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Brain-Computer Interfaces (BCI) constitute an alternative channel of communication

between humans and environment. There are a number of different technologies which

enable the recording of brain activity. One of these is electroencephalography (EEG). The

most common EEG methods include interfaces whose operation is based on changes in

the activity of Sensorimotor Rhythms (SMR) during imagery movement, so-called Motor

Imagery BCI (MIBCI).The present article is a review of 131 articles published from 1997

to 2017 discussing various procedures of data processing in MIBCI. The experiments

described in these publications have been compared in terms of the methods used

for data registration and analysis. Some of the studies (76 reports) were subjected to

meta-analysis which showed corrected average classification accuracy achieved in these

studies at the level of 51.96%, a high degree of heterogeneity of results (Q= 1806577.61;

df = 486; p < 0.001; I2 = 99.97%), as well as significant effects of number of channels,

number of mental images, and method of spatial filtering. On the other hand the meta-

regression failed to provide evidence that there was an increase in the effectiveness of the

solutions proposed in the articles published in recent years. The authors have proposed

a newly developed standard for presenting results acquired during MIBCI experiments,

which is designed to facilitate communication and comparison of essential information

regarding the effects observed. Also, based on the findings of descriptive analysis and

meta-analysis, the authors formulated recommendations regarding practices applied in

research on signal processing in MIBCIs.

Keywords: brain-computer interfaces, motor imagery, electroencephalography, meta-analysis, sensorimotor

rhythms

1. INTRODUCTION

1.1. Rationale
Brain-Computer Interface (BCI) systems enable control of external software applications and
devices without engaging any muscles and by only recording brain activity (Rak et al., 2012). BCIs
transform the signal recorded with the use of various neuroimaging techniques into a response
of external effectors. The process consists of a number of stages of data processing (Hwang et al.,
2013). Electroencephalography (EEG) is the most frequently used neuroimaging method with a lot
of possible applications still being postulated (Wojcik et al., 2018a,b) and for a medical purposes
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it can be supported by a variety of sophisticated tools offered
by applied mathematics (Kakiashvili et al., 2012; Koczkodaj
and Szybowski, 2015), cognitive science (Ogiela et al., 2008) or
artificial intelligence (Szaleniec et al., 2013). The mechanisms
most commonly used in contemporary BCIs include event
related potentials (P300) (Sellers et al., 2012), Steady State
Visual Evoked Potentials (SSVEP) (Byczuk et al., 2012; Kotyra
and Wojcik, 2017a,b) and motor cortex activity (e.g., SMRBCI,
Sensorimotor Rhythms BCI or MIBCI, Motor Imagery BCI)
(Pfurtscheller and McFarland, 2012). Control with the use
of MIBCI relies on the possibility of identifying brainwave
patterns, measured with EEG from the scalp, during intended
movement or imagined movement (e.g., clenching and relaxing
one’s hand) (Pineda, 2005). The process of MI is accompanied
by a decrease in the power of Sensorimotor Rhythms (SMR) (in
the range µ 8–12 Hz and β 18–30 Hz). The phenomenon is
also known as Event-Related Desynchronisation (ERD) (Durka
et al., 2001). On the other hand, after an imagined or actual
movement is completed, there is an opposite process, i.e., an
increase in the power of SMRs, otherwise known as Event-
Related Synchronization (ERS) (Pfurtscheller, 1992). In the case
of hand movements (whether imagined or real) the ERD/ERS
effect occurs with varied intensity on the electrodes placed on
both sides of a subject’s head (e.g., C3 and C4). As a result,
it is possible to determine e.g., whether the subject imagines
movement of its right or its left hand due to the fact that ERD
shows more strongly on the electrodes located contralaterally to
the hand involved in the task (Pfurtscheller and Da Silva, 1999).
The phenomenon of ERD/ERS for the imaginedmovement of the
right and the left hand is presented in Figure 1.

If compared with other types of BCIs based on relatively
automatic and passive physiological responses, like oscillations in
voltage in visual cortex that are elicited by strobe light (SSVEP)
or positive deflection elicited by events that present less-frequent
than other events (P300), MIBCI is more similar to the way in

FIGURE 1 | (A) Example of ERD/ERS time courses. The vertical line indicates the beginning of imagery movement. Source: prepared by the authors, based on Lemm

et al. (2009), p. 3; (B) maps of signal strength (µV2) distribution on the scalp (µ = 8–12 Hz; β = 18–30 Hz) during imagined movement of the left or right hand.

