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1 Introduction

In this paper we reconsider Einstein gravity in three dimensions (3D) with negative cos-

mological constant, whose bulk action is given by

I[g] = − 1

16πGN

∫

d3x
√−g

(

R+
2

ℓ2

)

(1.1)

where ℓ is the anti-de Sitter (AdS) radius and GN the three-dimensional Newton constant.

Our main goal is to find the loosest set of asymptotically AdS3 boundary conditions (bc’s).

Gravity in 3D is locally trivial [1–3], so that most of the physics is determined by the

bc’s. The seminal example are Brown-Henneaux (BH) bc’s, which involve essentially two

arbitrary functions determining the physical state [4]. The bc preserving transformations

split into trivial gauge transformations (those which leave the physical states intact) and

asymptotic symmetries (those which transform one physical state into another). In the BH
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case the asymptotic symmetry algebra (ASA) consists of two copies of the Virasoro algebra

with central charge c = 3ℓ/(2GN ), i.e., the two-dimensional (2D) conformal algebra.

Since then, the BH bc’s were altered and generalized in numerous ways in 3D, e.g. in

the presence of scalar matter [5], a gravitational Chern-Simons (CS) term [6–9] or other

higher derivative interactions [10, 11]. Even within locally AdS3 Einstein gravity (1.1) sev-

eral alternatives to BH bc’s were discovered that changed the ASA from the 2D conformal

algebra to something else: a warped conformal algebra [12], a centerless warped conformal

algebra [13], a twisted warped conformal algebra [14] or Heisenberg algebra [15]. As for BH,

in these four alternatives the metric always has essentially two state-dependent functions

that characterize the physical state. The same is true for the Korteweg-de Vries bc’s intro-

duced very recently [16], where always two towers of canonical boundary charges emerge.

A few years ago Troessaert constructed more general bc’s for 3D Einstein gravity that

involve four state-dependent functions [17]. His ASA consists of two Virasoro and two u(1)k
current algebras, which contains the other ASA’s (conformal, warped or Heisenberg) as

special cases (though not necessarily with the same central extensions). Also the canonical

analysis of [18] led to four state-dependent functions. An independent set of bc’s with four

state-dependent functions was proposed in [19], where the ASA contains a single sl(2)k
current algebra (and a Virasoro algebra).

It is then fair to ask what is the upper limit, i.e., how many state-dependent functions

can the metric contain at most, and what are the bc’s that lead to this case? Moreover,

what is the ASA for these most general bc’s? In the present work we answer these questions

and provide explicitly the loosest set of AdS3 bc’s for Einstein gravity.

Our conclusion that the ASA consists of two affine sl(2)k algebras is not surprising

considering the usual relation between Wess-Zumino-Witten models and CS theories, which

shows that the physical states in the spectrum are in a representation of the loop algebra

[for sl(2) this is the affine sl(2)k], see e.g. [20]. However, to the best of our knowledge this

relation was never exploited for the purpose of establishing the loosest set of bc’s in AdS3
Einstein gravity. This is what we do in the present work.

This paper is organized as follows. In section 2 we present our bc’s in the CS formu-

lation. In section 3 we present the same bc’s in the metric formulation. In section 4 we

conclude with some further checks, special cases, a potential loophole to full generality and

comment on possible applications and generalizations to other dimensions.

2 Boundary conditions in Chern-Simons formulation

Our goal is achieved more easily in the CS formulation, which is why we start with this

formulation. In section 2.1 we summarize salient features of the relation between CS theory

and Einstein gravity (1.1), partly as a mini-review and partly to fix our notations and

conventions. In section 2.2 we present our new bc’s. In section 2.3 we determine the ASA.

– 2 –
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2.1 Notations and conventions

In the CS formulation of Einstein gravity, due to Achúcarro, Townsend and Witten [21, 22],

the Einstein-Hilbert action (1.1) is replaced with the difference of two CS actions

ICS[A]− ICS[Ā] (2.1)

where

ICS[A] =
k

4π

∫

M

〈

A ∧ dA+
2

3
A ∧A ∧A

〉

(2.2)

and the CS level k is related to AdS radius and Newton’s constant by

k =
ℓ

4GN
. (2.3)

To reduce clutter we set ℓ = 1 in this work.

The connections A, Ā belong to the Lie algebra sl(2,R). The equations of motion

imply locally gauge flatness

F = dA+A ∧A = 0 = dĀ+ Ā ∧ Ā = F̄ (2.4)

which can be re-interpreted as the conditions of vanishing torsion, constant Ricci scalar and

vanishing tracefree Ricci tensor, i.e., the 3D Einstein equations. Thus, the CS action (2.1)

is classically equivalent to the Palatini action, which in turn is classically equivalent to the

Einstein-Hilbert action (1.1).

Since AdS3 has a cylinder as Penrose diagram we assume that our 3D manifold M
topologically is a cylinder. When using coordinates explicitly, we are going to denote the

radial coordinate of the cylinder by ρ ∈ R
+, its angular coordinate by ϕ ∼ ϕ + 2π and

the coordinate along the cylinder by t ∈ R. In Euclidean signature we assume that the

manifold topologically is a filled torus with periodicities (t, ϕ) ∼ (t, ϕ+2π) ∼ (t+2π, ϕ).

We choose a standard basis to represent the three sl(2,R) generators L±1 and L0

[Ln, Lm] = (n−m)Ln+m (2.5)

and use the invariant bilinear form of sl(2,R) in the fundamental representation.

κab = 〈LaLb〉 =







0 0 −1

0 1
2 0

−1 0 0






(2.6)

In order to make contact with the metric formulation we quote one more result

gµν =
1

2

〈

(Aµ − Āµ)(Aν − Āν)
〉

(2.7)

which shows that the difference of the connections, A− Ā, is essentially the dreibein (the

sum A + Ā then determines the spin-connection). See [23–26] for reviews and further

references.
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2.2 Boundary conditions on the connection

Inspired by earlier constructions we partially gauge fix to radial gauge (see e.g. [23])

A = b−1 [d+a(t, ϕ)] b Ā = b [d+ā(t, ϕ)] b−1 (2.8)

with a state-independent group element b that we choose as1

b = exp (L−1) exp (ρL0) . (2.9)

In the ansatz (2.8) we assume that all state-dependence is captured by the connection

1-forms a and ā, which are independent from the radial coordinate.

