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ABSTRACT (210 words) 

 Lung neuroendocrine tumours (Lung-NETs) include typical carcinoid (TC), atypical carcinoid 

(AC), large cell neuroendocrine carcinoma (LCNEC) and small cell lung carcinoma (SCLC). On 

molecular grounds, TC and AC are considered separate tumour entities as opposed to LCNEC and 

SCLC. 

 By means of two-way clustering analysis of previously reported next generation sequencing 

data on 148 surgically resected Lung-NETs, we identified six different clusters (C1 → C6) accounting 

for 68% of tumours, where specific sets of molecular alterations were embedded within different 

histologic subtypes. The clustering tree organization suggested the low-grade Lung-NETs may evolve 

into high-grade Lung-NETs following two paths: C5→C1→C6 and C4→C3-C2. The tumour 

composition of the first path (C5→C1→C6) would be coherent with the hypothesis of an evolution of 

TC to LCNEC, even with a conversion of some SCLC to LCNEC. The second group (C4→C3-C2) has 

a tumour composition supporting the hypothesis of evolving AC to SCLC-featuring tumours. 

Interestingly, the Ki-67 labelIing index varied accordingly in a significant way, with median values 

being 5%, 9% and 50% in cluster C5, C1 and C6 and 12% and 50-60% in cluster C4 and C2-C3, 

respectively.  

 This is a proof of concept study supporting an innovative view on the progression to high-

grade NE carcinomas of preexisting TC or AC in most Lung-NET instances. 

 

 

 

Key Words: lung; neuroendocrine; tumours; cluster analysis; transition; secondary  

 

  



Pelosi et al, Secondary neuroendocrine tumour of the lung  
 

	 4	

INTRODUCTION 

Lung neuroendocrine tumours (Lung-NETs) are currently divided into four histologic variants 

according to necrosis amount, number of mitoses per 2 mm2 and a wide constellation of cytological 

and histological traits [1,2]. They include typical carcinoid (TC), atypical carcinoid (AC), large-cell 

neuroendocrine carcinoma (LCNEC) and small-cell carcinoma (SCC) [1,2]. This pathologic 

classification fits with a three-tier clinical scheme, according to which TC behave as low-grade 

malignant tumours, AC as intermediate-grade malignant tumours and the group of LCNEC and SCLC 

as high-grade malignant tumours with no significant survival differences [1,2]. 

The current believes support the notion that TC and AC make up different and separate 

tumour entities as opposed to LCNEC and SCLC [1,3-10]. Nonetheless, carcinoids and NE 

carcinomas may share several genetic alterations, yet with different prevalence rates, which push an 

unexpected concept of secondary evolution to be hypothesized in NETs of different organs [7,11-20]. 

This bewildering situation, which does not comply with the current classification scheme [1], has been 

giving a variety of terms, such as i) high-grade NE carcinoma with carcinoid morphology [21], ii) 

secondary high-grade NET [11], iii) well differentiated NET with a morphologically apparent high-grade 

component [13], iv) transformed or mixed grade NET [13], v) well differentiated NET with high-grade 

(G3) progression [22], vi) carcinoid-like LCNEC with MEN1 mutation [8,23], vii) carcinoid or NET with 

proliferation rate progression at metastatic sites [24,25], viii) progression of pulmonary carcinoid 

tumours [17-20], ix) NE carcinoma with combined features ranging from well-differentiated (carcinoid) 

to small cell carcinoma [26] and x) the recently introduced category of G3 NET [27,28]. The relative 

scarce knowledge on Lung-NET biology certainly limits our comprehension regarding the real origin of 

these tumour subtypes, which have been rather considered exceptions or outliers to the current 

pathogenesis models of separate tumour derivation [1,28]. However, there is also the possibility for 

carcinoids to progress towards high-grade NETs as a result of either the natural history of the disease 

or the pressure of therapies [11]. This would represent an alternative view underlying the development 

of most NETs arising anywhere in the body [29-31]. It is worth mentioning that these secondary NETs 

show a better prognosis and a different clinical presentation in comparison with de novo or primary 

high-grade NETs [11,13], and that they may share common molecular traits and cancer drivers with 

carcinoids [11,13,14,16,32]. 
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We herein provide a molecular classification of a large cohort of 148 Lung-NETs comprising 

all histologic variants. Our findings support the hypothesis that aggressive Lung-NETs could evolve 

from different histologic subtypes after crucial gene alterations have been acquired during tumour 

progression.  
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PATIENTS AND METHODS 

