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Abstract

A major inference task in Bayesian networks is explaining why some variables are ob-
served in their particular states using a set of target variables. Existing methods for solving
this problem often generate explanations that are either too simple (underspecified) or too
complex (overspecified). In this paper, we introduce a method called Most Relevant Expla-
nation (MRE) which finds a partial instantiation of the target variables that maximizes the
generalized Bayes factor (GBF) as the best explanation for the given evidence. Our study
shows that GBF has several theoretical properties that enable MRE to automatically iden-
tify the most relevant target variables in forming its explanation. In particular, conditional
Bayes factor (CBF), defined as the GBF of a new explanation conditioned on an existing
explanation, provides a soft measure on the degree of relevance of the variables in the new
explanation in explaining the evidence given the existing explanation. As a result, MRE is
able to automatically prune less relevant variables from its explanation. We also show that
CBF is able to capture well the explaining-away phenomenon that is often represented in
Bayesian networks. Moreover, we define two dominance relations between the candidate
solutions and use the relations to generalize MRE to find a set of top explanations that is
both diverse and representative. Case studies on several benchmark diagnostic Bayesian
networks show that MRE is often able to find explanatory hypotheses that are not only
precise but also concise.

1. Introduction

One essential quality of human experts is their ability to explain their reasoning to other
people. In comparison, computer expert systems still lack the capability in that regard.
Early medical decision-support systems such as MYCIN (Buchanan & Shortliffe, 1984) were
shown empirically to have comparable or even better diagnostic accuracies than domain
experts. However, physicians were still reluctant to use these systems in their daily clinical
settings. One major reason is that these expert systems lack the capability to clearly explain
their advice; physicians are uncomfortable in following a piece of advice that they do not
fully understand (Teach & Shortliffe, 1981). The capability of explanation is thus critical
for the success of a decision-support system.
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Bayesian networks (Pearl, 1988) offer compact and intuitive graphical representations of
the uncertain relations among the random variables in a domain and have become the basis
of many probabilistic expert systems (Heckerman, Mamdani, & Wellman, 1995b). Bayesian
networks provide principled approaches to finding explanations for given evidence, e.g.,
belief updating, Maximum a Posteriori assignment (MAP), and Most Probable Explanation
(MPE) (Pearl, 1988). However, these methods may generate explanations that are either too
simple (underspecified) or too complex (overspecified). Take a medical diagnostic system as
an example. Such a system may contain dozens or even hundreds of potentially dependent
diseases as target variables. Target variables are defined as the variables with diagnostic
or explanatory interest. Belief updating finds only singleton explanations by ignoring the
compound effect of multiple diseases. MAP and MPE consider such effect by finding a
full configuration of the target variables, but their explanations often contain too many
variables. Although a patient may have more than one disease, she almost never has more
than a few diseases at one time as long as she does not delay treatments for too long. It is
desirable to find explanations that only contain the most relevant diseases. Other diseases
should be excluded from further medical tests or treatments.

In this paper, we introduce a method called Most Relevant Explanation (MRE) which
finds a partial instantiation of the target variables that maximizes the generalized Bayes
factor (GBF) as the best explanation for the given evidence. Our study shows that GBF has
several theoretical properties that enable MRE to automatically identify the most relevant
target variables in forming its explanation. In particular, conditional Bayes factor (CBF),
defined as the GBF of a new explanation conditioned on an existing explanation, provides a
soft measure on the degree of relevance of the variables in the new explanation in explaining
the evidence given the existing explanation. As a result, MRE is able to automatically prune
less relevant variables from its explanation. We also show that CBF is able to capture well
the explaining-away phenomenon that is often represented in Bayesian networks. Moreover,
we define two dominance relations between the candidate solutions and use the relations to
generalize MRE to find a set of top explanations that is both diverse and representative. Our
case studies show that MRE performed well on the explanation tasks in a set of benchmark
Bayesian networks.

The remainder of the paper is structured as follows. Section 2 provides a brief overview
of the literature on explanation, including scientific explanation, explanation in artificial
intelligence, and the relation between causation and explanation. Section 3 provides an
introduction to explanation in Bayesian networks, especially methods for explaining evi-
dence. Section 4 introduces the formulation of Most Relevant Explanation and discusses
its theoretical properties. This section also discusses how to generalize MRE to find a set
of top explanations. Section 5 presents the case studies of MRE on a set of benchmark
Bayesian networks. Finally, Section 6 concludes the paper.

2. Explanation

Explanation is a topic that is full of debate; in fact, there is no commonly accepted definition
of explanation yet. This section provides a very brief overview of the major developments
of explanation in both philosophy of science and artificial intelligence. A brief discussion
on the relation between causation and explanation is also included.
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2.1 Scientific Explanation

Explanation has been the focal subject of philosophy of science for a long time. The goal
of explanation is not simply to describe the world as it is, but to develop a fundamental
and scientific understanding of the world (Woodward, 2003) and answer questions such as
“why did this happen?” The field is hence named scientific explanation.

One of the earliest model of scientific explanation is the Deductive-Nomological (D-N)
model (Hempel & Oppenheim, 1948). According to the D-N model, a scientific explanation
consists of an explanandum, the phenomenon to be explained, and an explanation (or
explanans), the facts used to explain the explanandum. The explanation can successfully
explain the explanandum if the explanation is true, and the explanation logically entails
the explanandum.

However, not every phenomenon can be expressed in terms of deterministic logic rules.
Many phenomena are inherently uncertain. Hempel (1965) modified his D-N model and
introduced the inductive-statistical (I-S) model. The I-S model is similar to the D-N model
except that it assumes there is a probability for each logic rule for capturing the uncertainty
in linking the initial conditions to the phenomenon to be explained.

Both the D-N and I-S models have the limitation of allowing the inclusion of irrelevant
facts in an explanation, because such facts do not affect the correctness of the rules (Suer-
mondt, 1992). To address the shortcoming, Salmon (1970) introduced the statistical-
relevance (S-R) model. The S-R model requires that an explanation should only consist
of facts that are statistically relevant to the explanandum. A fact is statistically relevant
in explaining the explanandum if the posterior probability of the fact after observing the
explanandum is different from its prior probability. The intuition behind the S-R model
is that statistically irrelevant facts, even though they may have high probabilities, do not
constitute a good explanation.

Salmon (1984) introduced the Causal-Mechanical (C-M) model of explanation to take
into account causation. The basic idea behind the C-M model is that the process of expla-
nation involves fitting an explanandum into a causal structure of a domain and tracing the
causes that may lead to the explanandum.