We are now ready to present our bc’s in the CS formulation.

aϕ = −2π

k

[

L+(t, ϕ)L1 − 2L0(t, ϕ)L0 + L−(t, ϕ)L−1

]

(2.10a)

āϕ =
2π

k

[

L̄+(t, ϕ)L1 − 2L̄0(t, ϕ)L0 + L̄−(t, ϕ)L−1

]

(2.10b)

at = µ+(t, ϕ)L1 + µ0(t, ϕ)L0 + µ−(t, ϕ)L−1 (2.10c)

āt = µ̄+(t, ϕ)L1 + µ̄0(t, ϕ)L0 + µ̄−(t, ϕ)L−1 (2.10d)

Note that there are in total twelve independent functions. With hindsight, we call six of

them “charges” (La, L̄a) and six of them “chemical potentials” (µa, µ̄a), where a = 0,±1.

The main difference between charges and chemical potentials is that only the former are

allowed to vary:

δaϕ = −2π

k

[

δL+(t, ϕ)L1 − 2δL0(t, ϕ)L0 + δL−(t, ϕ)L−1

]

(2.11a)

δāϕ =
2π

k

[

δL̄+(t, ϕ)L1 − 2δL̄0(t, ϕ)L0 + δL̄−(t, ϕ)L−1

]

(2.11b)

δat = δāt = 0 (2.11c)

The allowed fluctuations δA and δĀ follow from (2.11) together with (2.8) and (2.9).

For fixed chemical potentials the equations of motion (2.4) impose the following addi-

tional conditions on the charges La and L̄a

∂tL0 = L−µ+ − L+µ− +
k

4π
∂ϕµ

0 ∂tL± = ±L±µ0 ± 2L0µ± − k

2π
∂ϕµ

± (2.12a)

∂tL̄0 = L̄−µ̄+ − L̄+µ̄− − k

4π
∂ϕµ̄

0 ∂tL̄± = ±L̄±µ̄0 ± 2L̄0µ̄± +
k

2π
∂ϕµ̄

± . (2.12b)

We shall demonstrate in the remainder of the paper that our bc’s (2.8)–(2.11) pass

all consistency tests. In particular they lead to finite and integrable canonical boundary

charges, and allow for a well-defined variational principle.

1In this section the choice of b is essentially irrelevant as neither the charges nor the ASA depend on it.

A simpler, more standard, choice would be b = exp (ρL0). However, as we show below for the metric formu-

lation the choice of b is important and there are good reasons to pick (2.9), which we explain in section 3.

– 4 –
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2.3 Asymptotic symmetry algebra

We consider now consequences of our bc’s (2.8)–(2.11). In particular, our main goal here

is to derive the ASA through a canonical analysis. In the following we only focus on the A

sector, since the canonical analysis of the Ā-sector works in complete analogy and yields

the same results as the A-sector (upon decorating all functions with bars and replacing

k → −k and b → b−1).

We start by considering all transformations

δǫA = dǫ+ [A, ǫ] = O(δA) (2.13)

that preserve our bc’s (2.8)–(2.11). To this end we split the gauge parameter ǫ into sl(2,R)-

components.

ǫ = b−1 [ǫ+(t, ϕ)L1 + ǫ0(t, ϕ)L0 + ǫ−(t, ϕ)L−1] b (2.14)

In fact, there is no restriction on the functions ǫa(t, ϕ), so that any transformation (2.13)

with (2.14) preserves our bc’s (2.8)–(2.11).

Thus we can already determine the infinitesimal changes of the state dependent func-

tions L± and L0 under bc-preserving transformations:

δǫL± = ±L±ǫ0 ± 2L0ǫ± − k

2π
∂ϕǫ± (2.15a)

δǫL0 = −L+ǫ− + L−ǫ+ +
k

4π
∂ϕǫ0 (2.15b)

Since the chemical potentials µa are fixed we derive three constraints

δǫµ
± = ±µ±ǫ0 ∓ µ0ǫ± + ∂tǫ± = 0 (2.16a)

δǫµ
0 = 2µ+ǫ− − 2µ−ǫ+ + ∂tǫ0 = 0 (2.16b)

which fix the behavior of the gauge parameters ǫa under time evolution.

Using the background independent result for the variation of the canonical boundary

charges [23, 24, 27, 28]

δQ[ǫ] =
k

2π

∮

〈ǫ δA〉 (2.17)

obtains

δQ[ǫ] =

∮

dϕ
(

δL+ǫ− + δL0ǫ0 + δL−ǫ+
)

(2.18)

which can be functionally integrated to yield our final result for the canonical boundary

charges

Q[ǫ] =

∮

dϕ
(

L+ǫ− + L0ǫ0 + L−ǫ+
)

. (2.19)

Having determined the infinitesimal transformations (2.15) and the canonical boundary

charge (2.19) immediately yields the canonical realization of the (classical) ASA using

standard methods [29].

{L(t, ϕ)a,L(t, ϕ̄)b} = (a− b)La+b(t, ϕ) δ(ϕ− ϕ̄)− k

2π
κab ∂ϕδ(ϕ− ϕ̄) (2.20)
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Here {, } denotes Dirac brackets. Choosing a suitable Fourier mode expansion and replacing

Dirac brackets by commutators, i{, } → [, ], yields

[Ja
n , J

b
m] = (a− b)Ja+b

n+m − knκab δn+m,0 (2.21)

where the bilinear form κab was defined in (2.6). The algebra (2.21) is an affine sl(2)k-

algebra.

Repeating the same analysis for the bar-sector our full ASA is then given by two copies

of affine sl(2)k-algebras.

[Ja
n , J

b
m] = (a− b)Ja+b

n+m − knκab δn+m,0 (2.22a)

[J̄a
n , J̄

b
m] = (a− b)J̄a+b

n+m − knκab δn+m,0 (2.22b)

As mentioned in the introduction, the result (2.22) may be expected on general grounds [20]

and is compatible with the analysis of [27, 30].

In the next section we translate the results above into the metric formulation, where

a few subtleties arise that we shall expound upon.

3 Boundary conditions in metric formulation

The bc’s proposed in section 2.2 straightforwardly translate into corresponding bc’s on

the dreibein or the metric, using the basic formulas reviewed in section 2.1. There is,

however, a subtlety in the choice of the group element b (2.9) that we exhibit (and resolve)

in section 3.1. In section 3.2 we present our bc’s in metric formulation. In section 3.3 we

discuss the asymptotic Killing vectors (AKVs) and their algebra.

