
                          Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., & Arheimer, B.
(2016). Most computational hydrology is not reproducible, so is it
really science? Water Resources Research, 52(10), 7548–7555.
https://doi.org/10.1002/2016WR019285

Peer reviewed version

Link to published version (if available):
10.1002/2016WR019285

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1002/2016WR019285
https://doi.org/10.1002/2016WR019285
https://research-information.bris.ac.uk/en/publications/845a681a-6b54-4f97-ad49-62b3022ecce6
https://research-information.bris.ac.uk/en/publications/845a681a-6b54-4f97-ad49-62b3022ecce6


Most Computational Hydrology is not Reproducible, 1 

so is it Really Science?  2 
 3 

Christopher Hutton1, Thorsten Wagener1, Jim Freer2, Dawei Han1, Chris Duffy3, Berit 4 

Arheimer4 5 

1Department of Civil Engineering, University of Bristol, Bristol, UK. 6 

2School of Geographical Sciences, University of Bristol, Bristol, UK. 7 

3Department of Civil Engineering, The Pennsylvania State University, University Park, 8 

Pennsylvania, USA 9 

4Swedish Meteorological and Hydrological Institute, Norrköping, Sweden 10 

Corresponding author: Christopher Hutton (chutton294@gmail.com) 11 

Key points 12 

 Articles that rely on computational work do not provide sufficient information to 13 

allow published scientific findings to be reproduced. 14 

 We argue for open re-useable code, data, and formal workflows, allowing published 15 

findings to be verified. 16 

 Reproducible computational hydrology will provide a more robust foundation for 17 

scientific advancement and policy support. 18 

Abstract 19 

Reproducibility is a foundational principle in scientific research. Yet in computational 20 

hydrology, the code and data that actually produces published results is not regularly made 21 

available, inhibiting the ability of the community to reproduce and verify previous findings. In 22 

order to overcome this problem we recommend that re-useable code and formal workflows, 23 

which unambiguously reproduce published scientific results, are made available for the 24 

community alongside data, so that we can verify previous findings, and build directly from 25 

previous work. In cases where reproducing large-scale hydrologic studies is computationally 26 

very expensive and time-consuming, new processes are required to ensure scientific rigour. 27 

Such changes will strongly improve the transparency of hydrological research, and thus provide 28 

a more credible foundation for scientific advancement and policy support. 29 

Index Terms  30 
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Main Text 34 

Upon observing order of magnitude differences in Darcy-Weisbach Friction Factors 35 

estimated from hillslope surface properties in two previous studies [Weltz et al. 1992; 36 



Abrahams et al. 1994], Parsons et al [1994] conducted additional experiments to identify 37 

factors controlling hillslope overland flow in semi-arid environments, and identified that the 38 

experimental set-up was the main factor controlling the difference between the previous 39 

experimental results. Whilst exact reproducibility is impossible in open hydrological systems, 40 

attempting to reproduce the main scientific finding within an acceptable margin of error is a 41 

core principle of scientific research [Popper 1959]. As illustrated, independent observation 42 

helps to verify the legitimacy of individual findings. In turn, this helps us to build upon sound 43 

observations so that we can evolve hypotheses (and models) of how catchments function 44 

[McGlynn et al. 2002], and move them from specific circumstances to more general theory 45 

[Wagener et al., 2007].  46 

As in Parsons et al [1994], attempts at reproducibility have failed in a number of 47 

disciplines, leading to increased focus on the topic in the broader scientific literature [Begley 48 

& Ellis 2012; Prinz et al. 2011; Ioannidis et al. 2001; Nosek 2012]. Such failures have occurred 49 

not just because of differences in experimental setup, but because of scientific misconduct 50 

[Yong 2012; Collins & Tabak 2014; Fang et al. 2012], poor application of statistics to achieve 51 

apparent significant results [Ioannidis 2005; Hutton 2014], and importantly, insufficient 52 

reporting of methodologies and data quality in journals to enable reproducibility to be assessed 53 

by the community. An oft-cited underlying reason for such failures is the present reward system 54 

in scientific publication, which prioritises the publication of innovative, and seemingly 55 

statistically significant results over the publication of both null results [Franco et al 2014; 56 

Jennions & Møller, 2002; cf Freer et al 2003], and reproduced experiments. Such a system 57 

provides few incentives to adopt open science practices that support and enable verification 58 