Patients and tumours 

 This study comprises a cohort of 148 Lung-NETs belonging to all histologic variants, which 

had previously been investigated by next generation sequencing (NGS) [12]. Gene alteration results, 

including either mutations or copy number variations (CNVs), have been analysed to test the 

hypothesis of secondary Lung-NETs developing from pre-existing carcinoids. The cohort comprises 53 

TC, 35 AC, 27 LCNEC e 33 SCLC according to the current World Health Organization (WHO) 2015 

classification [1,2], all surgically treated and with no neoadjuvant treatments. The original material had 

been assayed in a discovery set by whole exome sequencing and high-coverage targeted sequencing 

and then validated by either customized or commercially available multi-gene panels for recurrent 

mutations and CNVs [12]. Paraffin tumour specimens had also been assessed by 

immunohistochemistry (IHC) for the expression of Ki-67 antigen [12]. 

 

Ethics 

 As this study dealt with reanalysis of previously generated and authorized molecular data by 

local Ethics Committees [12], no further ethics release was necessary. 

 

Study design 

 This is an in silico study generating a proof of concept concerning an innovative concept on 

secondary Lung-NETs developing through sequential gene alterations accounting for mutations and 

CNVs. We previously generated a list of 89 recurrently altered genes in Lung-NETs [12], from which 

40 unbiased recurrent gene alterations present in at least three different tumours were abstracted to 

guarantee specificity to molecular findings by minimizing the role of hitchhiking gene alterations. This 

40-gene signature included mutations in 27 genes and CNVs in 13 genes. The 27 genes harbouring 

recurrent mutations were ARID1A, ARID1B, ARID2, ATM, CSMD3, DSCAML1, DSCAML1, 

KMT2C/MLL3, KMT2D/MLL2, KRAS, LRP1B, MEN1, NCAM2, NOTCH2, PBRM1, PCLO, PIK3CA, 

PTPRZ1, RB1, SETD2, SMARCA2, SMARCA4, SPHKAP, STK11, THSD7B, TP53, TSC2. The 13 

genes tested for CNVs were BCL2, FGFR1, MEN1, MYC, MYCL, PIK3CA, RICTOR, RB1, SDHA, 

SMAD4, SRC, TERT, TP53, as previously detailed [12]. Such a 40-gene signature was thus used for 

tumour analysis by clustering evaluation. 
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Statistical analysis 

 Hierarchical clustering analysis was performed using Cluster 3.0 software 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) and JAVA treeview 

(http://jtreeview.sourceforge.net) on categorized data. This categorization ranked 0 for wild type 

configuration (WT), 1 for mutation or loss of heterozygosity (LOH) or low-gain (3-5 copies); and 2 for 

deletion or high-gain (> 5 copies), as also explained in the Figure 1A legend. Clustering metrics used 

were Spearman rank correlation and average linkage. Frequencies of genetic alteration were 

calculated by averaging the number of altered samples in each cluster. Hierarchical clustering analysis 

of frequencies was done using un-centered correlation and average linkage. Bar plots and radar plots 

were prepared using Excel 2015 (Microsoft). Kaplan-Meier plots and log-rank statistical analysis was 

performed using JMP 12 (SAS). Univariate and multivariate analysis was performed using the SAS 

statistical software, version 9.2 (SAS Institute, Inc., Cary, NC). Categorical variables were compared 

by Kruskal-Wallis test, Fisher exact t test and chi-square test as appropriate. All p-values were two-

sided and p-values <0.05 were considered as significant.  
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RESULTS 