3.1 Generalized Fefferman-Graham gauge

As mentioned in section 2 the choice of the group element b appearing in the CS con-

nection (2.8) is irrelevant for the CS analysis (as long as δb = 0). However, it becomes

important for the metric interpretation. To see this imagine that we simply choose b = 1.

Then the CS analysis would be unchanged, but the metric would degenerate to a 2D met-

ric, since gρµ = 0 if b = 1 [to check this simply plug (2.8) with b = 1 into (2.7)]. This is

why in the usual AdS3 story one picks instead

b̂ = exp (ρL0) . (3.1)

In order to appreciate our more complicated choice (2.9) let us consider what happens

for (3.1) in our case. The map (2.7) yields

ĝtt = µ+µ̄−e2ρ +

[

1

4

(

µ0 − µ̄0
)2 − µ+µ− − µ̄+µ̄−

]

+ µ−µ̄+e−2ρ (3.2a)

ĝtϕ =
π

k

(

L̄−µ+−L+µ̄−
)

e2ρ+
π

k

[

L−µ+−L̄−µ̄++
(

L0+L̄0
)

(µ0−µ̄0)+L+µ−−L̄+µ̄−
]

+
π

k

(

L̄+µ− − L−µ̄+
)

e−2ρ (3.2b)

ĝtρ =
1

2

(

µ0 − µ̄0
)

(3.2c)

– 6 –
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ĝϕϕ = −4π2

k2
L̄−L+e2ρ +

4π2

k2

[

(

L0 + L̄0
)2 − L̄−L̄+ − L−L+

]

− 4π2

k2
L̄+L−e−2ρ (3.2d)

ĝϕρ =
2π

k

(

L0 + L̄0
)

(3.2e)

ĝρρ = 1 . (3.2f)

The crucial observation now is that the metric (3.2) only depends on four independent

combinations of charges and four independent combinations of chemical potentials, which

is two of each less than in the CS formulation. For instance, the information about the

combination of chemical potentials µ0 + µ̄0 and charges L0 − L̄0 cannot be deduced from

above. Thus, for the choice of the group element (3.1) some of the information contained

in the CS connections (2.10) gets lost in the metric (3.2).

Whenever there is some loss of structure in the transition from CS to metric formulation

it is conceivable that the group element b was not chosen appropriately (see our example

above where b = 1). This motivated us to search for group elements different from (3.1)

that preserve all twelve functions in the metric. We have found several possible choices that

do the job — for instance, b = exp (rL1) exp (−rL−1) or b = exp (L−1) exp (ρL0) or similar

choices with L1 ↔ L−1 or more complicated combinations thereof. Out of these choices

we believe that (2.9) leads to the simplest geometric interpretation of the asymptotically

AdS3 metrics, which is why we stick with it.

Our bc’s (2.8)–(2.10) then lead to the dreibein

eaµ La dxµ =
[(

µ1e
ρ+µ2e

−ρ
)

dt+
(

L1e
ρ+L2e

−ρ
)

dϕ
]

L1+
[

− 1

2
dρ+

(

µ4e
ρ+µ5+µ6e

−ρ
)

dt

+
(

L4e
ρ+L5+L6e

−ρ
)

dϕ
]

L−1+
[

dρ+
(

µ3−2µ2e
−ρ

)

dt+
(

L3−2L2e
−ρ

)

dϕ
]

L0 (3.3)

where the µi (Li) are related to the chemical potentials (charges) as follows.

µ1 =
1

2
µ+ µ2 = −1

2
µ̄+ µ3 =

1

2

(

2µ+ + µ0 − µ̄0
)

(3.4a)

µ4 = −1

2
µ̄− µ5 =

1

2
µ̄0 µ6 =

1

2

(

µ+ − µ̄+ + µ0 + µ−
)

(3.4b)

L1 = −π

k
L+ L2 = −π

k
L̄+ L3 = −2π

k

(

L+ − L0 − L̄0
)

(3.4c)

L4 = −π

k
L̄− L5 = −2π

k
L̄0 L6 = −π

k

(

L+ + L̄+ − 2L0 + L−
)

(3.4d)

From the equations above it is evident that all twelve functions contained in the connections

a, ā also appear in the dreibein. Since the map (3.4) between the metric variables µi,Li

and the CS variables µa, µ̄a,La, L̄a is linear and invertible in the following we shall use

either of these sets, depending on simplicity of the final result.

For reasons that will become apparent in the next subsection we call the choice (2.9)

“generalized Fefferman-Graham gauge”. We are going to assume henceforth

µ1 6= 0 . (3.5)

This inequality guarantees that the dreibein (3.3) has a leading dt L1 component growing

like eρ.

– 7 –
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3.2 Boundary conditions on the metric

Our gauge choice (2.8) with (2.9) yields the following generalized Fefferman-Graham ex-

pansion for the metric (i, j = 0, 1).

ds2 = dρ2 + 2
(

eρN
(0)
i +N

(1)
i + e−ρN

(2)
i +O(e−2ρ)

)

dρ dxi

+
(

e2ρ g
(0)
ij + eρ g

(1)
ij + g

(2)
ij +O(e−ρ)

)

dxi dxj (3.6)

All expansion coefficients g
(n)
ij depend on the boundary coordinates xi = (t, ϕ), only. No-

tably, the expansion coefficients g
(1)
ij are non-zero. Moreover, the shift vector components

N
(n)
i cannot be removed by proper gauge transformations, in general. These are the key

differences to the standard Fefferman-Graham expansion (see e.g. [31] for a review).

In terms of the generalized Fefferman-Graham expansion (3.6) our bc’s on the metric

are summarized in the next three sets of equations. The shift vector components N
(n)
i are

fixed as

N
(0)
t = g

(0)
tρ = µ1 6= 0 N (0)

ϕ = g(0)ϕρ = L1 (3.7a)

N
(1)
t = g

(1)
tρ = µ3 N (1)

ϕ = g(1)ϕρ = L3 (3.7b)

N
(2)
t = g

(2)
tρ = −µ2 N (2)

ϕ = g(2)ϕρ = −L2 . (3.7c)

Above and below the functions µi(t, ϕ) and Li(t, ϕ) are expressed in terms of our original

variables by virtue of the relations (3.4). The diagonal metric components g
(n)
ij are fixed as

g
(0)
tt = −4µ1µ4 g(0)ϕϕ = −4L1L4 (3.8a)

g
(1)
tt = −4µ1µ5 g(1)ϕϕ = −4L1L5 (3.8b)

g
(2)
tt = µ2

3 − 4µ1µ6 − 4µ2µ4 g(2)ϕϕ = L2
3 − 4L1L6 − 4L2L4 . (3.8c)

The off-diagonal metric components gtϕ are not independent from the expressions above,

but determined by them algebraically through the Einstein equations.2

g
(0)
tϕ = −2µ4L1 − 2µ1L4 (3.9a)

g
(1)
tϕ = −2µ5L1 − 2µ1L5 (3.9b)

g
(2)
tϕ = −2µ6L1 − 2µ1L6 − 2µ2L4 − 2µ4L2 + µ3L3 . (3.9c)

The Einstein equations Rµν = −2gµν impose additionally the on-shell constraints (2.12).