[Nosek et al 2015].  59 

The prominence of computational research across scientific disciplines – from big data 60 

analysis in genomic research to computational modelling in climate science – has brought 61 

increased focus on the reproducibility issue. This is because the full code and workflow used 62 

to produce published scientific findings is typically not made available, thus inhibiting attempts 63 

to verify the provenance of published results [Buckheit & Donoho 1995; Mesirov 2010]. Given 64 

the extent to which this lack of transparency is considered a problem for reproducibility more 65 

broadly in the scientific literature [Donoho et al. 2009], to what extent is reproducibility, or a 66 

lack thereof, also a problem in computational hydrology? Computational analysis has grown 67 

rapidly in hydrology over the past 30 years, transforming the process of scientific discovery. 68 

Whilst code is most obviously used for hydrological modelling [e.g. Clark et al. 2008; Wrede 69 

et al. 2014; Duan et al. 2006], some form of code is used to produce the vast majority of 70 

hydrological research papers, from data processing and quality analysis [Teegavarapu 2009; 71 

Mcmillan et al. 2012; Coxon et al. 2015], regionalisation and large-scale statistical analysis 72 

across catchments [Blöschl et al. 2013; Berghuijs et al. 2016], all the way to figure preparation. 73 

However, as in other disciplines the full code that produces presented results is typically not 74 

made available alongside the publication to document their provenance, which inhibits 75 

attempts to reproduce published findings. 76 

In order to advance scientific progress in hydrology, reproducibility is required in 77 

computational hydrology for several key reasons. First, the reliability of scientific computer 78 

code is often unclear. From our own experience it is often very difficult to spot errors unless 79 

they manifest themselves in very obvious errors in model outputs. Thus, code needs to be 80 

transparent to allow the legitimacy of published results to be verified. Second, the complexity 81 



of many hydrologic models and data analysis codes used today makes it simply infeasible to 82 

report all settings that can be adjusted (e.g. initial conditions, parameters, etc) in publications -  83 

a point recognised recently in a joint editorial published in five hydrology journals [Blöschl et 84 

al. 2014]. Transparency across hydrology is especially important given research builds on 85 

previous research. For example, being able to evaluate how “tidied up” datasets have been 86 

created by explicitly showing all of the assumptions made will lead to benefits in interpreting 87 

where and why subsequent models that are built upon such datasets fail. Finally, the complexity 88 

and diversity of catchment systems means that we need to be able to reproduce exact 89 

methodologies applied in specific settings more broadly across a range of catchment 90 

environments, so that we can robustly evaluate competing hypotheses of hydrologic behaviour 91 

across scales and locations [Clark et al 2016]. Our current inability to achieve this hinders both 92 

the ability of the broader community to learn from, and build on, previous work, and 93 

importantly, verify previous findings. So what material should be provided, and therefore what 94 

is required to reproduce computational hydrology?  95 

The necessary information that leads to, and therefore documents the provenance of the 96 

final research paper has been termed the research compendium [Gentleman & Lang 2004]. In 97 

the context of computational hydrology this includes the original data used; all 98 

analysis/modelling code; and the workflow that ties together the code and data to produce the 99 

published results. Although these components are not routinely published alongside journal 100 

articles, current practices in hydrology do facilitate reproducibility to varying extents. For 101 

example, initiatives are relatively well developed in hydrology for opening up and sharing data 102 

from individual catchments and cross-catchment datasets [McKee & Druliner 1998; Renard et 103 

al. 2008; Kirby et al. 1991; Newman et al. 2015; Duan et al. 2006], including (quite recently) 104 

the development of infrastructures and standards for sharing open water data [Emmett et al 105 

2014; Leonard & Duffy 2013; Tarboton et al. 2009; Taylor, 2012; Tarboton et al 2014]. In 106 

addition, different code packages has been made available by developers. Prominent examples 107 

include the hydrologic models such as Topmodel [Beven & Kirkby, 1979], VIC [Wood et al., 108 

1992], FUSE [Clark et al., 2008], HYPE [Lindström et al., 2010], open-source groundwater 109 

models includingMODFLOW [Harbough, 2005] and PFLOTRAN,  and codes linked to 110 

modelling, including optimization/uncertainty algorithms such as SCE [Duan et al., 1993], 111 