Source: prepared by the authors.

which we control our environment with muscles. Translating the
imagined movement into the reaction of a device or application
is more natural and ergonomic than simply watching repeatedly
highlighted objects on a screen. However, it is also less efficient
and requires long-lasting individual training and calibration
sessions (Friedrich et al., 2009). Nevertheless, there are many
examples of possible applications of SMRBCI for various
purposes, such as communication, videogames (Paszkiel, 2016),
control of prosthetic devices (Pfurtscheller et al., 2000), control of
rehabilitation equipment (Huang et al., 2012) and navigation in
2D and 3D space (Leeb et al., 2007). Control by means of changes
in electrical activity of the brain is possible by the procedures
employed in EEG signal processing. The specific operations
to which the signal is subjected are designed to identify the
characteristic changes in the continuous EEG recording (features
extraction) and to match the fragments identified with specific
mental activities (features classification) (Wolpaw and Wolpaw,
2012). Feature extraction and classification in MIBCI is carried
out by the use of numerous algorithms, which differ in terms of
effectiveness and are examined by many researchers (Bashashati
et al., 2007; Lotte et al., 2007). The choice of an adequate signal
processing procedure influences interface effectiveness. The brain
activity associated with MI may have different characteristics
from person to person, relative to anatomical or psychological
factors (Ahn and Jun, 2015; Jeunet et al., 2015). Given the above,
signal processing methods must take into account the individual
variations of EEG activity in representation in space, time and
frequency range.

During a BCI session, the recorded and pre-processed signal
is subjected to further processing in order to identify those
features representing the activity which will be used for interface
control. Hence, information is extracted which is of significance
for system operation, and the remaining data are rejected
(Nicolas-Alonso and Gomez-Gil, 2012). MIBCIs may operate in
synchronous and asynchronous ways. A user of synchronous BCI

Frontiers in Neuroinformatics | www.frontiersin.org 2 November 2018 | Volume 12 | Article 78

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wierzgała et al. Most Popular Signal Processing Methods

performs imagery tasks in strictly defined moments and for a
specified duration of time. In the case of asynchronous BCIs, the
moment and duration of themental representation are unknown,
and the analysis of the signal for the possible occurrence of
imagery is a continuous process (Townsend et al., 2004).

The stage of features extraction is followed by conversion
into the response of the device or computer application. This
stage involves matching the previously extracted features with the
state defined by the relevant type of BCI (Rak et al., 2012). BCI
receives a time series representing the activity of the brain during
imagery and information about the type of imagery (state), which
has been performed. As a result of acquiring many pairs of
such data, BCI can learn to match EEG data with appropriate
states. During the trials carried out at the stage of testing, the
interface is provided only with the data representing the activity
of the brain. The interface is to correctly identify the imagery
or its absence in the received input data. Based on the number
of correctly identified imagery tasks, it is possible to calculate
the effectiveness of the interface (CA). Classification algorithms
most frequently use one of two approaches: classification by
discrimination or classification by regression (McFarland et al.,
2005). In classification by discrimination, the algorithm divides
input data into independent groups, each of which corresponds
to one of the states used to operate the interface. In classification
by regression, the algorithm, taking into account the input data,
calculates the value, which can then be arranged in order relative
to the values computed for other input data. Determining the
order this way enables the input data to be allocated to one of
the states or translation of the brain activity into e.g., cursor
movement on a computer screen (Wolpaw and Wolpaw, 2012).
The regression and discrimination based classification models
comprise a number of signal processing algorithms. These
include such techniques as generative, linear, non-linear and
combined techniques, i.e., using features of the previous methods
(Nicolas-Alonso and Gomez-Gil, 2012). The basic property of
all the classifiers is the effectiveness of classification, i.e., the
efficiency with which they can translate the identified features
into the desired response of the device (Wolpaw and Wolpaw,
2012). The effectiveness of classification is an indicator enabling
comparison of various classification methods (Lotte et al., 2007).
Cross validation is used to ensure the appropriate testing of
classification effectiveness. In the course of the cross validation
procedure, the set of all data acquired during the examination is
subjected to multiple divisions into two subsets: the training and
testing subsets. The classifier is taught to allocate input data to
one of the states, based on the data in the training subset. The
effects of the learning process are verified with the use of the
testing subset. The mean effectiveness of classification for the test
data in all of the divisions executed is a measure of CA.