There are many other approaches as well. Ketcher (1989) believes that a scientific ex-
planation should provide a unified account of the natural phenomena in the world. Van
Fraassen (1980) believes that an explanation should favor the explanandum, i.e., the expla-
nation either increases the probability of the explanandum or decreases the probability of
the nearest competitor of the explanandum. Several mathematical theories of explanatory
power have also been proposed by Jeffreys (1935), Good (1977), and Gärdenfors (1988).

2.2 Explanation in Artificial Intelligence

In comparison to scientific explanation, researchers in the area of artificial intelligence have
taken a much broader view of explanation. Early development of decision-support sys-
tems made it clear that decision-support systems should not be intended to replace human
experts, but rather provide advice or second opinion to the experts so that they can have
better performance. So it is necessary that the decision-support systems have the capability
to explain how their conclusions are made and why the conclusions are appropriate so that
the domain experts can understand and possibly follow the advice (Dannenberg, Shapiro,
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& Fries, 1979). In a decision-support system, any presentation that can help a user’s under-
standing of the conclusions of the system is regarded as an explanation (Suermondt, 1992).
For example, an explanation can be a trace of the reasoning process of a system in reaching
its conclusions (Suermondt, 1992), a canned textual explanation of an abstract reasoning
process (Bleich, 1972), a verbal translation of the inference rules (Buchanan & Shortliffe,
1984), or a visual display of certain elements of the system that helps a user to understand
the results (Lacave, Luque, & Diez, 2007).

Nevertheless, the most important form of explanation in artificial intelligence is the form-
ing of explanatory hypotheses for observed facts, often called abductive inference (Peirce,
1948). Many issues need consideration in abductive inference. One issue is to define what
to explain. Not every observation needs explanation. According to Pierce (1948), a com-
mon trigger for abductive inference is that a surprising fact is observed, that is, the newly
observed information is in conflict with what is already known or what is currently believed.
In other words, what requires explanation is something that causes someone’s cognitive dis-
sonance between the explanandum and the rest of her belief (Gärdenfors, 1988). It is also
argued that some observations can serve as part of an explanation (Chajewska & Halpern,
1997; Nielsen, Pellet, & Elisseeff, 2008). Suppose we observe that the grass is wet, and it
rained. There is no need to explain why it rained. The fact that it rained is actually an
excellent explanation for why the grass is wet (Nielsen et al., 2008). Therefore, there is a
potential distinction between the explanandum, i.e., observations to be explained, and the
other observations. Deciding the explanandum may be a nontrivial task.

Once an explanandum is decided, the task reduces to finding an explanatory hypothesis
for the explanandum. The issue here is to define what a good explanation is. A good expla-
nation should be able to provide some sort of cognitive relief, that is, the explanation should
decrease the surprise value caused by the observation of the explanandum. Intuitively,
the value of an explanation is the degree to which the explanation decreases the surprise
value. Many different criteria have been used in existing explanation methods, including
weight of evidence (Good, 1985), probability (Pearl, 1988), explanatory power (Gärdenfors,
1988), likelihood of evidence (de Campos, Gamez, & Moral, 2001), and causal information
flow (Nielsen et al., 2008). One goal of this paper is to study and compare the properties
of some of these measures.

Moreover, the quality of an explanation is also highly goal-dependent. The resulting
explanations may vary in the level of specificity or scope depending on the objectives of the
explanation task (Leake, 1995). For example, when explaining the symptoms of a patient,
a doctor can either find an explanation that constitutes a diagnosis, i.e., explaining which
diseases the patient may have, or provide an explanation on which risk factors may have
caused the symptoms. Defining the goal of an explanation task is thus important.

The above is a general overview of explanation in artificial intelligence. In Section 3,
we will provide a more detailed review of one particular topic in this area: explanation in
Bayesian networks.

2.3 Causation and Explanation

It is agreed upon that causation plays an important role in explanation and helps to generate
intuitive explanations (Chajewska & Halpern, 1997; Halpern & Pearl, 2005; Nielsen et al.,
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2008). However, there is considerable disagreement among researchers about whether all ex-
planations are causal and what the distinction between causal and non-causal explanations
is. Those who believe in not completely subsuming explanation into causation typically
have a broader view of explanation. The following are some arguments for the belief that
there are explanation tasks that do not require causal meanings.

First of all, explanation has a much broader meaning in AI. Some explanation tasks in
AI do not require causal meanings. For example, verbal or visual explanations are often
used in decision-support systems to illustrate concepts, knowledge, or reasoning processes;
they do not seem to have causal meanings. If it is insisted that all explanations have to be
causal, all these explanation tasks may have to be disallowed.

Furthermore, there are many domains in which clear understandings of causal relations
have not yet been established. There is only statistical relevance information. Such rele-
vance information is insufficient to fully capture causal relations. Again, explanation may
have to be disallowed altogether in these domains if we insist that all explanations have to
be causal.

Moreover, the situation is further complicated by the fact that there is still considerable
disagreement on the definition of causation. Causal claims themselves also vary drastically
in the extent to which they are explanatorily deep enough (Woodward, 2003). For some, it
is a sufficient causal explanation to say that the rock broke the window. For others, that is
merely a descriptive statement; it is necessary to resort to deeper Newtonian mechanics to
explain why the rock broke the window.

Finally, not all legitimate why-questions are causal or require causal explanations. For
example, there is a difference between the explanation of belief and the explanation of
fact (Chajewska & Halpern, 1997). When someone tells you that it rained last night and
you ask her why, she may give you as an explanation that the grass is wet. Another example
is that a variety of physical explanations are geometrical rather than causal because they
explain phenomena by using the structure of spacetime rather than using forces or energy
transfer (Nerlich, 1979).

It is not our goal in this paper to take on the tall task of settling the debate on the
relation between causation and explanation. The methods that we propose in this paper
are aimed to be general enough so that they are applicable to both causal and non-causal
settings.

3. Explanation in Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) in which the nodes denote ran-
dom/chance variables, and the arcs or lack of them denote the qualitative relations among
the variables. The dependence relations between the variables are further quantified with
conditional probability distributions, one for each variable conditioned on its parents. Fig-
ure 1(b) shows an example of a Bayesian network. A Bayesian network essentially encodes
a joint probability distribution over the random variables of a domain and can serve as a
probabilistic expert system to answer various queries about the domain.