Hierarchical clustering analysis reveals distinct groups of tumours 

 We initially performed supervised clustering analysis to evaluate the distribution of gene 

alterations across our cohort of 148 Lung-NETs according to histologic subtyping. One-way clustering 

analysis confirmed that TC showed the lowest burden of gene alterations, while AC, LCNEC and 

SCLC progressively accumulated gene mutations and CNVs (Supplemental Figure 1A and 

Supplemental Table 1). The clinico-pathologic characteristics of the tumour series according to 

histologic subtyping are reported in Supplemental Table 2. Survival curves confirmed an excellent 

prognosis for TC, an intermediate prognosis for AC and a progressively deteriorated clinical course for 

LCNEC and SCLC (Supplemental Figure 1B). 

 We next performed unsupervised clustering analysis using the same 40-genes set. This 

analysis uncovered six distinct clusters, named C1→C6, which showed different patterns of gene 

alterations, either mutations or CNVs (Figure 1A), suggesting the existence of molecular subtypes 

which included different histologic subtypes. These clusters accounted for 100 (68%) of the 148 Lung-

NETs, while the remaining unclassifiable tumours were descriptively labelled as “unclassified”. The 

C1→C6 clusters were characterized by one or more gene alterations with a prevalence higher than 

0.5 (i.e. 50% of samples) in the relevant tumour clusters (Figure 1B). They included i) RB1 deletion 

(RB1-del) in cluster C1, ii) TP53 mutation and deletion (TP53-mut and TP53-del), 

RICTOR/SDHA/TERT copy number gains (RICTOR-gain, SDHA-gain and TERT-gain) in cluster C2, iii) 

TP53 mutation (TP53-mut) and RICTOR copy number gain (RICTOR-gain) in cluster C3, iv) TERT 

and SDHA gain (TERT-gain and SDHA-gain) in cluster C4, v) TP53 deletion (TP53-del) and MYC gain 

(MYC-gain) in cluster C5, and vi) KRAS/TP53 mutation (KRAS-mut and TP53-mut) and MYCL copy 

number gain (MYCL-gain) in cluster C6 (Figure 1B).  

 To further investigate the relationship among C1→C6 clusters, we extended two-way 

clustering analysis considering the prevalence of alterations of all genes analysed (N=40) (Figure 1C). 

Notably,   C5 cluster closely resembled clusters C1 (Figure 1C) for sharing TP53/RB1/MEN1 gene 

deletion along with MYC and PIK3CA gains (Figure 2A). In turn, C6 cluster was similar to C1 for 

MEN1/RB1/TP53 deletion, KMTD2/TP53 mutation, and MYC gain (Figure 2A, upper-middle part). 

Furthermore, C4 cluster shared with C6 MYC/MYCL/RICTOR gains, RB1/TP53 deletion and 

MEN1/KMT2D-MLL2/TP53 mutation (Figure 2A, upper-right part) while KRAS mutation was private to 
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cluster C6 (Figure 2A). Finally, C3 cluster showed an expansion of RICTOR gain and TP53 mutation 

(Figure2A, lower-left part) which was maintained in C2 cluster like all other genetic alterations 

identified, whereas MEN1 deletion was private to C4 cluster. However, C2 cluster was further 

characterized by an evident expansion of RB1/TP53 deletion, TERT/SDHA gains and, marginally, 

LRP1B mutation (Figure 2A, lower-right part). Therefore, most tumours showed high levels of shared 

mutations despite different tumour subtyping in the identified clusters (Figure 2B), thus suggesting a 

common evolutionary relationship. Interestingly, the median Ki-67 LI was 5%, 9% and 50% in clusters 

C5, C1 and C6 and 12% and 50-60% in clusters C4 and C2-C3, respectively (Table 1). Furthermore, 

Ki-67 immunopositivity was heterogeneously distributed in neoplastic cells at the level of individual 

high-grade tumours (Supplemental Figure 2).     