1.2. Objectives and Research Questions
The main purpose of this review is to present the most
popular methods in signal processing algorithms in MIBCI. It
recapitulates the findings of reports presenting the effectiveness
of MIBCI procedures by taking into account details related to
data collection, preparation and analysis. Quantitative analysis
was used to identify the most popular methods of data

preprocessing, as well as extraction and classification of features
significant for BCI control. The findings provided grounds for
conclusions with regard to the dominating trends in research
on signal processing in MIBCI. The trends observed were also
examined for their consistency with developments and the
methodological requirements postulated in the literature. Meta-
analysis was performed in order to answer additional research
questions: Question 1 (Q1) What is the average effectiveness
of signal processing in the most popular types of MIBCI?
Question 2 (Q2) Was there a significant increase in effectiveness
of signal processing over the relevant period? Question 3 (Q3)
Do methods of signal recording and processing (e.g., number
of channels, spatial filtering, method of classification) influence
the effectiveness of MIBCI control? Question 4 (Q4) Do the
research findings show that the applied techniques enable signal
classification which is sufficient for effective use of the interfaces?
Based on the findings of descriptive analysis and meta-analysis,
conclusions and recommendations were formulated. Suggestions
were made for improvements with regard to changes in existing
practices applied to research on signal processing in MIBCIs.

2. MATERIALS AND METHODS

2.1. Article Selection
The review is based on 131 studies, published in English in peer-
reviewed journals from 1997 to 2017. The reports were included
in the review if they met all of the following criteria: (1) One or
more of the keywords: motor imagery BCI,MI BCI, sensorimotor
rhythms BCI, SMR BCI, Graz BCI, Wandsworth BCI, BCI
Competition; (2) The reports described one or more BCI designs;
(3) The reports providing sufficient data to estimate an effect
size for meta-analysis (the studies that did not provide sufficient
statistics were used in descriptive analysis). Supplementary
approaches to identifying relevant studies included searching
the references of a review article (Lotte et al., 2007). Articles
were obtained through an online search of the ScienceDirect
and Google Scholar databases. The contents of the articles were
analyzed in order to identify the structural components of BCIs,
which significantly impact the effectiveness of the systems. The
analysis focused on procedures of data collection and data
processing. The method of selecting articles is shown in Figure 2.

2.2. Data Extraction
The following data were systematically extracted from each
selected study: publication year, number of channels, information
about dataset, number of subjects, mental task (number of
categories), pre-processing (i.e., manual or automatic rejections
of artifacts), feature extraction method, feature classification
method, average classification accuracy (CA), standard deviation
of CA and information enabling calculation of level of chance
(LC) performance. LC is defined as the level of CA that can be
reached by chance: LC= 100%/number of targets (Marchetti and
Priftis, 2015). Due to the varied number of categories (mental
imagery) applied in the specific studies CA was transformed into
values corrected with the LC in a given type of interface, as
proposed byMarchetti and Priftis (2015) Corrected CA (CCA)=
(CA − LC) ∗ 100/(100 − LC). The CCA value was used as the
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FIGURE 2 | Flow diagram for identifying articles for the meta-analysis and

descriptive analysis. (1) A total of 1,503 studies were excluded because of

their irrelevance (e.g., reviews, gray literature, theoretical articles, reports from

cognitive experiments), (2) based on criteria (studies without motor imagery

condition; other than EEG analysis), (3) and which did not provide sufficient

statistics, such as means, standard deviations and size, to drive meta-analysis.

(4) A majority of the articles contained results of more than one analysis. Each

variant of data processing was examined as a separate result/BCI design.

classification effectiveness rate in some of the descriptive analyses
and in meta-analysis.