Unlike many machine learning methods that are mostly predictive methods, a Bayesian
network can be used for both prediction and explanation with a deep representation of a
domain. Explanation tasks in Bayesian networks can be classified into three categories;
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explanation of reasoning, explanation of model, and explanation of evidence (Lacave &
Diez, 2002). The goal of explanation of reasoning in Bayesian networks is to explain the
reasoning process used to produce the results so that the credibility of the results can
be established. Because reasoning in Bayesian networks follows a normative approach,
explanation of reasoning is more difficult than explanation in methods that try to imitate
human reasoning (Druzdzel, 1996; Lacave & Diez, 2002). The goal of explanation of model
is to present the knowledge encoded in a Bayesian network in easily understandable forms
such as visual aids so that experts or users can examine or even update the knowledge.
For example, graphical modeling tools such as GeNIe (Druzdzel, 1999), Elvira (Lacave
et al., 2007), and SamIam (AR Group, UCLA, 2010) have functionalities for visualizing
the strength of the probabilistic relations between the variables in a domain. The goal of
explanation of evidence is to explain why some observed variables are in their particular
states using the other variables in the domain. We focus on the explanation of evidence
in this research. Next we review the major methods for explaining evidence in Bayesian
networks and discuss their limitations.

3.1 Explanation of Evidence

Numerous methods have been developed to explain evidence in Bayesian networks. Some
of these methods make simplifying assumptions and focus on singleton explanations. For
example, it is often assumed that the fault variables are mutually exclusive and collectively
exhaustive, and there is conditional independence of evidence given any hypothesis (Heck-
erman, Breese, & Rommelse, 1995a; Jensen & Liang, 1994; Kalagnanam & Henrion, 1988).
However, singleton explanations may be underspecified and are unable to fully explain the
given evidence if the evidence is the compound effect of multiple causes.

For a domain with multiple dependent target variables, multivariate explanations are
often more appropriate for explaining the given evidence. Maximum a Posteriori assign-
ment (MAP) finds a complete instantiation of a set of target variables that maximizes the
joint posterior probability given partial evidence on the other variables. Most Probable
Explanation (MPE) (Pearl, 1988) is similar to MAP except that MPE defines the target
variables to be all the unobserved variables. The common drawback of these methods is that
they often produce hypotheses that are overspecified and may contain irrelevant variables
in explaining the given evidence.

Everyday explanations are necessarily partial explanations (Leake, 1995). It is difficult
and also unnecessary to account for all the potential factors that may be related to the
occurrence of an event; it is desirable to find the most relevant contributing factors. Various
pruning techniques have been used to avoid overly complex explanations. These methods
can be grouped into two categories: pre-pruning and post-pruning. Pre-pruning methods
use the context-specific independence relations represented in Bayesian networks to prune
irrelevant variables (Pearl, 1988; Shimony, 1993; van der Gaag & Wessels, 1993, 1995) before
applying methods such as MAP to generate explanations. For example, Shimony (1993)
defines an explanation as the most probable independence-based assignment that is complete
and consistent with respect to the evidence nodes. Roughly speaking, an explanation is a
truth assignment to the variables relevant to the evidence nodes. Only the ancestors of the
evidence nodes can be relevant. An ancestor of a given node is irrelevant if it is independent
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of that node given the values of other ancestors. However, these independence relations are
too strict and are unable to prune marginally or loosely relevant target variables.

In contrast, post-pruning methods first generate explanations using methods such as
MAP or MPE and then prune variables that are not important. An example is the method
proposed by de Campos et al. (2001). Their method first finds the K most probable expla-
nations (K-MPE) for the given evidence, where K is a user-specified parameter, and then
simplify the explanations by removing unimportant variables one at a time. A variable is
regarded as unimportant if its removal does not reduce the likelihood of an explanation.

It is pointed out that Shimony’s partial explanations are not necessarily concise (Cha-
jewska & Halpern, 1997). His explanation must include an assignment to all the nodes in
at least one path from a variable to the root, since for each relevant node, at least one of its
parents must be relevant. The method by de Campos et al. can only prune conditionally
independent variables as well. The limitations of both methods were addressed by using a
thresholding method to allow the pruning of marginally relevant variables (Shimony, 1996;
de Campos et al., 2001). However, the modified methods involve the manual setting of some
tunable parameters, which can be rather arbitrary and are subject to human errors.

Several methods use the likelihood of evidence to measure the explanatory power of
an explanation (Gärdenfors, 1988). Chajewska and Halpern (1997) extend the approach
further to use the value pair of <likelihood, prior probability> to order the explanations,
forcing users to make decisions if there is no clear order between two explanations. Since
the likelihood measure allows comparing explanations that contain different numbers of
variables, it can potentially find more concise explanations. But in practice these methods
often fail to prune irrelevant variables, because adding such variables typically does not
affect the likelihood.

Henrion and Druzdzel (1991) assume that a system has a set of pre-defined explanation
scenarios organized as a tree; they use the scenario with the highest posterior probability as
the explanation. This method also allows comparing explanations with different numbers
of variables but requires the explanation scenarios to be specified in advance.

Flores et al. (2005) propose to automatically create an explanation tree by greedily
branching on the most informative variable at each step while maintaining the probability
of each branch of the tree above a certain threshold. It is pointed out that Flores et al.’s
approach adds variables in the order of how informative they are about the remaining target
variables, not how informative they are about the explanandum (Nielsen et al., 2008). The
results in this paper provide evidence for that drawback as well. Moreover, the criterion
that they use to choose the best explanation is the probability of the explanation given the
evidence, which makes the ranking of the explanations extremely sensitive to a user-specified
threshold for bounding the probabilities of the branches. Nielsen et al. developed another
method that uses the causal information flow (Ay & Polani, 2008) to select variables to
expand an explanation tree. However, it inherits the drawback that explanation tree-based
methods are in essence greedy search methods; even though they can identify important
individual variables, they may fail to recognize the compound effect of multiple variables.
Furthermore, the method also has tunable parameters that may be subject to human errors.
Finally, since each explanation in an explanation tree has to contain a full branch starting
from the root, such explanations may still contain redundant variables.
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Figure 1: (a) An electric circuit and (b) its corresponding diagnostic Bayesian network

3.2 Explanation in Two Benchmark Models

This section uses a couple of examples to illustrate how some of the methods reviewed in
the last section work in practice.

3.2.1 Circuit

We first consider the electric circuit in Figure 1(a) (Poole & Provan, 1991). Gates A,B,C,
and D are defective if they are closed. The prior probabilities that the gates are defective
are 0.016, 0.1, 0.15, and 0.1 respectively. We also assume that the connections between the
gates may fail with some small probabilities. The circuit can be modeled with the diagnostic
Bayesian network shown in Figure 1(b). Nodes A,B,C, and D correspond to the gates in
the circuit and have two states each: “defective” and “ok”. The others are input or output
nodes with two states each as well: “current” or “noCurr”. The probabilities that the
output nodes of A,B,C, and D are in the state “current” given their parent nodes are
parameterized as follows.

P (Output of B = current|B = defective, Input = current) = 0.99;

P (Output of A = current|A = defective, Input = current) = 0.999;

P (Output of C = current|C = defective,Output of B = current) = 0.985;

P (Output of D = current|D = defective,Output of B = current) = 0.995.