SCEM [Vrugt et al., 2003] or GLUE [Beven & Binley, 1992]. By being made open, such code 112 

has helped spread new ideas and concepts to advance hydrology, and made reproducing each-113 

others’ work easier However, whilst sharing data and code are important first steps, sharing 114 

alone does not provide the critical detail on implementation contained within a workflow that 115 

is required to reproduce published results. 116 

  We argue that in order to advance and make more robust the process of knowledge 117 

creation and hypothesis testing within the computational hydrological community, we need to 118 

adopt common standards and infrastructures to: [1] make code readable and re-useable; [2] 119 

create well documented workflows that combine re-useable code together with data to enable 120 

published scientific findings to be reproduced; [3] make code and workflows available and 121 

easy to find through use of code repositories and creation of code metadata; [4] use unique 122 

persistent identifiers (e.g. DOIs) to reference re-useable code and workflows, thereby clearly 123 

showing the provenance of published scientific findings (Figure 1). 124 



 125 

Figure 1. Schematic figure of steps required leading to reproducible and re-useable 126 

hydrological publications. 127 

The first step towards more open, reproducible science is to adopt common standards 128 

that facilitate code readability and re-use. As most researchers in hydrology are scientists first, 129 

programmers second, setting high standards for code re-use may be counter-productive to 130 

broad adoption of reproducible practices. Yet long, poorly documented scripts are not re-131 

useable, and certainly difficult to reproduce if their ability to do the intended job cannot be 132 

verified. As a minimum standard we therefore recommend that code should come with an 133 

example workflow, as commonly adopted [e.g. Pianosi et al., 2015], and where possible, also 134 

packaged with input and output data to provide a means to ensure correct implementation of a 135 

method prior to application. Implementing code correctly however is not enough to make it re-136 

useable; sufficient information is required to understand what the code does, and to be 137 

reproducible, whether it does this correctly. Therefore, code should be modularised into 138 

functions and classes that may be re-useable by the wider community, with comments that 139 



don’t repeat the code, but explain at a higher level of abstraction what individual blocks within 140 

modular code are trying to do [McConnel, 2004]. Such readable code allows the broader 141 

community to verify code intent. 142 

The second key requirement to reproduce published scientific results is a well-143 

documented workflow, or protocol that combines re-useable code together with data to enable 144 

published scientific findings to be reproduced. Such workflows may take the form of code 145 

scripts themselves [e.g. Ceola et al 2015; Pianosi et al., 2015], or when multiple programming 146 

environments/research partners are involved, schematic workflows that illustrate how 147 

individual scripts and intermediary results lead to the generation of the final, published paper. 148 

Regardless of the specific structure, or software/workflow management system used, we argue 149 

that the key requirement of such a workflow is that it clearly specifies all potential degrees of 150 

freedom, and therefore unambiguously ties together the component re-useable code and data 151 

to document the provenance of the published scientific results. For example, Ceola et al [2015] 152 

identified the importance of a well-documented protocol to ensure correct execution, and avoid 153 

ambiguity in the interpretation of results when 5 research groups attempted to reproduce the 154 

same hydrological model calibration experiment.  155 

Third, code and code metadata need to be made open and available to allow others to 156 

re-use and reproduce scientific results. Numerous code and resource repositories exist to 157 

facilitate sharing of research outputs, such as Github, Zenodo, Figshare, the EU SWITCH-ON 158 

Virtual Water-Science Laboratory (www.water-switch-on.eu), and the US CUAHSI initiative 159 

Hydroshare, specifically designed for sharing hydrological data and models to serve the 160 

hydrological community [Horsburgh et al. 2015; Tarboton et al. 2014]. The development of 161 

metadata standards for water data is a key factor that has allowed data to be found, correctly 162 

interpreted and re-used by the broader community [Maidment, 2008; Taylor, 2012]. In the same 163 

vein, we argue that in order to facilitate first the discovery, and second the re-use of disparate 164 

hydrological code across the web, the development and adoption of similar metadata standards 165 

are required. Gil et al [2015] for example have developed OntoSoft for the geoscience 166 

community; a metadata repository and ontology to describe software metadata. The 167 

development of code metadata, and consistent use of such a repository, whilst more challenging 168 

than development of metadata standards for data, will greatly facilitate the process of code 169 

identification and re-use, and through broad community engagement, lead the way towards the 170 

development of more formal ontologies for specific components of hydrological software, 171 

which will greatly improve model interoperability [see Elag and Goodhall, 2013]. 172 

 173 

Finally, we recommend that re-useable code and reproducible code [workflows] need 174 

to be cited in research papers using unique persistent identifiers [e.g. DOIs] to clearly link 175 

published results to the code used to generate them, thereby documenting their provenance 176 

