-Seitz
near neighbors to Fe, see Table II, but to comprise only a
very small portion of the surface area of the Wigner-Seitz
cell. Then, if we assume a Ce charge of13.74, as calculated
from the carrier concentration,15 a point-charge calculation
yields an additional lattice contribution of at most 0.08
mm/s. Because the Sb and Ce ions are on a crystallographic
threefold axis, the asymmetry parameterh is zero. The re-
sulting sum of 0.16 mm/s actually represents the upper
bound for the lattice contribution because of the Sternheimer
antishielding process, the approximate charges used, and the
assumption of two Ce near neighbors. Of course, atx50 no

FIG. 1. The Mössbauer-effect spectra of several of the
CexFe42yCoySb12 solid solutions measured at 85 K.
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Ce would be present, and the upper bound would be 0.08
mm/s, which would be the hypothetical quadrupole splitting
observed if CoSb3 contained a trace of iron-57. This estima-
tion also assumes that the distortion of the Sb octahedron

about Fe is identical in CeFe4Sb12 and in CoSb3. Actually,
the Sb octahedron is less distorted7 in CoSb3 and hence the
quadrupole splitting in CoSb3 is expected to be even smaller
than 0.08 mm/s. This estimation compares well with the
quadrupole splitting of 0.104 mm/s measured in
Ce0.22Fe0.5Co3.5Sb12; see Table I. Thus the maximum ex-
pected lattice contribution to the quadrupole splitting, which
has been shown as the dashed line in Fig. 2, is much smaller
than the 0.415-mm/s value observed at 295 K for
Ce0.98Fe4Sb12. Hence we must conclude that the conduction-
electron contribution to the quadrupole splitting amounts to
at least approximately 0.25 mm/s and could be as much as
approximately 0.6 mm/s if the two terms in Eq.~1! have
different signs.

It is tempting to associate the changes observed in Fig. 2
with structural changes about Fe. However, whether the
compounds are CexFe42yCoySb12, with a random distribu-
tion of Fe and Co, or are (CeFe4Sb12)12a(hCo4Sb12)a solid
solutions, the Fe atom has the same near-neighbor environ-
ment of Sb and Ce. Hence the changes in the quadrupole
splitting with x cannot be explained by the presence of Co
atoms which are next nearest rather than nearest neighbors of
Fe. Thus we conclude that the increase in quadrupole split-
ting results from an increasing concentration of holes in the
valence band15,16 in thesep-type semiconducting materials,
as is shown in Fig. 2.

The temperature dependence of the quadrupole splitting
for four of the compounds is shown in Fig. 3. The tempera-
ture dependence of the electric-field gradient in a noncubic

TABLE II. Near-neighbor environments, Wigner-Seitz cell volumes, and unit-cell volumes.

Compound Site

Number of W-S near neighbors

VWS, Å3 Vunit cell , Å3 Ref.Ln, 2a Co or Fe, 8c Sb or P, 24g

CoSb3 Co, 8c - 0 6 9.87 737.5 25
Sb, 24g - 2 10 27.44

FeSb3 Fe, 8c - 0 6 10.89 772.7 26
Sb, 24g - 2 10 28.56

CeFe4Sb12 Ce, 2a 0 ~8!a 12 33.41 762.3 7
Fe, 8c ~2!a 0 6 10.52
Sb, 24g 1 2 10 25.47

LaFe4Sb12 La, 2a 0 ~8!b 12 35.26 763.4 7
Fe, 8c ~2!b 0 6 10.52
Sb, 24g 1 2 10 25.36

LaFe4P12 La, 2a 0 ~8!c 12 32.50 480.3 5
Fe, 8c ~2!c 0 6 10.85
P, 24g 1 2 10 13.69

CeFe4P12 Ce, 2a 0 ~8!d 12 30.31 473.1 5
Fe, 8c ~2!d 0 6 10.75
P, 24g 1 2 10 13.60

aThese Wigner-Seitz cell defined near neighbors are at 3.956 Å and comprise only 3.0 and 1.7% of the
surface areas of the Ce, 2a and Fe, 8c cells, respectively.