Otherwise if no parent is in the state “current”, the output nodes are in the state
“noCurr” with probability 1.0. Finally, the conditional probability table of “Total Output”
is a noisy-or gate (Pearl, 1988), which means each parent node that is in the state “current”
causes “Total Output” to be in the state “current” independently from the other parents.
If no parent node is in the state “current”, the probability that “Total Output” is in the
state “current” is 0.0. The individual effect of the parent nodes on “Total Output” is
parameterized as follows.

P (Total Output = current|Output of A = current) = 0.9;
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P (Total Output = current|Output of C = current) = 0.99;

P (Total Output = current|Output of D = current) = 0.995.

Suppose we observe that electric current flows through the circuit, which means that
nodes Input and Total Output are both in the state “current”. Nodes A,B,C, and D are
the logical choices of target variables in this model. The task is to find the best explanatory
hypothesis to explain the observation of electric current in the circuit. Domain knowledge
suggests that there are three basic scenarios that most likely lead to the observation: (1) A
is defective; (2) B and C are defective; and (3) B and D are defective.

Given the observation of electric current, the posterior probabilities of A,B,C, and D
being defective are 0.391, 0.649, 0.446, and 0.301 respectively. Therefore, the explanation
(¬B) is the best single-fault explanation, where ¬B means that B is defective. However,
B alone does not fully explain the evidence; C or D has to be involved. Actually, if we
do not restrict ourselves to the defective states, (D) is the best singleton explanation with
probability 0.699, but it is clearly not a useful explanation for the evidence.

MAP finds (A,¬B,¬C,D) as the best explanation. Given that B and C are defective, it
is arguable that A and D being okay is irrelevant in explaining the evidence. But MAP has
no intrinsic capability to indicate which part of its explanation is more important. Since
MPE assumes that all unobserved variables are the target variables, its explanation has
even more redundancy.

The pre-pruning techniques are unable to prune any target variable for this model be-
cause there is no context-specific independence between the target variables given the evi-
dence. The method of simplifying K-MPE solutions requires the intermediate output nodes
to be included as explanatory variables. Since it is typically only necessary to consider
the target variables, we adapt their method slightly to simplify the top K MAP solutions
instead, which we refer to as the K-MAP simplification method hereafter. The best expla-
nation found by this method is (¬B,¬D). It is a good explanation, although we will argue
later that (¬B,¬C) is a better explanation.

The methods based on the likelihood of evidence will overfit and choose (¬A,¬B,¬C,¬D)
as the best explanation, because the probability of the evidence given that all the target
variables are defective is almost 1.0.

Both explanation tree methods find (¬A) as the best explanation. (¬A) is a good
explanation, but again (¬B,¬C) is a better explanation as we argue later.

3.2.2 Vacation

Consider another example (Shimony, 1993). Mr. Smith is considering taking strenuous
hiking trips. His decision to go hiking or not depends on his health status. If he is healthy,
he will go hiking; otherwise, he would rather stay home. Mr. Smith is subject to different
risks of dying depending on his health status and on where he spends the vacation. The
relations between the variables are best represented using the Bayesian network in Figure 2.
The conditional probabilities of the model are parameterized as follows:

P (healthy) = 0.8;

P (home|¬healthy) = 0.8;

P (home|healthy) = 0.1;
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Figure 2: A Bayesian network for the vacation problem.

P (alive|healthy, V acation location = ∗) = 0.99;

P (alive|¬healthy, home) = 0.9;

P (alive|¬healthy, hiking) = 0.1,

where “*” means that the value does not matter. There are totally 100 similar hiking
trails for Mr. Smith to choose from. We can model the 100 hiking trips either as different
states of the variable “Vacation location”, or as one state named “hiking”. In case that the
hiking trails are modeled as different states, the conditional probability given the health
status is distributed evenly across these states. Shimony (1993) showed that the modeling
choice of one-state vs. multi-state significantly affects the best explanation of MAP. Given
that Mr. Smith is alive after his vacation, the best explanation on the target variable
set {Healthy, V acation location} changes from (healthy, hiking) for the one-state model
to (¬healthy, home) for the multi-state model. This is rather undesirable because the
explanation should not totally change simply because the model is refined.

We now examine how some other methods are affected by the modeling choice. The
explanation tree method finds (hiking) as the explanation for the one-state model and
(¬healthy, home) for the multi-state model. These explanations seem counterintuitive.
Both the causal explanation tree and K-MAP simplification methods find (healthy) as the
explanation for the two models.

What if Mr. Smith died afterwards? This is a more interesting explanation task because
the outcome is surprising given the low prior probability of dying in this problem. MAP’s ex-
planation changed from (¬healthy, hiking) for the one-state model to (¬healthy, home) for
the multi-state model. The explanation tree method finds (hiking) for the one-state model
and (home) for the multi-state model, again perplexing explanations. The causal explana-
tion tree method finds (¬healthy, hiking) for the one-state model and (¬healthy, any trip)
for the multi-state model; so does the K-MAP simplification method. The causal explana-
tion tree and K-MAP simplification methods are quite robust in the face of the refinement
of the model; their explanations also seem plausible. However, since the 100 hiking trips
are identical in the multi-state model, any hiking trip can be plugged into the explanation.
It means that there are 100 equally good explanations. It is debatable whether the specific
hiking trip is a necessary detail that needs to be included.
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The above results show that the existing explanation methods in Bayesian networks
often generate explanations that are either underspecified or overspecified. They fail to find
“just right” explanations that only contain the most relevant target variables.

4. Most Relevant Explanation in Bayesian Networks

Users want accurate explanations but do not want to be burdened with unnecessary details.
A Bayesian network for a real-world domain may contain many target variables, but typi-
cally only a few of the target variables are most relevant in explaining any given evidence.
The goal of this research is to develop an explanation method that is able to automatically
identify the most relevant target variables in forming its explanation.

We first state several basic assumptions behind this research. First, an explanation
typically depends on an agent’s epistemic state (Gärdenfors, 1988). We assume that the
knowledge encoded in a Bayesian network constitutes the complete epistemic state of the
explainer. Second, we assume that the explanandum is specified as the observed states
of a set of evidence variables in an explanation task. Third, we assume that the Bayesian
network is annotated such that a set of target variables is clearly defined. Under this setting,
we are able to focus on the most important issue of how to evaluate and select the best
explanation. We believe, however, the proposed methodologies can be easily generalized to
more general settings.

4.1 What is a Good Explanation?

We consider that a good explanation should have two basic properties: precise and concise.
Precise means that the explanation should decrease the surprise value of the explanandum
as much as possible. Many other concepts have been used to refer to the same property,
including confirmative (Carnap, 1948), sufficient (Khan, Poupart, & Black, 2009), and
relevant (Shimony, 1993). We also regard high explanatory power (Gärdenfors, 1988) as
referring to the preciseness of an explanation. Concise means that the explanation should
only contain the most relevant variables in explaining the evidence. It is similar to another
concept called minimal (Khan et al., 2009).