The allowed fluctuations of the metric are obtained from our assumptions δµi = 0 and

δL = arbitrary. They imply in particular

δNt = 0 δgtt = 0 δgtϕ = determined by δN (0,1,2)
ϕ and δg(0,1,2)ϕϕ (3.10)

where the three leading orders in δNϕ and δgϕϕ are allowed to vary independently (they

determine the variations of the six canonical boundary charges).

2In the special case L1 = 0 we use (3.9) instead of the right equations (3.8) to specify L4, L5 and L6.
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Note that the t- (ϕ-) components of the shift vector and the tt- (ϕϕ-) components of

the metric contain the whole information about the six chemical potentials (charges). This

means that in general the shift vector cannot be eliminated by proper gauge transforma-

tions.

Thus, the usual Fefferman-Graham gauge [32] in general cannot be obtained from the

generalized Fefferman-Graham gauge (3.6) by a proper gauge transformation, which implies

that assuming Fefferman-Graham gauge as a starting point (like for instance in [33]) can

only be achieved with loss of generality.

3.3 Asymptotic Killing vectors

We determine now the AKVs, i.e., all vector fields ξµ with the property

Lξgµν = O(δgµν) (3.11)

where Lξ denotes the Lie-variation along ξ and δgµν are the variations (3.10) allowed by

our bc’s. With the ansatz

ξµ(t, ϕ, ρ) = ξµ(0)(t, ϕ) + e−ρ ξµ(1)(t, ϕ) + e−2ρ ξµ(2)(t, ϕ) +O(e−3ρ) (3.12)

we obtain from (3.11) together with our bc’s in section 3.2 the results

ξϕ(0) =
k

2π

µ+ǭ− − µ̄−ǫ+
L̄−µ+ + L+µ̄−

ξt(0) =
L+ǭ− + L̄−ǫ+
L̄−µ+ + L+µ̄−

(3.13a)

ξϕ(1) =
k

2π

µ+λ̄0

L̄−µ+ + L+µ̄−
ξt(1) =

L+λ̄0

L̄−µ+ + L+µ̄−
(3.13b)

ξϕ(2) = − k

2π

µ+λ− − µ̄−λ̄+

L̄−µ+ + L+µ̄−
ξt(2) = −L+λ− + L̄−λ̄+

L̄−µ+ + L+µ̄−
(3.13c)

ξρ(0) =
1

2

[

ǫ0 − ǭ0 −
(

µ0 − µ̄0
)

ξt(0)
]

− 2π

k

(

L0 + L̄0
)

ξϕ(0) (3.13d)

ξρ(1) = λ̄+ − 2
(

L0 + L̄0
)

µ+ +
(

µ0 − µ̄0
)

L+

2
(

L̄−µ+ + L+µ̄−
) λ̄0 (3.13e)

ξρ(2) = −2π

k
L̄+ξϕ(1) − µ̄+ξt(1) + λ̄+ +

L̄−
(

µ0 − µ̄0
)

− 2µ̄−
(

L0 + L̄0
)

2
(

L̄−µ+ + L+µ̄−
) λ̄+

+
2µ+

(

L0 + L̄0
)

+ L+
(

µ0 − µ̄0
)

2
(

L̄−µ+ + L+µ̄−
) λ− (3.13f)

with

λ̄0 = −4π

k
L0 − ξρ(0) + µ̄0ξt(0) − ǭ0 λ̄+ = −2π

k
L̄+ξϕ(0) − µ̄+ξt(0) + ǭ+ (3.13g)

λ− =
2π

k

(

2L̄0ξϕ(1) +
(

L̄+ + L− + L+ − 2L0
)

ξϕ(0)

)

+ ξρ(1) − µ̄0ξt(1)

−
(

µ+ − µ̄+ + µ0 + µ−
)

ξt(0) + ǫ0 − ǭ+ + ǫ− + ǫ+. (3.13h)
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Here ǫa(t, ϕ) and ǭa(t, ϕ) with a = 0,± denote six arbitrary free functions. Note that

the AKVs are state-dependent even to leading order. This state-dependence is crucial for

obtaining the correct ASA.

The usual procedure when determining the ASA involves evaluating the Lie bracket

between the AKVs

[ξ1, ξ2]
µ = Lξ1ξ

µ
2 . (3.14)

However, the expression (3.14) is only valid if the relevant pieces of the AKVs do not

depend on state-dependent functions.

Let us illustrate this with an example, where for concreteness we use Euclidean signa-

ture. Assume that the expansion coefficients N
(n)
i and g

(n)
ij are arbitrary functions of t and

ϕ that do not have the specific state-dependence as outlined in (3.7) and (3.8). Then the

AKVs that preserve these bc’s are of the form

ξt = f(t, ϕ) +O(e−ρ) ξϕ = g(t, ϕ) +O(e−ρ) ξρ = h(t, ϕ) +O(e−ρ) (3.15)

where the functions f, g and h are state-independent. Evaluating the Lie bracket (3.14)

one finds that

[ξ(f1, g1, h1), ξ(f2, g2, h2)]
µ = ξµ(f[1,2], g[1,2], h[1,2]), (3.16)

where x[1,2] = f1∂tx2 + g1∂ϕx2 − f2∂tx1 − g2∂ϕx1, with x = f, g or h. Introducing Fourier

components as (we recall that in Euclidean signature t ∼ t+ 2π)

Fn|m = ξµ(einϕ+imt, 0, 0), Gn|m = ξµ(0, einϕ+imt, 0), Hn|m = ξµ(0, 0, einϕ+imt), (3.17)

one finds that these Fourier modes satisfy the following algebra:

i[Fn|p, Fm|q] = (p− q)Fn+m|p+q (3.18a)

i[Fn|p, Gm|q] = nFn+m|p+q − qGn+m|p+q (3.18b)

i[Fn|p, Hm|q] = −qHn+m|p+q (3.18c)

i[Gn|p, Gm|q] = (n−m)Gn+m|p+q (3.18d)

i[Gn|p, Hm|q] = −mHn+m|p+q (3.18e)

i[Hn|p, Hm|q] = 0 . (3.18f)

If one would try and use the same standard Lie bracket (3.14) for the state-dependent

AKVs (3.13) then one would immediately encounter serious problems such as non-closure

of the ASA. In order to fix these problems one has to modify [34] (or “adjust” [35]) the Lie

bracket (3.14) as follows

[ξ1, ξ2]
µ
M = Lξ1ξ

µ
2 − δgξ1ξ

µ
2 + δgξ2ξ

µ
1 , (3.19)

where δgξ1ξ
µ
2 denotes the change induced in ξµ2 (g) due to the variation δgξ1gµν = Lξ1gµν .