2.3. Statistical Analyses
Quantitative analysis was based on descriptive statistics,
taking into account percent distribution, number, and modal
values pertaining to the aspects of signal processing in
MIBCI investigated. The results from studies which contained
information sufficient for calculating the effect size were included
in the meta-analysis. The approach to random-effects adopted
for the calculations reflected the assumption that the effect sizes
of the studies represented a random sample of the real ones
(Borenstein et al., 2011; Cumming, 2013; Marchetti and Priftis,

TABLE 1 | Number of channels in the record analyzed.

Number of channels Percentage of studies

1–2 20.33

3–8 21.61

9–16 10.05

17–31 19.16

32–64 14.49

65–128 14.37

2015). The heterogeneity and inconsistency among studies were
obtained with the Cochran’s Q and I2 tests (Higgins et al., 2003).
To address possible publication bias, Egger’s regression tests were
computed (Rothstein et al., 2006). The average performance level
of the most popular signal processing methods (Q1) has been
calculated (CCA), with confidence intervals (95%). Publication
year (Q2) and numbers of channels (Q3) were used as moderator
variables in meta-regression to test the effects of publication
time and sampling density on CCA. Inverse Variance Weighted
ANOVA was used to test the differences across mean CCA for
categorical variables (Q3), such as: numbers of targets (2, 3, or
4 categories), spatial filtering (CSP or band power), classification
algorithms (DA or SVM) and evaluation methods (online or
offline). In order to address the problem contained in Q4, a t-
test was performed by comparing CA with LC. Analyses and
their graphic visualizations were prepared using the “metagen”
(v. 1.0) package for statistical software R (v. 3.3.2) and IBM SPSS
Statatistic PL (v. 21).

3. RESULTS

3.1. Descriptive Analysis
The operation of each EEG-BCI system starts with recording the
bioelectric activity of the brain with the use of electrodes. From
the point of view of BCIs, the critically important features include
the system’s tolerance to distortions in EEG recording and the
ergonomics of using the device. Unlike the EEG systems used
in e.g., performing medical diagnoses or psycho-physiological
experiments, the equipment employed for the specific needs of
BCI must be easy to operate and maintain, must enable long-
lasting operation without a decrease in the accuracy of the
recording and must be relatively cheap. This is because BCIs
are mainly intended for individuals with disabilities using such
devices at home, and this is associated with a greater risk of
artifacts. To meet the related requirements, EEG-BCI systems
generally utilize a lower number of electrodes than clinical EEGs.
By using less than 20 downleads, it is possible to reduce the costs
of the device and enable rapid application (Portelli et al., 2011).

The number of channels used in the studies currently being
conducted shows significant variation (Table 1). No evidence has
been found for the use of records from high-density EEG nets,
which comprise over 128 channels. The articles in the review
suggest that the most frequently used number of channels ranges
from 3 to 8 (21.61% of cases) and from 1 to 2 (20.33% of cases).
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TABLE 2 | Types of imagery used in algorithm testing.

Types of imagery Percentage of studies

Left hand, right hand 53.51

Right hand, right foot 9.05

Left hand, right hand, foot 8.48

Right hand, foot 2.60

Other 26.36

SMRBCIs are active BCIs; they take advantage of the changes
in the recording of brain activity in response to the mental
task which is being performed. A number of different tasks are
executed by users of MIBCI to control the device. These include:
imagined movement vs. relaxing (Neuper et al., 2003), imagined
right hand vs. left hand movement (Scherer et al., 2009) and
imagined movement of the foot or tongue (Leeb et al., 2008).
While evaluating specific types of mental tasks applied in MIBCI,
it is necessary to take into account the number of decisions,
which can be made using a given procedure. The systems
involving imagined movement vs. relaxing and right vs. left hand
movement enable a choice to be made between two conditions
(0 and 1), which is sufficient e.g., for virtual keyboard control
but not for movement in three-dimensional space (Wolpaw and
Wolpaw, 2012). The effectiveness of recognition of MI in BCI
in the articles reviewed was most frequently tested with the
use of a signal representing two states (76.70% cases), imagined
right and left hand movement being the predominant procedure.
Recordings, which represent three states, such as the imagined
movement of both hands and the tongue, are considerably less
common (Table 2). 97% of studies used synchronous control,
while the others used asynchronous.