 

Univariate and multivariate analysis  

 Clusters differed statistically for gender, smoking status, histological subtyping and Ki-67 

positivity, but not for age of patients and tumour stage (Table 1). Of note, a large prevalence of 

carcinoids (26/31 tumours, 84%) but with inverted frequency was observed in cluster C5 (9 TC and 3 

AC out of 14 tumours) and C4 (2 TC and 12 AC out of 17 tumours), whereas the opposite held true for 

high-grade Lung-NETs (27/35 tumours, 77%), which prevailed in cluster C3 (6 LCNEC and 4 SCLC 

out of 15 tumours) and cluster C2 (4 LCNEC and 13 SCLC out of 20 tumours) (Figure 2B; Table 1). 

Lack of SCLC was notable in cluster C6 where there was a slight prevalence of LCNEC (4/7 tumours) 

over TC and AC (Figure 2B; Table 1), while AC were virtually absent in cluster C1 in front of prevalent 

TC, SCLC and LCNEC (Figure 2B; Table 1). Unclassified tumours were 48 and included mostly 

carcinoids (39/48 cases, 81%), especially TC (26 cases), while high-grade NETs (4 LCNEC and 5 

SCLC) were modestly represented (Figure 2B, Table 1).  

 Cox univariate analysis showed that age, male gender, smoking habit, tumour stage, 

histologic subtyping and clusters affected survival (Table 2). Multivariate analysis confirmed that age, 

histological subtyping (SCLC), tumour stage (III-IV), and C3 affected survival, independently of other 

clinical-pathological parameters (Table 2).  
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DISCUSSION 

 Our results support a paradigm shift to the current view of the pathogenesis of Lung-NETs by 

suggesting that TC have a potential to evolve in high-grade tumours, either directly or through 

intermediate steps, resembling the more aggressive LCNET and SCLC subtypes in terms of acquired 

molecular alterations. These findings confirm the concept of secondary NETs we recently authorised 

in NETs arising in the thymus [11]. A plethora of different terms has been used in NET literature to 

describe these secondary tumours arising in different organs [8,11,13,17-21,23-26,33,34]. The 

recently suggested category of NET G3 in the gastrointestinal tract [6,27], which has been now 

introduced in the 2017 WHO classification of endocrine tumours [28], may well represent secondary 

NETs arising from pre-existing G1/G2 NETs. It is tempting to hypothesise that this peculiar 

phenomenon is inherent to NETs at different sites and not so rare as currently believed [17-20]. We 

herein provide molecular demonstration that most Lung-NETs may belong to this category, and are 

possibly not unpredictable exceptions or bewildering outliers stochastically crossing the spectrum of 

NETs [1,3-9], but rather a systematic biologic phenomenon, thus realizing an innovative view in the 

development of Lung-NETs. 

 Our starting observation was that carcinoids and NE carcinomas in different organs may share 

several genetic abnormalities, yet with different prevalence rates, such as mutations, CNVs and 

microRNA expression levels [7,11-16]. Moreover, the existence of patient subsets with different life 

expectation in each histologic variant of Lung-NETs is in keeping with an evolution concept within the 

clinico-pathologic spectrum of these tumours [17-20,35]. In this scenario, we underwent an in silico 

analysis on our previously published molecular data [12], which confirmed the existence of distinct 

clusters of tumours with a heterogeneous composition of histologic subtypes showing several common 

genomic abnormalities. Additional sources for validation, such as Cancer Genome Atlas 

(https://cancergenome.nih.gov) or NGS studies on carcinoids [3], LCNEC  [8,9] or SCLC [4], were 

discharged due to lack of comparable information on histologic subtypes, survival or mutation/CNV 

details.  

 Our study provides new molecular evidences to the existence and prevalence of secondary 

NETs in the lung. These tumours, which have not been comprised in the 2015 WHO classification [1,2], 

share molecular alterations indicative of a common origin with additional gene alterations likely 

occurring over time, which would be instrumental to the development of high-grade tumours [11]. The 
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opposite situation, i.e. the down-grading of poorly differentiated NETs, is contradicted by the additional 

gene aberrations occurring in high-grade elements [11] and the generally less aggressive clinical 

behaviour attributed to these tumours [11,13,25]. Of note, secondary-type evolution would not be 

confined to NETs, but can be observed in glioblastoma evolving from long-standing astrocytoma 

[36,37] or triple negative breast cancer stemming from adenoid cystic carcinoma [38]. 