Having the CS equivalent of the bc’s (3.7) and (3.8) at hand one can immediately see that

the changes of the state-dependent functions and the chemical potentials that appear in

the AKVs (3.13) are essentially given by (2.15) by the following general argument [22].
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One can explicitly verify that the AKVs (3.13) satisfy the relation

ǫ− ǭ = 2eµξ
µ , (3.20)

where ǫ and ǭ are the gauge parameters that generated the bc preserving gauge transfor-

mations in the previous section and eµ the dreibein (3.3). Using (3.20) and 〈[x, y], z〉 =

〈x, [y, z]〉, i.e., associativity of the invariant bilinear form one can readily show that, on-shell,

Lξgµν = 2 (〈δeµ, eν〉+ 〈eµ, δeν〉) , (3.21)

where we used the abbreviation δeµ ≡ 1
2

(

δǫAµ − δǭĀµ

)

. Thus the action of the Lie deriva-

tive on each component of the metric can be directly related with the infinitesimal gauge

transformations of the gauge fields Aµ and Āµ respectively which in the case at hand

corresponds to (2.15).

A straightforward but tedious calculation using the modified Lie bracket (3.19) yields

[ξ({ǫ1a, ǭ1a}), ξ({ǫ2a, ǭ2a})]µ = ξµ({ǫ[1,2]a , ǭ[1,2]a }) , (3.22)

with

ǫ
[1,2]
± = ±ǫ10ǫ

2
± ∓ ǫ20ǫ

1
± ǫ

[1,2]
0 = 2

(

ǫ1−ǫ
2
+ − ǫ2−ǫ

1
+

)

(3.23a)

ǭ
[1,2]
± = ±ǭ10ǭ

2
± ∓ ǭ20ǭ

1
± ǭ

[1,2]
0 = 2

(

ǭ1−ǭ
2
+ − ǭ2−ǭ

1
+

)

(3.23b)

and {ǫa, ǭa} = (ǫ+, ǫ0, ǫ−, ǭ+, ǭ0, ǭ−). After introducing Fourier modes as

J+
n|m=ξµ(02, e

inϕ+imt, 03) J0
n|m=ξµ(0, einϕ+imt, 04) J−

n|m=ξµ(einϕ+imt, 05) (3.24a)

J̄+
n|m=ξµ(05, e

inϕ+imt) J̄0
n|m=ξµ(04, e

inϕ+imt, 0) J̄−
n|m=ξµ(03, e

inϕ+imt, 02) (3.24b)

where 0n denotes n zeros (e.g. 03 = 0, 0, 0), one finds that these modes satisfy

[Ja
n|p, J

b
m|q] = (a− b)Ja+b

n+m|p+q
(3.25a)

[J̄a
n|p, J̄

b
m|q] = (a− b)J̄a+b

n+m|p+q
(3.25b)

[Ja
n|p, J̄

b
m|q] = 0 (3.25c)

which is essentially (2.22) but without the central extensions, and with a double Fourier

expansion with respect to t and ϕ. This shows the consistency of the algebra of AKVs

with the canonical realization of the ASA (2.22).

It is important to note that in order to make contact with the ASA found via the CS

analysis one also has to fix the state dependence of the subleading parts of the AKVs. The

reason for this is that while from a CS perspective all bc preserving gauge transforma-

tions are leading order contributions, some of these gauge transformations correspond to

subleading contributions to the AKVs from the metric perspective.3

3Even though these contributions to the AKVs are subleading, their associated canonical charge is

non-zero, as can be inferred from the CS formulation, and thus they do not generate proper gauge trans-

formations.
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4 Discussion

In this paper we have introduced the most general set of AdS3 bc’s possible in Einstein

gravity with negative cosmological constant [subject to accessibility of radial gauge (2.8)].

We conclude in this section with a discussion of our results.

In section 4.1 we mention the checks that our bc’s passed and discuss in addition

conservation of the charges and consistency of the variational principle. In section 4.2

we compare our bc’s with previous special cases, namely BH, Compère-Song-Strominger,

Heisenberg, Troessaert and Avery-Poojary-Suryanarayana bc’s. In section 4.3 we highlight

a potential loophole to the generality of our bc’s. In section 4.4 we interpret our bc’s

holographically. In section 4.5 we conclude with some comments on possible applications

and generalizations to other dimensions.

4.1 Checks

Our bc’s (2.8)–(2.11) lead to canonical boundary charges (2.19) that are non-trivial, fi-

nite, integrable and lead to an interesting ASA (2.22) that matches with the algebra of

AKVs (3.25).

We address now the conservation of the canonical boundary charges (2.19) in time.

The on-shell relations (2.12) together with the conditions on the time-derivatives of the

gauge parameters (2.16) yield the relation

∂tQ[ǫ] =
k

2π

∮

dϕ

(

ǫ+ ∂ϕµ
− + ǫ− ∂ϕµ

+ − 1

2
ǫ0 ∂ϕµ

0

)

. (4.1)

This implies conservation of the canonical boundary charges in time if the chemical po-

tentials do not depend on the angular coordinate ϕ. Otherwise, the canonical boundary

charges change in time, but note that all state-dependent functions cancel in (4.1).

Let us consider now the variational principle. It turns out that the bulk action (2.2)

does not have a well-defined variational principle, i.e., the first variation of the bulk action

does not vanish on-shell for some of the variations that preserve our bc’s. Therefore, we

need to add a suitable boundary term in order to restore a well-defined variational principle.