All of the reviewed articles present results acquired with
the use of more than one signal processing algorithm. They
compare a number of combinations of extractors, selectors and
classifiers tested with the same datasets. The selected reports
contained findings of 883 experiments, yet only 4.90% of the
total number of experiments were related to studies in which
algorithms were tested online, i.e., during real-time interface
control. In the remaining cases, signal processing was conducted
based on datasets of EEG recordings performed during MI tasks.
The majority of the latter group used the signals available in
the framework of the BCI Competitions (Brunner et al., 2008;
Leeb et al., 2008). This is a project which has provided a large
group of researchers with access to EEG datasets in order to
facilitate the comparison of various signal processing techniques
and their effectiveness. In the selected articles, 78.90% of the
results were based on data from BCI Competitions. The studies
differed regarding the number of subjects. Most frequently, their
number was in the range of N = 2–10 (75.47% of cases). A
significant group represented the findings of case studies, i.e.,
involving one subject only (21.11%). Few analyses were carried
out for study groups of more than 10 subjects (3.42% of cases).
The most frequently applied practice at the stage of data pre-
processing involves band-pass filtering of the signal. As a result,
the signal only retains those frequency bands which represent the
electrical activity of the brain associated with MI (in most cases:

µ (8–12 Hz) and β (18–30 Hz). Generally, the data designated
for analyses were not subjected to the procedure of removing
artifacts from the signal, yet, in some cases, the recording was
purified manually (11.31%).

A number of signal processing methods are employed at
the stage of the extraction of features (Lotte et al., 2007).
Features within the EEG signal are most frequently determined
with variants of the Common Spatial Patterns method (45.83%
cases), which, in terms of popularity, is followed by band power
(17.88% cases). It is worth to note that 15 studies using CSP
conducted the analyses on fewer channels than recommended
minimum of 8 for this method. The publications reviewed most
frequently used signal classification via linear methods based
on such algorithms as Discriminant Analysis (DA) (38.14%
of cases) and Support Vector Machine (SVM) (33.84% of
cases).

3.2. Meta-Analysis
CCA in the studies included in the meta-analysis is 51.96%
(CI 95% = 50.07 to 53.86), 53.24% for synchronous and
22.71% for asynchronous tests. The results are characterized by
significant heterogeneity (Q = 1806577.61, df = 486; p < 0.001;
I2 = 99.97%) and the effects of publication bias (Egger’s test
t = 152,41, p < 0.001), shown in a funnel plot (Figure 3).

Meta-regression with the number of channels used in the
analyses and with publication year showed a significant impact
of the two moderator variables in CCA (Qmodel = 98.05,
p < 0.001). An increase in the number of channels coincided
with greater CCA (number of channels; B = 0.09, CI
95%: = 0.07 to 0.12; p < 0.001). On the other hand no
correspondence was observed between the reported CCA and
the year in which the results were published. In fact, during
the period in question the accuracy of the solutions examined
decreased significantly (year; B=−0.97, CI 95%:−1.26 to−0.68;
p = 0.005). Inverse Variance Weighted Oneway ANOVA was
applied to examine the effect of the number of targets (2, 3, or 4
categories) on the homogeneity of distribution (Qbetween= 7.36,
df = 2; p = 0.02). In a two-category design CCA = 52.12%
(CI 95%: = 50.96 to 53.81), and is characterized by a significant
heterogeneity of results (Qw = 1299.47, df = 399; p < 0.001;
I2 = 69.36%). For three mental images the mean result was
53.56% (CI 95%: = 49.81 to 57.31) with a high degree of
heterogeneity of results (Qw = 72.16, df = 37; p < 0.001;
I2 = 50.11%). In the case of four categories the result was 47.66%
(CI 95%: = 44.41 to 50.91) and also was characterized by a
high level of heterogeneity in the distribution (Qw = 79.78,
df = 48; p = 0.002; I2 = 41.09%). A separate analysis examined
the effect of spatial filtering of signal (CSP vs. Band Power),
which was shown to significantly impact the distribution of
the results (Qbetween = 32.02, df = 1; p < 0.001). CCA in
studies which applied CSP was found at the level of 53.5%
(CI 95%: = 51.69 to 55.3), with significant heterogeneity
(Qw = 514.15, df = 231; p < 0.001; I2 = 55.27%). In the
cases applied band power CCA was at the level of 43.66% (CI
95%: = 40.77 to 46.55), also with a heterogeneous distribution
(Qw = 139.03, df = 87; p < 0.001; I2 = 38.14%). The method
of evaluation of the results (offline vs. online) has no significant
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FIGURE 3 | Funnel plot for different types of MIBCI.