There are attempts to capture both preciseness and conciseness into a single concept,
including consistent (Pearl, 1988) and coherent (Ng & Mooney, 1990). Pearl (1988) argues
that an explanation needs to be internally consistent, and that just taking sets of facts
that are likely to be true given the evidence may not produce reasonable results. However,
putting consistent facts together does not necessarily lead to either preciseness or concise-
ness. For example, two perfectly correlated facts are consistent, but they are not necessarily
relevant in explaining the evidence, and adding both of them to an explanation likely leads
to redundancy. Ng and Mooney (1990) define a coherence metric that measures how well
an explanation ties the various observations together. Their definition also seems likely to
lead to simple explanations. However, their definition is based on Horn-clause axioms and
cannot be generalized to probabilistic systems easily.

In addition, an explanation method for Bayesian networks should be able to capture the
explaining-away phenomenon often represented in Bayesian networks. The explaining-away
phenomenon refers to the situation in which an effect has multiple causes, and observing
the effect and one of the causes reduces the likelihood of the presence of the other causes.

319

319



Yuan, Lim, & Lu

The explaining-away phenomenon can be represented using the collider structure (Pearl,
1988), i.e., the V structure of a single node with multiple parents. It is desirable to capture
this phenomenon in order to find explanations that are both precise and concise.

4.2 Definition of Explanation of Evidence

We note that the definition of an explanation as a full instantiation of the target variables
used in MAP or MPE is quite restrictive. It fundamentally limits the capability of these
methods to find concise explanations. In our approach we define explanation as follows.

Definition 1 Given a set of target variables M in a Bayesian network and partial evidence
e on the remaining variables, an explanation for the evidence is a joint instantiation x of
a non-empty subset X of the target variables, i.e., ∅ ⊂ X ⊆ M.

The definition allows an explanation to be any partial instantiation of the target vari-
ables. Therefore, it provides an explanation method the freedom to choose which target
variables to include.

One key difference between our definition and those of many existing methods is that
the existing definitions often have a built-in relevance measure to be optimized, while our
definition treats any partial instantiation of the target variables as an explanation. We
believe that deciding a relevance measure is a separate issue from defining explanation.
The separation of the two issues allows us to not only compare the quality of different
explanations but also generalize our method to find multiple top explanations.

Note that we disallow disjunctives in our definition. We agree with Halpern and
Pearl (2005) that allowing disjunctive explanations causes both technical and philosoph-
ical problems. For example in an explaining-away situation, an effect may have multiple
potential causes. Let the number of causes be n. Each of the causes can be a good ex-
planation itself. If we allow disjunctives of the causes, there are totally 2n disjunctives. It
is really difficult to consider all these disjunctives. Philosophically, if one of the causes is
present, any disjunctive that includes that cause as a part is true as well. It is unclear
which disjunctive we should choose as the explanation. Besides, a disjunctive of multiple
causes seems equivalent to claiming that each cause is a potential explanation. Separating
the causes into individual explanations allows comparing the explanations. It is unclear
what benefits it has to allow disjunctives.

4.3 Relevance Measures

We need a relevance measure to evaluate the quality of an explanation. The measure should
be able to not only evaluate the explanatory power of an explanation but also favor more
concise explanations so that only the most relevant variables are included in an explanation.
Since we are dealing with probabilistic expert systems, the measure should be based on
the probabilistic relations between the explanation and the explanandum (Chajewska &
Halpern, 1997). It is also desirable if the probabilistic relation can be summarized into a
single number (Suermondt, 1992). Next we discuss several popular relevance measures in
order to motivate our own choice.

One commonly used measure is the probability of an explanation given the evidence, as
used in MAP and MPE to find the most likely configuration of a set of target variables. By
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relying on the posterior probability, however, an explanation may contain independent or
marginally relevant events that have a high probability. Methods that use probability as the
relevance measure do not have the intrinsic capability to prune the less relevant facts. Some
may argue that those variables should not be selected as target variables for explanation in
the first place. But that requires the important task of selecting the most relevant variables
to rest on the shoulders of users. For an explanation method to be effective, it should
perform for the user the task of extracting the most essential knowledge and be as simple
as possible (Druzdzel, 1996). Moreover, we have shown earlier that the probability measure
is quite sensitive to the modeling choices; simply refining a model can dramatically change
the best explanation.

Another commonly used measure is the likelihood of the evidence and its variations. The
likelihood measure has an undesirable property called irrelevant conjunction (Chajewska &
Halpern, 1997; Rosenkrantz, 1994), that is, adding an irrelevant fact to a valid explanation
does not change its likelihood. This property limits the capability of any method based on
this measure to find concise explanations. Another common drawback of the probability
and likelihood measures is that they focus on measuring the preciseness of an explanation;
they have no intrinsic mechanism to achieve conciseness in an explanation. A measure that
can achieve both preciseness and conciseness at the same time is highly desirable.

According to Salmon (1984), in order to construct a satisfactory statistical explanation,
it is necessary to factor in both prior and posterior probabilities of either the explanandum
or the explanation. An explanation should result from the comparison between the prior and
posterior probabilities. This comparative view of explanation generates a set of possibilities.
One form of comparison is the difference between the prior and posterior probabilities.
However, it is inappropriate as a relevance measure according to Good (1985). Consider an
increase of probability from 1/2 to 3/4, and from 3/4 to 1. In both cases the difference in
the probabilities is 1/4, but the degree of relevance is entirely different.

Another possibility is the belief update ratio, which we define as follows.

Definition 2 Assuming P (x) �= 0, the belief update ratio of x given e, r(x; e), is defined
as

r(x; e) ≡
P (x|e)

P (x)
. (1)

A trivial mathematical derivation shows that the following is also true.

r(x; e) =
P (e|x)

P (e)
. (2)

Therefore, the belief update ratio is equivalent to the ratio of the posterior and prior
probabilities of the explanandum given the explanation. It is clear that both ratios are
proportional to the likelihood measure P (e|x) up to a constant. They therefore share the
same drawbacks as the likelihood measure.

Suermondt (1992) uses the cross entropy between the prior and posterior probability
distributions of a target variable to measure the influence of an evidence variable on the
target variable. Cross entropy assigns a large penalty for incorrect statements of certainty
or near-certainty. However, the measure was used to select the most influential evidence
variables, not to select specific states of the target variables as an explanation. Furthermore,
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it is pointed out that cross-entropy is not an ideal measure because it is not symmetric; it
is necessary to keep track of which distribution represents the origin for comparison at all
times.