This full bulk plus boundary action is given by

ΓCS = ICS −
k

4π

∫

∂M
dt dϕ 〈AtAϕ〉 . (4.2)

A similar boundary term has to be added in the barred sector. Thus, our bc’s lead to a

well-defined variational principle

δΓCS

∣

∣

EOM
= − k

2π

∫

∂M
dt dϕ 〈aϕ δat〉 = 0 (4.3)

provided the full action (4.2) is used. The expression on the right hand side of (4.3) has

the familiar holographic form vev × δ source, with the six vev’s La (L̄a) contained in aϕ
(āϕ) and the six sources µa (µ̄a) contained in at (āt). It could be an interesting exercise

to establish a well-defined variational principle also in the metric formulation, which may

require novel types of holographic counterterms different from the traditional ones [36–39].
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4.2 Previous special cases

Our bc’s encompass all previous ones as special cases that require further restrictions on

the state-dependent functions and/or chemical potentials. We mention here briefly how

to obtain them in the context of our present work, starting with the recovery of bc’s that

have two state-dependent functions.

4.2.1 Brown-Henneaux

The bc’s proposed in [4] are obtained from ours by further restricting

L+ = −L̄− = − k

2π
L0 = L̄0 = 0 L−, L̄+ arbitrary . (4.4)

Again we restrict ourselves to one chiral sector, since the barred one is completely

analogous. The on-shell conditions (2.12) then imply µ0 = −∂ϕµ
+, µ− = −2π

k
µ+L− +

1
2∂

2
ϕµ

+ and (with L := L−, µ := µ+, dot denoting ∂t and prime denoting ∂ϕ)

L̇ = µL′ + 2µ′L − k

4π
µ′′′ . (4.5)

Note that there is only one chemical potential in each chiral sector, µ+ and µ̄−. In particu-

lar, the quantities µ− and µ̄+ are now state-dependent, which requires a different variational

principle [namely, the boundary term subtracted in (4.2) must be set to zero].

The right hand side of (4.5) shows the expected infinitesimal Schwarzian derivative

with an anomalous term determined by k. As a consequence, the ASA is a Virasoro

algebra with BH central charge c = 6k in each sector. Note that now there are only two

canonical charges (L, L̄) and two chemical potentials (µ, µ̄). Our functions µi,Li can all

be expressed in terms of µ, µ̄,L, L̄:

µ1 =
1

2
µ µ2 = −2π

k
µ̄L̄− 1

2
µ̄′′ µ3 = −1

2

(

µ′ + µ̄′
)

+ µ (4.6a)

µ4 = −1

2
µ̄ µ5 =

1

2
µ̄′ µ6 =

1

2

(

µ− 2π

k
(µL+µ̄L̄)−µ′+

1

2
(µ′′−µ̄′′)

)

(4.6b)

L1 =
1

2
L2 = −π

k
L̄ L3 = 1 (4.6c)

L4 = −1

2
L5 = 0 L6 = −π

k

(

L̄+ L
)

+
1

2
(4.6d)

Note that the AKVs (3.13) become state-independent to leading order as a consequence of

the restrictions (4.4).

The main difference to the BH way of presenting their bc’s is that we are using a group

element b (2.9) that does not lead to a metric in Fefferman-Graham gauge. Explicitly, we

obtain the metric (3.6) with the following expansion coefficients:

N
(0)
t = µ1 N

(1)
t = µ3 N

(2)
t = −µ2 (4.7a)

N (0)
ϕ = L1 N (1)

ϕ = L3 N (2)
ϕ = −L2 (4.7b)

g
(0)
tt = −4µ1µ4 g

(1)
tt = −4µ1µ5 g

(2)
tt = µ2

3 − 4µ1µ6 − 4µ2µ4 (4.7c)

g(0)ϕϕ = −4L1L4 g(1)ϕϕ = 0 g(2)ϕϕ = L2
3 − 4L1L6 − 4L2L4 (4.7d)
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as well as

g
(0)
tϕ = −2µ4L1 − 2µ1L4 (4.7e)

g
(1)
tϕ = −2µ5L1 (4.7f)

g
(2)
tϕ = −2µ6L1 − 2µ1L6 − 2µ2L4 − 2µ4L2 + µ3L3 . (4.7g)

The non-vanishing variations allowed by the BH bc’s are given by

δg
(2)
tt , δg

(2)
tϕ = arbitrary δN

(2)
t , δN (2)

ϕ = determined . (4.8)

Explicitly, for constant chemical potentials µ = −µ̄ = 1 the line-element reads

ds2 = dρ2 −
(

e2ρ +
2π

k
(2L̄ − L)

)

dt2 +
2π

k

(

L+ L̄
)

dt dϕ+
(

eρ + 2
)

dt dρ

+

(

e2ρ +
2π

k
L
)

dϕ2 +
(

eρ + 2
)

dϕ dρ+O(e−ρ) (4.9)

The metric (4.9) obeys BH bc’s in a slightly unusual coordinate system, which is a conse-

quence of our choice (2.9) for the group element.4

4.2.2 Compère-Song-Strominger

Another interesting set of bc’s was proposed in [12]. They can be obtained from our bc’s

by relabelling ϕ → x+ and t → x− as well as further restricting

L− = −∆

k
L+ = −∆

2π
∂+P̄ (x+) L0 = L̄0 = 0 L̄+ =

L̄(x+)

2π
L̄− = − k

2π
, (4.10)

where ∆ is a fixed constant and P̄ (x+) and L̄(x+) are arbitrary functions of their respective

arguments. Note that the barred sector is equivalent to the BH case. In addition the

chemical potentials are fixed as

µ+ = − k

∆
µ− = 1 µ0 = µ̄a = 0 . (4.11)

Restricting our general bc’s (2.10) in such a way also puts certain restrictions on the

possible allowed gauge parameters (2.14) as well as the infinitesimal variations (2.15) of

the remaining state dependent functions L̄ and ∂+P̄ . For the Compère-Song-Strominger

bc’s (4.10) and (4.11) this means that

ǫ+ = σ −
(

1

2
+ ∂+P̄

)

ǫ ǫ0 = 0 ǫ− =
∆

k

((

1

2
∂+P̄

)

ǫ− σ

)

(4.12a)

ǭ+ =
L̄

k
ǫ− ǫ′′

2
ǭ0 = ǫ′ ǭ− = −ǫ (4.12b)