influence on the CCA (Qbetween= 2.04, df = 1; p= 0.153). Also,
the two most popular methods of signal classification (DA and
SVM) did not differ in terms of their impact on the homogeneity
of the effects obtained (Qbetween = 0.29, df = 1; p = 0.592).
CA in each of the types of MIBCI examined was significantly
higher than LC: two categories [t(400) = 44.29, p < 0.001];
three categories [t(38) = 20.05, p < 0.001] and four categories
[t(49) = 22.75, p < 0.001]. Nevertheless, CCA higher than the
60% threshold rate for effective control (Guger et al., 2003) was
achieved in 37% of the studies and the result exceeded 70%
(Brunner et al., 2010) in only 16.6% of the studies. It should be
noted that in the group of 14 studies analysing real-time BCI
control, CCA was below the threshold value of 60% in four cases
(28.6%) although the CCA in this group of results still differed
from LC [t(13) = 8.13, p < 0.001].

4. DISCUSSION

Since the last decade of the twentieth century and in the
beginning of the twenty first century there has been growing
interest in issues related to BCIs (Huggins and Wolpaw,
2014). As pointed out by researchers, studies into BCI mainly
focus on improving the effectiveness of signal processing
algorithms (Hwang et al., 2013). Nevertheless, the effectiveness
of information transfer aided by BCIs is insufficient for the
widespread practical application of the technique (Ahn and
Jun, 2015). Because of the easy application and price, the most
common BCIs today are EEG based, and, in this group, the most
common are those in which control is based on MI (Hwang
et al., 2013). This explains the large number of articles focusing
on the classification of signals containing MI. Yet, it is unclear

Frontiers in Neuroinformatics | www.frontiersin.org 6 November 2018 | Volume 12 | Article 78

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wierzgała et al. Most Popular Signal Processing Methods

to what extent findings and conclusions from these studies can
be utilized in practice for engineering more effective SMRBCI
systems.

4.1. Quality of Study
In accordance with the “gold standard” proposed for BCI-related
research by McFarland and Krusienski (Wolpaw and Wolpaw,
2012), the most valuable results showing possible uses of a given
algorithm in an existing interface are acquired by means of both
offline and online studies. This means that the new method is
subjected to testing with the use of generally accessible models
and readily available sets of records, as well as during sessions
where users control the interface in real time. This approach
makes it possible to compare the findings of a specific study
with the results acquired with other techniques and to answer
the question as to whether a given method is effective if utilized
in a real-life situation. Obviously, this approach is much more
challenging and labor-intensive, as reflected in the significantly
lower number of publications containing accounts of online
experiments (4.9% of cases). The majority of the remaining
studies contain analyses carried out with the use of datasets from
BCI Competitions (Blankertz et al., 2010). This can be recognized
as an advantage since the results of various experiments based
on the same datasets are easier to compare; on the other hand,
the possibility of translating the results into BCI operation in
real-life settings is significantly limited. Results of the meta-
analysis show that the CCA differed depending on whether the
algorithm was assessed offline or online. Given this, the solutions
subjected to testing based exclusively on cross-validation may be
overestimated with regard to their effectiveness in comparison
to real-time application of BCI in communication. The findings
acquired during online analyses were more homogeneous which
may suggest that irrespective of the method applied, participants
in the studies controlled the interface with similar effectiveness.
The fact that the relevant analyses are based on an insufficient
number of observations is a drawback from the viewpoint of
the practical applicability of the findings related to algorithms
of signal processing in MIBCI. Proportionally, a significant
number of experiments are based on datasets acquired from
one subject, and analyses based on groups of more than 10
subjects are a rarity. It is a well-established fact that subject-
specific differences significantly impact the effectiveness of BCI
control (Blankertz et al., 2010; Hammer et al., 2012). According
to some researchers, a considerable number of users, from several
to a few dozen percent, face significant difficulties in trying to
effectively convey information in this way (Allison and Neuper,
2010). This phenomenon is sometimes called BCI illiteracy or
aphasia (Millán et al., 2010). Additionally, there are differences
among subjects reflecting the varied pace and effectiveness of
learning to control BCIs (McFarland et al., 2005). Differences of
this kind occurring in the population may impact the findings
of analyses related to small study groups. The applicability of
the reported findings may also be adversely affected by errors
occurring at the stage of data preparation and during the
presentation of results. Although MIBCIs are designed for real-
time operation, some studies are based on records manually
purged of artifacts (11% of cases). The procedure of removing