[Horsburgh et al. 2015]. Such DOIs should be specific to the exact code version used in 177 

generating the results. Appropriate citation in methodologies and results sections of papers will 178 

allow others to both re-use code and reproduce experimental results. Whilst code may be 179 

included as supplementary material in research articles, persistent links to repositories provides 180 

an open access approach that exploits existing infrastructures specifically designed for sharing 181 

research outputs. Furthermore, such an approach demands little from publishers other than 182 

adopting standards for code citation. 183 

http://www.water-switch-on.eu/


Making one’s code re-useable in the first instance, then reproducible, undoubtedly 184 

requires extra effort. This is notwithstanding the effort to reproduce someone else’s work, with 185 

little reward in the current system of publication to reproduce, and therefore validate, either 186 

positively or negatively, a prior result. Thus, it is a perfectly valid question to ask: why go to 187 

the effort!? Within the current system of academic reward through citation [Koutsoyiannis et 188 

al., 2016], making code available and re-useable reduces the barriers to the adoption of 189 

developed methods, which as considered above, is more likely to lead to further citation and 190 

greater impact in the community. Furthermore, making code re-useable is beneficial for our 191 

own work efficiency [Donoho et al. 2009]. Across hydrology, much duplicated code is likely 192 

to be written for common tasks that are not deemed worthy of publication. However, if open, 193 

re-useable practices are adopted by the broader community to make all code open and citable, 194 

this would reduce the amount of individual code to be written, and lead to improved efficiency 195 

at a community level. In addition, this would allow researchers to gain credit for all of their 196 

research outputs, not simply the final publication. The key reason we recommend making code 197 

re-useable, however, is that this would allow a process of natural selection to occur at the 198 

community level, where freely chosen code that is assessed to be most fit-for-puropse through 199 

re-use and unit-testing can form the individual building blocks of  larger ‘off-spring’ 200 

scripts/workflows. Verification of these individual code building blocks, potentially by many 201 

users in the community, means assessing the reproducibilty and provenance of derived results 202 

becomes much easier. 203 

As has guided our recommendations we make above, there is wide recognition that 204 

gradual steps are required to change a deeply engrained research culture that does not currently 205 

require reproducibility [Bailey et al. 2015; Peng 2011; Koutsoyiannis et al., 2016]. A key step 206 

to change this culture is to ensure that computational science training (e.g. http://software-207 

carpentry.org) is properly embedded within hydrological science curriculums, so that future 208 

generations of hydrologists have the skills to build readable, version controlled and unit-tested 209 

software [McConnel, 2004], allowing them to engage more fully in an open scientific 210 

community by reproducing and re-using each other’s research outputs. Thus, instead of seeing 211 

the need to make their work reproducibile as an inconvenient after-thought, it will be an integral 212 

part of their research process. Engaging with advances in the related disciplines of 213 

computational science and hydroinformatics through such training will help ensure future 214 

hydrologists, and in turn the science they produce, benefits from modern computational 215 

methods. To facilitate this training, Data and Modeling Driven Cybereducation (DMDC) 216 

methods [Merwade and Ruddell, 2012], and educational web-based tools [e.g. Wagener and 217 

McIntyre, 2007; Habib et al. 2012], need to come to the forefront and ultimately form part of 218 

a holistic approach to hydrology education that considers future challenges and opportunities 219 

for hydrologists [Sanchez et al., 2016].  220 

Journals and funding bodies clearly have a role to play in facilitating the change to more 221 

open science. Some publishers and hydrological journals are revising their policies to 222 

encourage authors to make data and computer codes available to readers [Blöschl et al. 2014], 223 

notably Vadose Zone Journal with the launch of a reproducible research program, which will 224 

verify that code is technically sound and can be used to reproduce the key results of the paper 225 

[Skaggs et al., 2015]. AGU Publications also encourages references to data and software to 226 

facilitate proper attribution and pathways to find source material, facilitating transparency and 227 

recognition [Hanson and Van Der Hilst, 2014]. Other journals go further. Science for example 228 



states that all codes used in creation and analysis of data must be available to readers 229 

[Sciencemag.org, 2016]. Nosek et al [2015] have developed guidelines to facilitate gradual 230 

adoption of open practices by journals. Funding guidelines for science funding bodies in the 231 

USA [NSF] and UK [NERC] have moved towards more open science practices, and both 232 

require that data and other research materials are made open [Nerc.ac.uk, 2016; NSF, 2016]. 233 