In a 1935 paper (Jeffreys, 1935) and in the book Theory of Probability (Jeffreys, 1961), a
measure called Bayes factor was proposed for quantifying the evidence in favor of a scientific
theory. Bayes factor is the ratio between the likelihoods of a hypothesis and an alternative
hypothesis. If the alternative hypothesis is also a simple statistical hypothesis, the measure
is simply the likelihood ratio. In other cases when either hypothesis has unknown parameters,
the Bayes factor still has the form of a likelihood ratio, but the likelihoods are obtained
by integrating over the parameter space (Kass & Raftery, 1995). The logarithm of the
Bayes factor was defined as the weight of evidence independently by Good (1950) and
by Minsky and Selfridge (1961). Similar to cross-entropy, Bayes factor (or the weight of
evidence) also assigns large values to the probabilities close to certainty. The drawback of
Bayes factor, however, is that it is difficult to use this measure to compare more than two
hypotheses (Suermondt, 1992); it is necessary to do pairwise comparisons between multiple
hypotheses.

4.4 Generalized Bayes Factor

With a slight modification, we can generalize the Bayes factor to compare multiple hypothe-
ses. We define the generalized Bayes factor (GBF) in the following.

Definition 3 The generalized Bayes factor (GBF) of an explanation x for given evidence
e is defined as

GBF (x; e) ≡
P (e|x)

P (e|x)
, (3)

where x denotes the set of all alternative hypotheses of x.

There is only one hypothesis in x if X contains a single binary variable. Otherwise,
x catches all the alternative hypotheses of x. This catch-all form of Bayes factor was
previously introduced by Fitelson (2001). In the next few sections, we show that GBF has
several desirable theoretical properties that enable it to automatically identify the most
relevant variables in finding an explanation. These properties are not possessed by the
simple form of Bayes factor and prompt us to give GBF the new name to emphasize its
importance.

Note that we do not really need to compute P (e|x) directly in calculating GBF (x; e).
A trivial mathematical derivation shows that

GBF (x; e) =
P (x|e)(1 − P (x))

P (x)(1 − P (x|e))
. (4)

Therefore, GBF is no longer a measure for comparing different hypotheses, but simply a
measure that compares the posterior and prior probabilities of a single hypothesis. GBF is
hence able to overcome the drawback of Bayes factor in having to do pairwise comparisons
between multiple hypotheses.

Using x in the definition of GBF to catch all the alternative hypotheses enables GBF
to capture a property that we call symmetry in explanatory power. Consider two comple-
mentary simple hypotheses H and ¬H in the following two distinct cases. In the first case,
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P (H) increases from 0.7 to 0.8. The increase goes hand in hand with the decrease of P (¬H)
from 0.3 to 0.2. In the second case, P (H) increases from 0.2 to 0.3, which also goes hand in
hand with the decrease of P (¬H) from 0.8 to 0.7. The two cases are completely symmetric
to each other, which indicates that the two Hs should have the same amount of explanatory
power. GBF assigns the same score to H in both cases. But many other relevance measures
such as probability and the likelihood measure assign them totally different scores.

Besides Equation 4, GBF can be expressed in other forms, one of which is in the follow-
ing.

GBF (x; e) ≡
P (x|e)/P (x|e)

P (x)/P (x)
. (5)

Essentially, GBF is equal to the ratio between the posterior odds ratio of x given e and
the prior odds ratio of x (Good, 1985). Therefore, GBF measures the degree of change in
the odds ratio of an explanation.

GBF can also be calculated as the ratio between the belief update ratios of x and
alternative explanations x given e, i.e.,

GBF (x; e) =
P (x|e)/P (x)

P (x|e)/P (x)
. (6)

When there are multiple pieces of evidence, GBF can also be calculated using a chain
rule similar to that of a joint probability distribution of multiple variables. We first define
conditional Bayes factor as follows.

Definition 4 The conditional Bayes factor (CBF) of explanation y for given evidence e
conditioned on explanation x is defined as

GBF (y; e|x) ≡
P (e|y,x)

P (e|y,x)
. (7)

Then, it is easy to show that the following chain rule for calculating the GBF of an
explanation given a set of evidence is true.

GBF (x; e1, e2, ..., en) = GBF (x; e1)

n∏

i=2

GBF (x; ei|e1, e2, ..., ei−1). (8)

The chain rule is especially useful when the multiple pieces of evidence are obtained
incrementally.

4.4.1 Handling Extreme Values

GBF assigns much more weight to probabilities in ranges close to 0 and 1. Such weighting
is consistent with the decision-theoretic interpretation of a subjective probability of 0 and
1 (Suermondt, 1992). The belief that the probability of an event is equal to 1 means that
one is absolutely sure that the event will occur. One probably would bet anything, including
her own life, on the occurrence of the event. It is a rather strong statement. Therefore,
any increase in probability from less than one to one or decrease from non-zero to zero is
extremely significant, no matter how small the change is.
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Figure 3: The GBF as a function of the prior probability given a fixed increase in the
posterior probability from the prior. The different curves correspond to different
probability increases. For example, “+0.01” means the difference between the
posterior and prior probabilities is 0.01.

The following are several special cases for computing GBF in the face of extreme prob-
abilities.

If P (x) = 0.0, P (x|e) must be equal to zero as well, which yields a ratio between
two zeros. As is commonly done, we define the ratio of two zeros as zero. Intuitively, an
impossible explanation is never useful for explaining any evidence.

If P (x) = 1.0 and P (x|e) = 1.0, we again have a ratio between two zeros. Since
the explanation is true no matter what the evidence is, it is not useful for explaining the
evidence either. This case can actually be used as a counterexample for using probability as
a relevance measure, because the fact that an explanation has a high posterior probability
may simply be due to its high prior probability.

If P (x) < 1.0 and P (x|e) = 1.0, the GBF score is equal to infinity. The fact that an
explanation initially has uncertainty but becomes certainly true after observing the evidence
warrants the explanation to have a large GBF score.

4.4.2 Monotonicity of GBF

We study the monotonicity of GBF with regard to two other relevance measures. The
first measure is the difference between the posterior and prior probabilities. It is commonly
believed that the same amount of difference in probability in ranges close to zero or one is
much more significant than in other ranges. A prominent measure that is able to capture
the belief is the K-L divergence (Kullback & Leibler, 1951). A measure for explanatory
power should also capture this belief in ranking explanations. Figure 3 shows a plot of
GBF against the prior probability when the difference between the posterior and prior
probabilities is fixed. For example, “+0.01” means the difference between the posterior and
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Figure 4: The GBF as a function of the prior probability when the belief update ratio is
fixed. The different curves correspond to different belief update ratios.

prior probabilities is 0.01. The figure clearly shows that GBF assigns much higher scores
to probability changes close to zero and one.