bThese Wigner-Seitz cell defined near neighbors are at 3.958 Å and comprise only 2.9 and 1.6% of the
surface areas of the La, 2a and Fe, 8c cells, respectively.

cThese Wigner-Seitz cell defined near neighbors are at 3.391 Å and comprise 18.6 and 8.6% of the surface
areas of the La, 2a and Fe, 8c cells, respectively.

dThese Wigner-Seitz cell defined near neighbors are at 3.374 Å and comprise 17.9 and 8.0% of the surface
areas of the Ce, 2a and Fe, 8c cells, respectively.

FIG. 2. The variation with Ce contentx, d, and with the number
of holes per formula unit,j, of the 295-K quadrupole splitting
observed in CexFe42yCoySb12. The dashed line represents a point-
charge calculation of the lattice contribution to the quadrupole split-
ting as is discussed in the text. The error bars are essentially the size
of the data points.
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metallic lattice has been fit23 with different functions. The
first relationship, the ‘‘T3/2 law,’’ is given by

eq5eq~0!~12bT3/2!, ~2!

where eq(0) is the electric-field gradient at absolute zero
temperature. Theb parameter has been found22 to vary be-
tween 131025 and 731025 K23/2. The second relationship,
the ‘‘Ty law,’’ is given by

eq5eq~0!~12bTg!, ~3!

whereg was found to have values of approximately 1.4 with
a standard deviation of 0.4. The third relationship, the qua-
dratic law, is given by

eq5eq~0!~11BT1CT2!. ~4!

We have fit the temperature dependence of the quadrupole
splitting in Ce0.98Fe4Sb12, shown in Fig. 3 with Eqs.~2!–~4!,
and find that the first two equations give equally good fits
with DEQ(0)50.52 mm s, b54.331025 K23/2, and g
51.49. The fit with Eq.~3! is shown in Fig. 3 and is slightly
better than the fit with the quadratic law, Eq.~4!. The value
of g indicates that the ‘‘T3/2’’ law is adequate and the value
of b is in the expected range.

Chen et al.14 have measured the hole concentration in
Ce0.98Fe4Sb12 and found that it was virtually constant at 1
31021cm23 between 2 and approximately 70 K. Above 70
K the hole concentration increases with an approximately
T3/2 dependence. In a parallel fashion, the quadrupole split-
ting is found to be independent of temperature from 4.2 to

approximately 70 K and then to decrease with approximately
a T3/2 dependence. Up to now, there is no theoretical
understanding23 of the T3/2 dependence of the quadrupole
splitting in metallic hosts. It is generally believed that the
thermal vibrations of the lattice are responsible for this tem-
perature dependence. We believe that the decrease in the
quadrupole splitting above approximately 70 K is due to a
combined effect of the thermal lattice vibrations, the thermal
lattice expansion, the increase in hole concentration,15,16 and
the decrease in hole mobility24 with increasing temperature.

More recent studies24 indicate that the hole concentration
decreases with decreasingx from a value of approximately
331021cm23 at higher values ofx down to values of ap-
proximately 131019cm23 at low values of x in the
CexFe42yCoySb12 solid solutions. This decrease agrees with
the decrease in the quadrupole splitting which approaches
the calculated maximum lattice contribution atx values of
0.35 and 0.22.

Isomer shift. There is a linear increase in the isomer shift
measured at 295 K both withx, as is shown in Fig. 4, and
with unit-cell volume. Thus, as the unit-cell volume or hole
concentration increases, there is a decrease ins-electron den-
sity at the iron-57 nucleus in the CexFe42yCoySb12 solid so-
lutions. Apparently, the presence of the holes, in conjunction
with the expanding unit cell, permits the expansion of the 4s
electron radial distribution function, thus decreasing the
s-electron density at the nucleus and increasing the isomer
shift. The volume dependence of the isomer shift,
expressed25 as Dd/D ln V, is 1.42 mm/s, a value which
agrees well with the value of 1.31 mm/s observed25 for
a-iron. Hence it seems that thex dependence of the isomer
shift is well understood in terms of the unit-cell expansion.