 As morphology alone may be deceptive and inconclusive, the existence of secondary NETs 

has been questioned, with only single case reports or small tumour series being described in NET 

literature [8,11,13,17-21,23-26,33,34]. We herein provide the first molecular evidence that secondary 

NETs are under-recognized entities in the lung inasmuch as they would represent the majority (in our 

hands, 68%) of tumours arising in this organ. It is worth noting that in many Lung-NET series about 

20-30% of high-grade tumours fulfilling criteria for either SCLC or LCNEC showed long survival or 

presented with organoid NE architecture featuring trabeculae, ribbons and palisading aggregates 

[35,39-42]. This observation could imply that high-grade NETs investigated on surgical specimens 

(including many of those thus far published in NGS studies) could represent secondary tumours 

according to our prevalence rate results compared to homologous tumours presenting at onset with 

metastatic disease and thus unsuitable for surgical resection. The uneven distribution of Ki-67 

immunostaining within tumours, as highlighted by the differential distribution of Ki-67 among clusters 

we documented also at the level of individual tumours, could help to better highlight double 

components of low- and high-grade cells within secondary NETs, as demonstrated in the thymus [11] 

and the pancreas [13]. 

 In our study, six clusters could be hierarchically organized according to unsupervised analysis, 

with the diverse tumour subtypes differentially distributed among them as a function of different 

evolution lines not predicted upon morphology grounds. On the basis of the clustering tree 

organization, two evolutionary related groups could be identified: C5→C1→C6 and C4→C3-C2. The 

first group showed differential inactivation of tumour suppressor gene upon deletion or mutation 

alongside with MYC copy number gains and private KRAS mutation limited to cluster C6 in a clinical 

setting of predominantly male patients with smoking habit. The different tumour composition of these 

clusters would be coherent with the hypothesis of an evolution of TC to LCNEC, even with a 

conversion of some SCLC to LCNEC. The recently described categories of carcinoids with 

proliferation rate progression at metastatic sites [24], carcinoid-like LCNEC [8,11], NSCLC-like LCNEC 



Pelosi et al, Secondary neuroendocrine tumour of the lung  
 

	 12	

harbouring KRAS mutation [8,9] and the well-known low diagnostic reproducibility of LCNEC diagnosis 

towards either AC or SCLC [43,44] support all our observations. The second group showed differential 

copy number gains at several genes (TERT, SDHA, MYCL, RICTOR) alongside TP53 inactivation 

upon deletion or mutation and RB1 deletion, with private MEN1 deletion in C4 where AC prevailed [17], 

in a clinical setting of predominantly male patients with smoking habit. The tumour composition of 

these clusters would be in keeping with the evolution of AC to SCLC-featuring tumours or SCLC-like 

LCNEC as described by others [8]. Interestingly, the Ki-67 immunostaining varied accordingly in a 

significant way, with median values being 5-9% in clusters C1-C5 and 50-60% in clusters C2-C3. All 

these observations indicated that some TC or AC harbouring a particular combination of smoke-

related genetic alterations and/or male gender had the potential to give rise to high-grade Lung-NETs. 

The description of metastatic pulmonary carcinoid tumours [24] or pancreatic NETs [6,25] showing 

proliferation rate progression at metastatic sites and featuring SCLC-like [24] or NET G3-like [25] 

appearance, are in keeping with our results. 