We also study the monotonicity of GBF with regard to another measure, the belief
update ratio defined in Equation 1. Recall that the belief update ratio is proportional to
the likelihood measure up to a constant. The likelihood measure, typically together with a
penalty term for the complexity of a model, is a popular metric used in model selection. AIC
or BIC (Schwartz, 1979) are prominent examples. Next we show that GBF provides more
discriminant power than the belief update ratio (hence, also the likelihood measure and
the ratio between the posterior and prior probabilities of evidence). We have the following
theorem. All the proofs of the theorems and corollaries in this paper can be found in the
appendix.

Theorem 1 For an explanation x with a fixed belief update ratio r(x; e) greater than 1.0,
GBF (x; e) is monotonically increasing as the prior probability P (x) increases.

Figure 4 plots GBF as a function of the prior probability while fixing the belief update
ratio. The different curves correspond to different belief update ratios. GBF automatically
takes into account the relative magnitude of the probabilities in measuring the quality of an
explanation. As the prior probability of an explanation increases, the same ratio of proba-
bility increase becomes more and more significant. Therefore, explanations that cannot be
distinguished by the likelihood measure can be ranked using GBF. Since lower-dimensional
explanations typically have higher probabilities, GBF has the intrinsic capability to penal-
ize more complex explanations. The value pair of <likelihood, prior probability> used by
Chajewska and Halpern (1997) is only able to produce partial orderings among the expla-
nations. In some sense, GBF addresses its limitation by integrating the two values into a
single value to produce a complete ordering among the explanations. Users do not have the
burden to define a complete ordering anymore.

325

325



Yuan, Lim, & Lu

4.4.3 Achieving Conciseness in Explanation

This section discusses several theoretical properties of GBF. The key property of GBF is
that it is able to weigh the relative importance of multiple variables and only include the
most relevant variables in explaining the given evidence. We have the following theorem.

Theorem 2 Let the conditional Bayes factor (CBF) of explanation y given explanation x
be less than or equal to the inverse of the belief update ratio of the alternative explanations
x, i.e.,

GBF (y; e|x) ≤
1

r(x; e)
, (9)

then we have
GBF (x, y; e) ≤ GBF (x; e). (10)

The conditional independence relations in Bayesian networks only provide a hard mea-
sure on the relevance of an explanation y with regard to another explanation x; the answer
is either yes or no. In contrast, GBF (y; e|x) is able to provide a soft measure on the rel-
evance of y in explaining e given x. GBF also encodes a decision boundary, the inverse
belief update ratio of the alternative explanations x given e. The ratio is used to decide how
important the remaining variables should be in order to be included in an explanation. If
GBF (y; e|x) is greater than 1

r(x;e) , y is important enough to be included. Otherwise, y will
be excluded from the explanation. Simply being dependent is not enough for a variable to
be included in an explanation.

Theorem 2 has several intuitive and desirable corollaries. The first corollary states that,
for any explanation x with a belief update ratio greater than 1.0, adding an independent
variable to the explanation will decrease its GBF score.

Corollary 1 Let x be an explanation with r(x; e) > 1.0, and Y ⊥ X,E, then for any state
y of Y , we have

GBF (x, y; e) < GBF (x; e). (11)

Therefore, adding an irrelevant variable will dilute the explanatory power of an existing
explanation. GBF is able to automatically prune such variables from its explanation.

Note that we focus on explanations with a belief update ratio greater than 1.0. An
explanation whose probability does not change or even decreases given the evidence does
not seem to be able to relieve the “cognitive dissonance” between the explanandum and the
rest of our beliefs. According to Chajewska and Halpern (1997), the fact that a potential
explanation is equally or less likely a posteriori than a priori should cause some suspicion.
In the philosophical literature, it is also often required that the posterior probability of
the explanandum to be at least greater than its unconditional probability, so that learning
the explanation increases the probability of the explanandum (Gärdenfors, 1988; Carnap,
1948).

Corollary 1 requires that variable Y to be independent from both X and E. The
assumption is rather strong. The following corollary shows that the same result holds if Y
is conditionally independent from E given x.
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Corollary 2 Let x be an explanation with r(x; e) > 1.0, and Y ⊥ E|x, then for any state
y of Y , we have

GBF (x, y; e) < GBF (x; e). (12)

Corollary 2 is a more general result than Corollary 1 and captures the intuition that
conditionally independent variables add no additional information to an explanation in ex-
plaining the evidence. Note that these properties are all relative to an existing explanation.
It is possible that a variable is independent from the evidence given one explanation, but be-
comes dependent on the evidence given another explanation. Therefore, selecting variables
one by one greedily does not guarantee to find the explanation with the highest GBF.

The above results can be further relaxed to accommodate cases in which the posterior
probability of y given e is smaller than its prior conditioned on x, i.e.,

Corollary 3 Let x be an explanation with r(x; e) > 1.0, and y be a state of a variable Y
such that P (y|x, e) < P (y|x), then we have

GBF (x, y; e) < GBF (x; e). (13)

This is again an intuitive result; the state of a variable whose posterior probability decreases
given the evidence should not be part of an explanation for the evidence.

We applied GBF to rank the candidate explanations in the circuit example introduced
in Section 3. The following shows a partial ranking of the explanations with the highest
GBF scores.

GBF (¬B,¬C; e) > GBF (¬B,¬C,A; e), GBF (¬B,¬C,D; e) > GBF (¬B,¬C,A,D; e)

(¬B,¬C) not only has the highest GBF score but also is more concise than the other
explanations, which indicates that variables A and D are not very relevant in explaining
the evidence once (¬B,¬C) is observed. The results indicate that GBF has the intrinsic
capability to penalize higher-dimensional explanations and prune less relevant variables,
which match the theoretical properties well.

4.5 Most Relevant Explanation

The theoretical properties presented in the previous section show that GBF is a plausible
relevance measure for the explanatory power of an explanation. In particular, they show
that GBF is able to automatically identify the most relevant target variables in finding an
explanation. We hence propose a method called Most Relevant Explanation (MRE) which
relies on GBF in finding explanations for given evidence in Bayesian networks.

Definition 5 Let M be a set of target variables, and e be the partial evidence on the
remaining variables in a Bayesian network. Most Relevant Explanation is the problem
of finding an explanation x for e that has the maximum generalized Bayes factor score
GBF (x; e), i.e.,

MRE(M; e) ≡ arg maxx,∅⊂X⊆MGBF (x; e) . (14)
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Although MRE is general enough to be applied to any probabilistic distribution model,
MRE’s properties make it especially suitable for Bayesian networks. Bayesian networks were
invented to model the conditional independence relations between the random variables of
a domain so that we not only obtain a concise representation of the domain but also have
efficient algorithms for reasoning about the relations between the variables. The concise
representation of a Bayesian network is also beneficial to MRE in the following ways.