fragments of a signal contaminated with non-representative
brain activity, e.g., caused by eye or muscle movements, is widely
used in EEG based studies (Jung et al., 2000). The method,
however, cannot be introduced during the real-time process of
BCI control with minimum operation by people other than the
user. The effectiveness of the algorithm in recognizing signal
patterns in an initially purified recording may lead to inflating
the final result and may fail to represent the actual conditions
of BCI operation. In order to ensure comparability of results
showing the effectiveness of signal processing achieved by various
methods, it is necessary to adopt a similar way of reporting
results. Researchers, however, use various ways of presenting
the findings; for instance, they report the mean error in signal
classification, the mean percentage of correctly classified samples
or results related to the most successfully or least effectively
classified fragments of data. More than half of the reviewed
articles could not be included in the meta-analysis due to the
lack of information necessary for estimating the effect size (see
Figure 2). Such a method of conducting analyses and reporting
the results makes it impossible to compare the findings acquired
by different researchers. The matter is additionally confounded
by the fact that MIBCIs differ in terms of the number of imagery
tasks performed by the user to control the system (e.g., imagined
right hand and left handmovement or imaginedmovement of the
hand and foot), or they vary in terms of the length of a single trial.
Hence, the same result related to various types of BCIs does not
represent the same effectiveness. Due to this, some researchers
have postulated a method of converting the results into the
number of bits of information that can be transmitted by the
relevant BCI per a specified unit of time e.g., minute (McFarland
et al., 2003). This method of converting the results is not
commonly used in the articles reviewed. Some articles contain
insufficient information related to the method of recording and
preparing the data for analyses. Examples of practices which seem
inadequate include: lack of information about a reference channel
or the impedance value, presentation of the results exclusively
in graphical form without providing numerical values, and
an interpretation of differences between algorithms without
subjecting them to statistical testing. Improvements in these
standards may contribute to an increased scientific value and
higher applicability of research findings related to data processing
in MIBCI. In order to unify the method of reporting the most
important aspects of the research, the authors suggest that articles
should contain a table with a summary of the study (Table 3).
It would enable quick assessment of experimental findings and
would facilitate access to important data from the viewpoint of
future replication studies or practical application. Moreover, the
concise presentation of data related to equipment and analysis
would leave more space in the article for information about the
procedure and mathematical basics underlying the method of
applied signal processing. The proposed chart is divided into five
parts: 1: Settings, 2: Data set, 3: Study group, 4: Procedure and 5:
Results. The first, second, and third parts contain information on
the method of data acquisition. The fourth part relates to details
of the algorithms tested. The final section presents the findings.
The shape and contents of the chart can be freely modified. The
tool is, in fact, a point of reference for the concise presentation
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TABLE 3 | The sample design of table that could be used to summarize relevant

information about a study.

Settings

Amplifier model

Cap model

Type of electrodes

Recorded channels [N]

Analyzed channels [N]

Reference

Ground

Impedance

Data set

Name

Source

Study group

Subjects [N]

Males [N]

Females [N]

Right-handed [N]

Healthy [N]

Experienced [N]

Age (Avg)

Age (SD)

Procedure

Motor imagery task description

Trials [N]

Trial duration [s]

Synchronous [Y/N]

On-line [Y/N]

Methods References

Pre-processing

Feature extraction

Feature selection

Feature classification

Results

Accuracy (Avg) [%]

Accuracy (SD) [%]

ITR [bps]

of information regarding the method of analysing data in a BCI
experiment.