The isomer shifts of LaFe4Sb12, given in Table I, and of
YbFe4Sb12,

13 are very similar to that of Ce0.98Fe4Sb12, indi-
cating rather similars-electron density at Fe in these com-
pounds. In contrast, these isomer shifts are much larger than
the 0.050 mm/s value observed8 for LaFe4P12, although it
should be noted that the temperature dependence of the iso-
mer shift of Ce0.98Fe4Sb12, see below, and LaFe4P12 are quite
similar. The temperature dependence of the isomer shift in

FIG. 3. The temperature dependence of the quadrupole splittings
observed in Ce0.35FeCo3Sb12, l, Ce0.60Fe2Co2Sb12, m,
Ce0.82Fe3CoSb12, j, and Ce0.98Fe4Sb12, d. The Ce0.98Fe4Sb12 re-
sults have been fit with Eq.~3!, see text.

FIG. 4. The variation with Ce contentx of the 295-K isomer
shifts observed in CexFe42yCoySb12.
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Ce0.98Fe4Sb12 and Ce0.35FeCo3Sb12 is shown in Fig. 5. The
results for Ce0.82Fe3CoSb12 and Ce0.60Fe2Co2Sb12 are very
similar and would appear between the two curves shown in
Fig. 5.

Because the lattice properties of the CexFe42yCoySb12

solid solutions are very important for their potential applica-
tions, we have undertaken a detailed analysis of the tempera-
ture dependence of the isomer shift in terms of the Debye
model for the second-order Doppler shift. It is well known
that the Debye model is strictly applicable to only a uniele-
mental lattice. However, the concept of the Debye tempera-
ture is commonly used8,12,26 to describe complex lattices
such as the skutterudite lattice. In this model, the temperature
dependence of the isomer shiftd is given by

d5d02
^n2&
2c

, ~5!

whered0 is the isomer shift at absolute zero temperature and

^n2&5
9kuD

8M
1

3kT

M
f S T

uD
D , ~6!

where

f S T

uD
D53S T

uD
D 3E

0

uD /T x3dx

ex21
. ~7!

In these expressions,^n2& is the mean-square velocity of the
iron-57 nuclide,k is the Boltzmann constant,c is the velocity
of light, M is the effective recoil mass, anduD is the Debye
temperature. At temperatures well below the Debye tempera-
ture, ^n2& is given by

^n2&5
9kuD

8M
1

3p4kT

5M S T

uD
D 3

~8!

and thus the isomer shift will become constant at low tem-
perature. In contrast at temperatures well above the Debye
temperaturên2& is given by

^n2&5
3kT

M H 11
1

20S uD

T D 2

2
1

1680S uD

T D 4

1¯J ~9!

and, to a first approximation, the isomer shift will be a func-
tion of the effective recoil massM and will decrease linearly
with increasing temperature. In the analysis of the tempera-
ture dependence of the Mo¨ssbauer-effect isomer shift, it is
often found that the recoil mass takes on values above 57
g/mol, the mass of the iron-57 Mo¨ssbauer nuclide. This oc-
curs because the effective mass of the recoiling nuclide is
increased through covalent bonding with its near neighbors.
In the discussion that follows the Debye temperature will be
referred to as the effective Mo¨ssbauer temperature when the
effective recoil mass is not 57 g/mol.

The value of the effective masses in the CexFe42yCoySb12
solid solutions has been determined from a linear fit to the
higher temperature data points, as is shown in Fig. 5. The
resulting values, given in Table I, range from 69–74 g/mol
but are all effectively the same as their estimated accuracy is
at best64 g/mol. A similar value of approximately 70 g/mol
for all the compounds is not surprising, especially if the en-
vironment about Fe is really quite similar as expected16 in
the (CeFe4Sb12)12a(hCo4Sb12)a solid solutions. However,
approximately 70 g/mol is substantially higher than the 57
g/mol value expected for iron-57 in the absence of cova-
lency. The presence of substantial covalency in the Fe-Sb
bonding is not unexpected because the observed Fe-Sb bond
distance of 2.56 Å is substantially smaller than either the
2.85-Å sum of the metallic radii or the 2.68-Å sum of the
covalent radii for these two elements. Further, antimony-121
Mössbauer spectral studies20 indicate the presence of sub-
stantial covalency in CoSb3 and related compounds.