4The group element bgauge that generates the gauge transformation between our connection A and the

usual Brown-Henneaux connection ABH in highest weight gauge is given by bgauge = e−ρL0e−L
−1eρL0 , thus

yielding ABH = b−1
gauge Abgauge = e−ρL0eL−1eρL0 Ae−ρL0e−L

−1eρL0 . The barred sector yields analogous

results. In this gauge the metric takes the usual Fefferman-Graham form [32]

ds2BH = dρ2 + e
2ρ(− dt2 + dϕ2) +M (dt2 + dϕ2) + 2J dt dϕ+O(e−2ρ)

where in our conventions M = 2π
k
(L − L̄) and J = 2π

k
(L+ L̄).
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where ǫ ≡ ǫ(x+) and σ ≡ σ(x+). The general infinitesimal variations (2.15) then simplify to

δ
(

∂+P̄
)

= ǫ′
(

1

2
+ ∂+P̄

)

+ ǫ ∂2
+P̄ − σ′ δL̄ = ǫ L̄′ + 2ǫ′ L̄− k

2
ǫ′′′ . (4.13)

Then recombining the state dependent functions as

L := L̄−∆
(

∂+P̄
)2

P := ∆(1 + 2∂+P̄ ) (4.14)

one can easily verify that the Dirac brackets between the functions L and P are the ones

of a u(1) Kac-Moody-Virasoro algebra with a central charge c = 6k and a level5 of the u(1)

current algebra κ = −4∆ thus showing that, indeed, the Compère-Song-Strominger bc’s

are a subset of our more general bc’s. The leading order contributions to the metric using

our b (2.9) then read

ds2 = dρ2 +
∆

k

(

dx−
)2

+

(

e2ρ∂+P̄ +
L̄(1 + ∂+P̄ ) + ∆

(

∂+P̄
)2

k

)

(

dx+
)2

−
(

e2ρ − L̄− 2∆∂+P̄

k

)

dx+ dx− +
(

e2ρ + 2
)

dρ
(

dx+ − ∂+P̄ dx−
)

+ . . . (4.15)

In the remaining examples below we refrain from presenting the metric, since it always

follows straightforwardly from our general results in section 3.

4.2.3 Heisenberg

The bc’s proposed in [15] are obtained from ours by further restricting

L± = L̄± = 0 L0, L̄0 arbitrary (4.16)

and additionally assuming µ± = µ̄± = 0 (for simplicity). Again there are two charges

(L0, L̄0) and two chemical potentials (µ0, µ̄0). The on-shell conditions (2.12) simplify to

L̇0 =
k

4π
µ0 ′ ˙̄L0 = − k

4π
µ̄0 ′ (4.17)

and imply that the ASA consist of two u(1)k current algebras. However, when using the

group element b as given in (2.9) we encounter the same type of problem that we discussed

in section 3.1: the metric depends only on one combination of charges (L0 + L̄0) and

one combination of chemical potentials (µ0 − µ̄0). The solution is the same as before:

choose a more suitable b. Indeed, the choice used in [15] works and is given by b =

exp (αL1) exp (
ρ
2 L−1), where α is some state-independent constant.

This example highlights again the importance of choosing the group element b in (2.8)

appropriately, i.e., in such a way that no functions are lost when translating the CS for-

mulation into the metric formulation.

All cases above featured two state-dependent functions. Each of the remaining two

examples below exhibits four state-dependent functions.

5Here we use the same notion of u(1) level as in [12] i.e. i{Pn,Pm} = κ
2
n δn+m,0.
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4.2.4 Troessaert

A more general set of bc’s than the ones above was proposed in [17]. It encompasses

the cases above in the sense that the corresponding ASA contains all the ASA’s above as

subalgebras (though not necessarily with the same central extensions). The Troessaert bc’s

allow for a fluctuating conformal factor in the leading order boundary metric as compared

to BH bc’s. One way to implement these boundary conditions6 using our setup is by first

switching from the canonical way of formulating boundary conditions to a holomorphic

formulation. Using the CS formulation this can be done in a rather straightforward way

by first relabelling ϕ → x+ and t → x−, i.e. switching to light cone coordinates as well as

exchanging L̄a ↔ µ̄a. The Troessaert bc’s can then be realized by further restricting

L+ = − k

2π
e2φ(x

+) L̄− =
k

2π
e2φ̄(x

−) L0 = L̄0 = 0 L−, L̄+ arbitrary (4.18)

and setting all chemical potentials µa = µ̄a = 0. The key (and only) differences to the BH

bc’s formulated in a holomorphic manner (see e.g. [23]) are the factors e2φ(x
+) and e2φ̄(x

−)

that are allowed to vary arbitrarily. Like in the BH case we restrict ourselves to just one

chiral sector of the theory.

Redefining our variables as (prime denotes differentiation with respect to x+)

L = e2φ L− ǫ = e−2φ ǫ+ J = − k

2π
φ′ (4.19)

yields the variations

δJ = J ′ǫ+ J ǫ′ − k

4π
ǫ′′ − k

4π
ǫ′0 (4.20a)

δL = L′ǫ+ 2Lǫ′ + k

4π
ǫ′′0 + J ǫ′0 (4.20b)

and the canonical boundary charges

Q =

∮

dϕ
(

J ǫ0 + L ǫ
)

. (4.21)

Introducing Fourier modes the variations (4.20) lead precisely to one chiral half of the

ASA presented in eq. (6.8) of [17] (modulo the operator Q), with the same values for the

anomalous terms. (The other chiral half of the ASA follows from our barred sector.)

[Ln, Lm] = (n−m)Ln+m (4.22a)

[Ln, Jm] = −mJn+m + i
k

2
n2 δn+m, 0 (4.22b)

[Jn, Jm] = −k

2
n δn+m, 0 (4.22c)

As usual, the anomalous term in (4.22b) can be removed by a twisted Sugawara shift,

see for instance [17] or [14], where the algebra (4.22) arises as ASA in Rindleresque AdS3
holography.

6We omit here a possible term linear in t in the conformal factor used in [17]. For this reason our ASA

will contain one generator less than the one in [17].