 Limitations to our study were its retrospective character, the small number of tumours in each 

cluster, the partial follow-up, the absence of independent validation cohorts and the lack of cell lines or 

murine models replicating these evolution lines. However, molecular data by others [8] on LCNEC 

originally classified as NSCLC-like LCNEC and SCLC-like LCNEC according to major molecular 

profiles could be re-grouped into three different clusters where molecular subtyping was partly 

admixed, which identified an evolution plasticity in accordance with our clustering results 

(Supplemental Figure 3). Recent data on primary and secondary SCLC and LCNEC developing from 

NSCLC with NE differentiation according to somewhat similar molecular alterations [33] further confirm 

our observations. Therefore, these secondary NETs, while realizing a paradigm shift to the current 

pathogenesis, are an integral part of the natural history of NETs, either spontaneous [11] or resulting 

from therapy pressure [45].  
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CONCLUSION 

 This in silico study of mutations and CNVs identified widely shared alterations common to the 

majority of Lung-NETS, thus supporting a concept of evolution of carcinoids towards high-grade 

tumours. The clinical implications and the precise molecular mechanisms of these secondary Lung-

NETs will have to be deepened in the near future by additional studies. 
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TABLE LEGENDS 

 Table 1. Clinical and pathological characteristics by clustering analysis 

 Table 2. Univariate and multivariate survival analysis 

 

 

FIGURE LEGENDS 

Figure 1. Molecular analysis of Lung-NETs. A. Unsupervised hierarchical cluster analysis of 

the 40-gene alterations identified in the 148 samples cohort. Six clusters were identified, named C1→ 

C6, and accounted for 100 out of 148 tumour samples while the remaining 48 remained unclassified 

with the gene signature under evaluation. Types of genetic alterations are explained by using different 

colours, as per the legend. “Amp” stands for amplification/gain, “del” for deletion/loss, “mut” for 

mutation, “LOH” for loss of heterozygosity and “Homo” for homozygous deletion. Low and high 

amplification/gain was defined by the cut-off threshold of 5 as previously detailed (see reference #12). 

B. Radar plot of prevalent genetic alterations (frequency>0.5, i.e. 50%) in the clusters identified in 

Figure 1A. Numbers identify the percentages of the relevant gene alterations. C. Hierarchical cluster 

analysis of frequencies of all genetic alterations found in C1→C6 clusters. Only prevalent genetic 

alterations (frequency>0.5) are shown. 

Figure 2.  A. Genetic alterations shared by various clusters (C1→C6). Bar plots indicate 

frequency (Y-axes) of the alterations found in each cluster (shown on X-axes). Asterisks indicate 

significant p-values calculated by chi-square test. B. Distribution of the four World Health Organization 

histologic subtypes in the various clusters identified in Figure 1A. The pie charts indicate distribution of 

different tumour types in the clusters and were positioned according to the clustering tree shown in 

Figure 1C. TC stands for typical carcinoid, AC for atypical carcinoid, LCNEC for large cell 

neuroendocrine carcinoma and SCLC for small cell lung carcinoma, while unclassified groups the 

remaining 48 Lung-NETs not entering clusters C1→C6. 

   

 

SUPPLEMENTAL FILES 

 Supplemental Table 1. Mean gene alterations per tumour according to histologic subtyping 
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 Supplemental Table 2. Clinical and pathologic data of 148 neuroendocrine tumours of the 

lung according to histology 

 Supplemental Figure 1. A. Supervised clustering analysis of gene alterations across the 

entire spectrum of Lung-NETs. Different tumours and types of genetic alterations are colour coded as 

per the legend. TC stands for typical carcinoid, AC for atypical carcinoid, LCNEC for large cell 

neuroendocrine carcinoma and SCLC for small cell lung carcinoma. B. Survival analysis by Kaplan-

Meier plot of tumours stratified by histologic subtyping. 

Supplemental Figure 2. High-grade NET consistent with SCLC in the cluster C1 (A) showed 

an intra-tumour compartmentalization of the Ki-67 immunostaining with an intimate admixture of 

proliferating and non-proliferating tumour cells within the same tumour case. This distribution of 

tumour cells ruled out a collision tumour and was in agreement with the evolution of a preexisting 

carcinoid to high-grade SCLC-like NET (B). 

Supplemental Figure 3. Unsupervised cluster analysis on the data set published by 

Rekhtman et al (see reference #8), regarding NGS analysis of a large series of LCNEC of the lung.  
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