The fit of the complete temperature dependence of the
isomer shifts in Ce0.98Fe4Sb12 and Ce0.35FeCo3Sb12 is also
shown in Fig. 5. Unfortunately, as is shown in Fig. 6 for
Ce0.98Fe4Sb12, there is a very strong correlation between the
effective recoil mass and the Debye or effective Mo¨ssbauer
temperature. A very similar contour plot is obtained for
Ce0.35FeCo3Sb12. In the plot shown in Fig. 6, any combina-
tion of values within the inner contour will reproduce the
temperature dependence of the isomer shifts to within their
experimental accuracy. It should be noted that the value of
69 g/mol, obtained from the higher temperature values, does
not fall within this contour. This occurs because the higher
temperatures are not sufficiently above the Debye tempera-
ture to allow the approximation to work well.

A careful inspection of Fig. 6 reveals that, for
Ce0.98Fe4Sb12, the effective iron-57 recoil mass can range
from 57–65 g/mol and the corresponding effective Debye or
Mössbauer temperatures can range from 540–440 K. For
Ce0.35FeCo3Sb12 a similar contour plot indicates that the ef-
fective recoil mass can range from 57–65 g/mol and the
corresponding effective Mo¨ssbauer temperatures can range
from 560–460 K. Thus it appears that these values are es-

FIG. 5. The temperature dependence of the isomer shifts ob-
served in Ce0.35FeCo3Sb12, l, and Ce0.98Fe4Sb12, d.
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sentially independent of Ce content, a conclusion that is con-
sistent with the formulation16 of these solid solutions as
(CeFe4Sb12)12a(hCo4Sb12)a . For comparison, it should be
noted that a Debye temperature of 450 K was obtained8 for

LaFe4P12 from the temperature dependence of the isomer
shift.

Mössbauer spectral absorption area.The Mössbauer
spectral absorption area is proportional to the iron-57 recoil
free factorf which is related to the Debye or effective Mo¨ss-
bauer temperature by

f 5expH 2
3

4

Eg
2

Mc2kuD
F114S T

uD
D 2E

0

uD /T xdx

expx21G J .

~10!

This expression has been used to fit the Mo¨ssbauer spectral
absorption areas and the results are shown for Ce0.98Fe4Sb12
and Ce0.35FeCo3Sb12 in Fig. 7. Once again, as indicated by
the contour plot shown in Fig. 8, there is a very strong cor-
relation between the effective recoil mass and the effective
Mössbauer temperature. If one accepts the limits placed on
the effective recoil mass by the isomer shift, see above, then
these results indicate that the effective Mo¨ssbauer tempera-
ture can range from 460–560 K for Ce0.98Fe4Sb12 and from
350–420 K for Ce0.35FeCo3Sb12. It should be noted in Fig. 7
that the absorption area for Ce0.98Fe4Sb12 at 250 and 275 K is
larger than expected based on the data at the remaining tem-
peratures. A similar, but smaller, increase has also been ob-
served at these temperatures in Ce0.82Fe3CoSb12, but not in
Ce0.60Fe2Co2Sb12 and Ce0.35FeCo3Sb12. This ‘‘anomaly’’ is
reproducible within the expected error limits as determined
by repeated measurements on a given sample. The reason of
this ‘‘anomaly’’ is not apparent at this time.