– 16 –



J
H
E
P
1
0
(
2
0
1
6
)
0
2
3

4.2.5 Avery-Poojary-Suryanarayana

The bc’s proposed in [19] by Avery-Poojary-Suryanarayana lead to another interesting set

of asymptotic symmetries in the form of a semidirect sum of a Virasoro algebra with central

charge c = 6k and an sl(2)k algebra. This ASA can be obtained from our bc’s by restricting

either one of the two sets of state-dependent functions and chemical potentials to the BH

case (4.4) and no further constraints on the other set. Subjecting the unbarred sector to

BH bc’s yields

L+ = − k

2π
L0 = 0 L− arbitrary . (4.23)

Renaming L̄a → T a we perform the Sugawara shift

L := L− +
2π

k

(

T 0T 0 − T +T −
)

. (4.24)

Fourier expanding L and T a eventually establishes the ASA

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1) δn+m, 0 (4.25a)

[Ln, T
a
m] = −mTn+m (4.25b)

[T a
n , T

b
m] = (a− b)T a+b

n+m − k nκab δn+m, 0 (4.25c)

with c = 6k, which is exactly the ASA first presented in [19].

This concludes our reproduction of previous bc’s from our more general set of bc’s and

shows that indeed all previous constructions are contained as special cases.

4.3 Loophole to generality

A potential loophole to full generality of our bc’s is that one could allow gauges different

from radial gauge or allow state-dependence of the group element b in (2.8). We have no

proof as of yet that there is no loss of generality in assuming (2.8), (2.9). However, since a

counting of integration functions in the equations of motion (2.4) yields that there cannot

be more than six state-dependent functions in sl(2, R)⊕ sl(2, R) CS theory, and our bc’s

lead to six state-dependent functions we think that this is a very strong indication that

there is no loss of generality. It would be nice to close this loophole by a proof.

In the following we sketch a possible proof.7 (See also the discussion in [27].) If we

assume the split (2.8) with a = at(t, ϕ) dt + aϕ(t, ϕ) dϕ and b = b(ρ, t), where δb 6= 0 in

general, then the canonical boundary charges (2.17) acquire a b-dependent piece containing

(δb)b−1. Now either of these possibilities must arise as the boundary is approached: 1. the

new term diverges, 2. the new term vanishes, 3. the new term is finite. In case 1. the

boundary conditions are unphysical since the associated charges are infinite, so we can

disregard it. In case 2. the new term vanishes and therefore variations of b can be removed

by small gauge transformations. In case 3. one can plausibly redefine a to absorb all

state-dependence of b, thereby recovering δb = 0.

7We thank Wout Merbis for discussions regarding state-dependence of b.
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4.4 Holographic interpretation

Starting with the ASA (2.22) following from our bc’s (2.8)–(2.11), it is very suggestive that

the corresponding dual field theory is a non-chiral sl(2)k WZW Model (see e.g. [20]) since

the physical states fall into representations of two affine sl(2)k. The chemical potentials µa

and µ̄a are then interpreted as sources that couple to the operators given by the left and

right chiral sl(2)k currents Ja and J̄a whose vev’s are given by the functions La and L̄a

in (2.10).

It is illuminating to compare this holographic interpretation of our bc’s with the holo-

graphic interpretation of the BH bc’s (4.4). In the BH case the (classical) physical state

space is characterized by a holomorphic and an antiholomorphic function [L(x+) and L̄(x−)
in (4.4)], which appear in the canonical boundary charges. In the holographic interpreta-

tion these are the vev’s of the corresponding operators. For our general bc’s the situtaion

is conceptually the same, except that instead of having 1+1 functions characterizing the

canonical boundary charges we have 3+3 functions, La and L̄a.

Since the CS-formulation that we employed is classically equivalent to the metric for-

mulation, everything we did in the former could be translated into the latter. We gave some

examples, but clearly there are more aspects that could be translated, like the variational

principle or holographic renormalization.8 Generalizations to wormhole-like spacetimes

along the lines of [40] could also be of interest, as well as the holographic calculation of

n-point functions, along the lines of [41].

4.5 Towards applications and generalizations to other dimensions

The most general AdS3 bc’s (2.8)–(2.11) lead to two sl(2)k current algebras as ASA. We

have seen above that all known special cases lead to ASA’s that are certain subalgebras

of ours. It could be interesting to classify all such subalgebras in order to get a full

classification of all consistent AdS3 bc’s. It is possible that new sets of AdS3 bc’s can be

discovered in this way that are different from the ones reviewed in section 4.2.

Our bc’s allow black holes as part of the spectrum, for instance BTZ black holes [42, 43].

It is then an interesting question whether the symmetries of our ASA (2.22) allow again a

Cardy-type of microstate counting of the entropy of these black holes. We leave this for

future work.

8To give one more example, we identify here normalizable and non-normalizable linearized fluctuations

around some background. That is, we split all 12 functions in the metric (3.6)–(3.9) into background and

fluctuations, µi = µ̄i+δµi, Li = L̄i+δLi, where barred quantities refer to the background; a simple choice is

µ̄1 = µ̄4 = L̄1 = −L̄4 = 1
2
and all other µ̄i and L̄i vanish, leading to the (asymptotically AdS3) background

line-element ds̄2 = dρ2+e2ρ(− dt2+dϕ2)+eρ dρ (dt+dϕ). Non-normalizable fluctuations (those, which vi-

olate our boundary conditions of fixed µi) by definition have in general δµi 6= 0 (and, for simplicity, we may

choose δLi = 0 by adding suitable normalizable modes to the non-normalizable ones), while normalizable

fluctuations have δµi = 0 and, in general, δLi 6= 0. In the metric formulation there is then a simple way to

discriminate normalizable from non-normalizable fluctuations δgµν : if the linearized fluctuation δgµν is cho-

sen such that it maintains the generalized Fefferman-Graham gauge (3.6) then in this gauge normalizability

is the condition δgtt = δgtρ = 0. Note that all six charges Li enter in the normalizable fluctuations through

the leading, subleading and sub-subleading components of δgϕρ and δgϕϕ (and, redundantly, also of δgtϕ).
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It could be interesting to generalize our bc’s to other cases in three dimensions, like flat

space or asymptotically de Sitter, and to higher spin theories, either in an AdS3 context [44,

45] or for non-AdS3 approaches [46, 47] like flat space higher spin gravity [48, 49]. Moreover,

it could be rewarding to consider generalizations to other dimensions. For instance, it is

conceivable that the AdS2 bc’s proposed in [50, 51] can be generalized along the lines of

our present work and may lead to a single copy of an sl(2)k current algebra as ASA. (For

a relation between AdS3 and AdS2 gravity see [52].) Generalizations to higher dimensions,

in particular four and five, would also be of interest. For this purpose, the presentation of

our results in the metric formulation together with the generalized Fefferman-Graham-type

of expansion (3.6) should be useful.
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