NERCs open data policy, for example, is designed to “support the integrity, transparency, and 234 

openness of the research it supports”. However, despite the intent, these guidelines currently 235 

fall short of software sharing, which is only encouraged by the NSF. Finally, changes such as 236 

the replacement of the “Publications” section in the NSF biosketch format for grant 237 

applications with a “Products” section to recongise other research outputs like software 238 

provides important additional incentives for open science practice.  239 

Whilst reproducibility is more achievable in smaller scale studies, there are key technical 240 

challenges to address in making computational workflows in hydrology reproducible as the 241 

scale of application increases in terms of modelling domain, data and computational 242 

requirements, large legacy codes authored by large, diverse scientific groups, and large user 243 

communities. Modelling large domains with complex models, or many catchments with 244 

complex algorithms is increasingly common [e.g. Kollat et al., 2012; Pechlivanidis and 245 

Arheimer, 2015], yet such studies are computationally demanding, and one cannot currently 246 

expect these to be reproduced given the resources it would require, in particular by reviewers. 247 

We therefore need to improve our ability to reproduce larger scale studies, and when not 248 

possible, identify formal processes that nonetheless ensure that such studies are scientifically 249 

verifiable. 250 

Ongoing research in hydroinformatics is attempting to tackle these reproducibility 251 

issues, including development of workflows for large scale data processing [Essawy et al. 2016; 252 

Billah et al. 2016], and the work undertaken over the past decade to develop the open source 253 

model RAPID [David et al, 2016]. In addition, formal processes like benchmark comparison 254 

tests [e.g. Maxwell et al. 2014] may help to provide confidence in key complex codes that are 255 

difficult to transfer between research groups. Other scientific communties have moved towards 256 

sharing complex codes between many research groups, including projects in meteorology 257 

(NEMO) and oceanography (HIRLAM), which is beneficial for code development. The idea 258 

to establish such a community model has been discussed in hydrological sciences [Weiler and 259 

Beven, 2015]. Improved training in computational science, and open science practices 260 

considered above, will help in building large and inter-operable model codes across research 261 

groups, which can help in providing independent verification of model components.  262 

In a competitive research climate, funding bodies in the UK and Europe are increasingly 263 

emphasising the importance of impact generated from science spending. Coupled with events 264 

such as the droughts in California, and persistent flooding in the UK over recent years, this 265 

change in emphasishighlights the increasing role that hydrological scientists have to play in 266 

informing public policy and public understanding of hydrological risks. The need for openness 267 

and transparency in scientific research was highlighted by the so-called climategate scandal, 268 

because of the potential loss of trust in climate scientists that resulted [Leiserowitz et al 2012]. 269 

Thus, to play a credible role in informing public policy, trust in the hydrological science 270 

community is essential, and is built on transparency. Transparent, reproducible computational 271 

hydrology will then provide a solid foundation to address the more difficult problem of 272 



inference and reproducibility in open systems to forward scientific understanding; progress in 273 

which requires both innnovation and verification. 274 

 275 

Conclusions 276 

Reproducibility is a foundational principle in scientific research. Yet in hydrology, the code 277 

and data that actually produces published results is not regularly made available, which 278 

strongly inhibits reproducibility. This situation hinders both the ability of the broader 279 

community to learn from, and build on, previous work, and importantly, verify previous 280 

findings. To help move towards reproducible computational hydrology we recommend the 281 

following: 282 

1. Code needs to be made readable and re-useable for the community;  283 

2. Workflows that tie together data and re-useable code need to be created to document, 284 

unambiguously, the full provenance of published scientific results; 285 

3. Re-useable code and workflows need to be made available and easy to find through 286 

consistent use of repositories and creation of code metadata; 287 

4. Re-useable and reproducible code needs to be cited in publications using unique 288 

persistent identifiers (e.g. DOIs) to clearly show the provenance of published scientific 289 

findings. 290 

5. New procedures needs to be developed that ensure scientific rigour in circumstances 291 

where reproducing large-scale studies is computationally very expensive and time 292 

consuming. 293 

 294 

Making code re-useable is more likely to lead to citation and re-use of an individual’s work, 295 

which provides an incentive within the current publication system that can be built upon to 296 

move towards reproducibility, and gain efficiencies across the hydrology community to 297 

advance scientific understanding across catchments. Ultimately, however, a collective will is 298 

required across the community to adequately address the larger technical, scientific and cultural 299 

challenges that need to be solved, including real buy-in from journals and funding bodies, and 300 

training of young scientists to adopt reproducible practices. To allow hydrology to play a 301 

credible role in informing public policy, trust in the hydrological science community is 302 

essential, and is built on the transparency that will result. Our view is that reproducible 303 

computational hydrology will provide this transparency. 304 
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