Because an in-depth understanding of the lattice vibra-
tional properties of the skutterudites is important in under-
standing their thermoelectric properties, it is worthwhile to

FIG. 6. A contour plot of the values of the effective recoil mass
and the effective Debye or Mo¨ssbauer temperature which are con-
sistent with the isomer shifts observed in Ce0.98Fe4Sb12. Any pair of
values found within the inner contour will fit the experimental iso-
mer shifts within the experimental errors. Each major and minor
contour corresponds, respectively, to a 0.0005 and a 0.00005 in-
crease in the sum of squares misfit.

FIG. 7. The temperature dependence of the logarithm of the
Mössbauer spectral absorption areas observed for Ce0.35FeCo3Sb12,
l, and Ce0.98Fe4Sb12, d.

FIG. 8. A contour plot of the values of the effective recoil mass
and the effective Mo¨ssbauer temperature which are consistent with
the Mössbauer spectral absorption areas observed in Ce0.98Fe4Sb12.
Any pair of values found within the inner contour will fit the ex-
perimental values within the experimental errors. Each major and
minor contour corresponds, respectively, to a 0.001 and a 0.00015
increase in the sum of squares misfit.

7416 PRB 60LONG, HAUTOT, GRANDJEAN, MORELLI, AND MEISNER



discuss the values of the Debye temperature obtained from
different techniques and calculations. Recent low-
temperature specific-heat measurements12 on CeFe4Sb12 and
Ce0.9Fe3CoSb12 have yielded Debye temperatures of 250 and
257 K, respectively. Debye temperatures of approximately
300 K have been observed26 in LaFe4Sb12 and
La0.75Fe3CoSb12. These values, which describe the vibra-
tional properties of the three kinds of atoms in the structure,
are substantially lower than the Mo¨ssbauer spectral based
values which describe the vibrational properties of the iron
atoms in the structure. Indeed different vibrational frequen-
cies are probed by different techniques. For instance, Raman
scattering spectra27 probe the Sb vibrations in the lattice,
whereas infrared spectra28 probe the Fe vibrations. The Sb
vibrational frequencies are lower29,30 than the Fe vibrational
frequencies, a difference which is in agreement with the high
effective Mössbauer temperatures observed herein. The vi-
brational frequencies of the rare-earth atom responsible for
the good thermal properties of the skutterudites are found at
approximately 200 cm21 and these modes are coupled to the
Sb vibrational modes. The Mo¨ssbauer spectral measurements
confirm that the Fe vibrational modes are weakly coupled to
the rare-earth and Sb vibrational modes. Indeed, the effective
Mössbauer temperature of approximately 450 K obtained
herein is only slightly different from the Debye
temperature31 of a-iron of 48065 K obtained from the tem-
perature dependencies of the Mo¨ssbauer spectral isomer
shifts and absorption areas. Hence it would be very interest-
ing to study the Eu-151 Mo¨ssbauer spectra of Eu filled and
partially filled skutterudites in order to investigate directly
the vibrational properties of the Eu atom.

CONCLUSIONS

The iron-57 Mössbauer spectra of the CexFe42yCoySb12
solid solutions provide substantial insight into the electronic
structure and lattice dynamics of these materials from the
point of view of the Fe sublattice. First, they reveal no long
range magnetic ordering involving Fe. They confirm the
(CeFe4Sb12)12a(hCo4Sb12)a solid solution nature of these
compounds16 by the lack of any spectral broadening with
decreasingx, or increasinga, by the linear dependence of the
observed quadrupole splitting uponx, by the temperature de-
pendence of the quadrupole splitting, and by the virtual in-
dependence of the effective Mo¨ssbauer temperature uponx.
The quadrupole splitting is close to linearly related to the
hole concentration and is dominated by the electronic contri-
bution. The changes in the isomer shift withx and with tem-
perature may be accounted for by changes in the unit-cell
volume and the Wigner-Seitz cell volume available to Fe.
The temperature dependence of the isomer shift and the
spectral absorption area yields values for the effective Mo¨ss-
bauer temperature which are higher than those obtained from
specific-heat studies and are essentially independent ofx.
Hence the phonon modes related to the Fe and Co sublattice
are relatively independent of the presence of the rattling Ce
present in these filled and partially filled skutterudites.
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