4.2. Signal Processing Methods
The findings of meta-regression suggest that the number of
channels taken into account in a study corresponds with a higher
CCA rate. Indeed, this variable should be taken into account in
future studies, e.g., by testing the same algorithms with the use of
data for low and high recording density. On the other hand, by
decreasing the number of channels in BCI it would be possible
to reduce the cost of such devices, which would make BCIs more
accessible (Portelli et al., 2011). The use of spatial filtering (e.g.,
common spatial patterns) affects results achieved at the stage
of classification. In studies which applied only band power for

the extraction of signal features, CCA was significantly lower
than the results achieved with spatial filtering. This is consistent
with research findings suggesting that the spatial representation
of the ERD/ERS effect differs depending on individual factors,
such as motor experience (Zapała et al., 2015), mental imagery
capacities (Marchesotti et al., 2016) or lateralization (Stancák
and Pfurtscheller, 1996). The most popular signal classifiers (DA
and SVM) did not impact the effects reported in the articles
reviewed. Operation of the two methods is relatively similar and
involves discrimination of signal samples. There were too few
experiments based on alternative methods of feature translation,
such as regression or artificial neural networks, so they could not
be included in the meta-analysis.

4.3. Effectiveness of MIBCI Control
CA in all the main types of MIBCI is significantly higher than
LC. However, the level of classification recognized as sufficient for
effective communication is only achieved by some of the reported
systems of signal processing. Taking this into account we can say
that in the case of a significant majority of studies, if classification
took place in a similar way as during offline assessment, the
BCI users would have problems with effective communication
by means of the device. More importantly, the results of offline
evaluations, which in this review constitute a majority, still may
be overestimated in comparison to the effects achieved during
real-time control (Wolpaw and Wolpaw, 2012). The findings of
the meta-regression, with the publication year as a moderator,
do not permit the conclusion that there was an improvement
in the effectiveness of signal classification during the relevant
period. In fact the significantly negative result of the regressions
suggests an opposite trend. This may suggest that the systems
currently used are ineffective. More and more studies point to
the relationship between intra- and inter-subject factors and the
operation of BCIs (Ahn and Jun, 2015) and refer to the necessity
of applying training enhancing the vividness of MI in users of
such systems (Lotte and Jeunet, 2015). Perhaps the architecture
of MIBCI systems is in need of greater change than those which
have so far been tested.

4.4. Heterogeneity and Publication Bias
Lack of homogeneity in the case of the data examined may result
from the use of different, and sometimes incomparable, signal
processing procedures. The significant effects of such moderators
as: number of channels, spatial filtering or number of mental
images show that these are important variables which should be
controlled in future experiments. The publication bias identified
by Egger’s test may be interpreted as a tendency to mainly report
results exceeding LC. This does not greatly impact the reliability
of the effects that are achieved because the postulated levels
sufficient for effective use of BCI are estimated at a higher level
than 50%. Algorithms with an CCA exceeding 60 or 70% still
constitute a minority in reported studies.

4.5. Conclusions
By reference to the questions which were asked at the start, it can
be assumed that signal processing algorithms applied in MIBCI
enable signal classification at a rate significantly exceeding LC
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(Q1; Q4). On the other hand, only a small fraction of these
achieve results recognized as sufficient to ensure that actual
operation of interfaces is effective. High heterogeneity of results
and the lack of an effect showing an increase in algorithm
efficiency over time (Q2) suggest that there are a number of
variables potentially affecting the ultimate classification result, yet
they are not sufficiently controlled in experimental procedures
(Q3). Such factors may include those connected with signal
processing (e.g., number of channels applied, spatial filtering of
the signal, and type of mental imagery) as well as individual
differences whose relationship with BCI operation is confirmed
by research (Ahn and Jun, 2015). The poor quality of the
published findings is a considerable impediment from the point
of view of MIBCI development. Many of the selected articles
did not present key information enabling a comparison to be
made with other studies. Without a standardized method of
conducting such experiments and reporting their results, it will
be impossible to use such algorithms in practice. To improve the

situation the following is recommended: (1) Algorithms should
be tested both online and offline. (2) Reports should provide
sufficient information to replicate a study and perform meta-
analysis. (3) Key features of a study should be summarized in
a clear and possibly uniform manner (for instance: Table 3) (4)
The design of BCI data processing should consist of steps which
are applicable in real-time BCI control (e.g., without manually
removed artifacts).
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