First, MRE can utilize the conditional independence relations modeled by a Bayesian
network to find explanations more efficiently. For example, Corollaries 1 and 2 can be used
to prune independent and conditionally independent target variables so that not all of the
partial instantiations of the target variables need to be considered during the search for
a solution. Such independence relations can be identified through the graphical structure
of a Bayesian network and may significantly improve the efficiency of the search for an
explanation.

Second, similar to the chain rule of Bayesian networks, the chain rule of GBF in Equa-
tion 7 can also be simplified using the conditional independence relations. When comput-
ing GBF (x; ei|e1, e2, ..., ei−1), we may only need to condition on a subset of the evidence in
(e1, e2, ..., ei−1). Conditioning on fewer evidence variables allows the reasoning algorithms to
involve a smaller part of a Bayesian network in computing the GBF score (Lin & Druzdzel,
1998). One extreme case is that, when all the evidence variables are independent given an
explanation, the GBF of the explanation given all the evidence is simply the product of the
individual GBFs given each individual piece of evidence.

GBF (x; e1, e2, ..., en) =

n∏

i=1

GBF (x; ei). (15)

Finally, MRE is able to capture well the unique explaining-away phenomenon that is
often represented in Bayesian networks. Wellman and Henrion (1993) characterized ex-
plaining away as the negative influence between two parents induced by an observation on
the child in a Bayesian network. Let A and B be predecessors of C in a graphical model
G. C is observed to be equal to c. Let x denote an assignment to C’s other predecessors,
and y denote an assignment to B’s predecessors. The negative influence between A and B
conditioned on C = c means

P (B|A, c, x, y) ≤ P (B|c, x, y) ≤ P (B|¬A, c, x, y). (16)

MRE captures the explaining-away phenomenon well with CBF. CBF provides a mea-
sure on how relevant some new variables are in explaining the evidence conditioned on an
existing explanation. In the explaining-away situation, if one of the causes is already present
in an explanation, the other causes typically do not receive high CBFs. In fact, CBF can
capture Equation 16 in an equivalent way as shown in the following theorem.

Theorem 3 Let A and B be predecessors of C in a Bayesian network. C is observed to
be equal to c. Let x denote an assignment to C’s other predecessors, and y denote an
assignment to B’s predecessors, then we have

P (B|A, c,x,y) ≤ P (B|c,x,y) ≤ P (B|¬A, c,x,y) (17)

⇔ GBF (B; c|A,x,y) ≤ GBF (B; c|x,y) ≤ GBF (B; c|¬A,x,y) . (18)
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Bayes factor Strength of evidence

<1 Negative
1 to 3 Barely worth mentioning
3 to 10 Substantial
10 to 30 Strong
30 to 100 Very strong

>100 Decisive

Table 1: Bayes factor.

Again consider the circuit example, (¬B,¬C) and (¬A) are both good explanations
for the evidence by themselves; the GBF scores of (¬B,¬C) and (¬A) given only e are
42.62 and 39.44 respectively. Jeffreys (1961) recommends using Table 1 as a guidance in
determining the significance of a Bayes factor value. If we use the same table to judge GBFs,
(¬B,¬C) and (¬A) are both very strong explanations. However, when (¬B,¬C) is already
observed, GBF (¬A; e|¬B,¬C) is only equal to 1.03, which is barely worth mentioning.
The results indicate that GBF is able to capture the explaining-away phenomenon for the
circuit example.

4.6 K-MRE

In many decision making problems, decision makers typically would like multiple competing
options to choose from. Outputting only the best solution is hence not the best practice.
This is especially true when there are multiple top solutions that are almost equally good.
In that case, we want to know not only which solution is the best, but also how much better
it is than the other solutions. If the difference between the first and second best solutions is
large, it gives decision makers more confidence in the quality of the best solution. Moreover,
finding multiple top solutions can be used as a sensitivity analysis method to provide insight
on how sensitive the best explanations are to the changes in the model parameters.

A naive approach to finding the top K MRE solutions is to select the explanations with
the highest GBF scores. However, this strategy may find explanations that are supersets
of other top explanations. Once again consider the circuit example. Table 2 lists the
explanations with the highest GBF scores. Simply relying on the scores will produce the
following rather similar top four explanations: (¬B,¬C), (A,¬B,¬C), (¬B,¬C,D), and
(A,¬B,¬C,D). All these explanations essentially cover the same basic scenario in which
both B and C are defective. We have to search further down the list before finding the
other two basic scenarios: A is defective, and B and D are both defective.

It is often critical to achieve diversity when the goal is to find multiple solutions. For
example, it is argued that diversity is important in recommender systems (Smyth & Mc-
Clave, 2001). A rather similar set of recommendations will not give users a useful set of
alternatives to choose from. We believe that the same holds in finding explanations. In
order to find a set of top explanations that are more diverse and representative, we define
two dominance relations among the candidate solutions of MRE. The first relation is strong
dominance.
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Explanations GBF

(¬B,¬C) 42.62
(A,¬B,¬C) 42.15
(¬B,¬C,D) 39.93
(A,¬B,¬C,D) 39.56
(¬A) 39.44
(¬A,B) 36.98
(¬A,C) 35.99
(¬B,¬D) 35.88

Table 2: The explanations with the highest GBF scores for the Circuit network. The ex-
planations in boldface are the top minimal explanations.

Definition 6 An explanation x strongly dominates another explanation y if and only if
x ⊂ y and GBF (x) ≥ GBF (y).

If x strongly dominates y, x is clearly a better explanation than y, because it not only
has a higher or equal explanatory score but also is more concise. We only need to include
x in the top explanation set. The second relation is weak dominance.

Definition 7 An explanation x weakly dominates another explanation y if and only if
x ⊃ y and GBF (x) > GBF (y).

In this case, x has a larger GBF score than y, but y is more concise. It is possible
that we can include them both and let the decision maker to decide whether she prefers
conciseness or a higher score. However, we believe that we only need to include x, because
its higher GBF score indicates that the extra variables in X but not in Y are important in
explaining the given evidence.

Based on the two kinds of dominance relations, we define the concept minimal.

Definition 8 An explanation is minimal if it is neither strongly nor weakly dominated by
any other explanation.

A new K-MRE approach can now be defined such that only the minimal explanations
are included in the top set. For the circuit network, since (A,¬B,¬C), (¬B,¬C,D), and
(A,¬B,¬C,D) are strongly dominated by (¬B,¬C), we only need to consider (¬B,¬C)
among them. Similarly, (¬A,B) and (¬A,C) are strongly dominated by (¬A), so only (¬A)
is included in the top set. Finally, we get the set of top explanations shown in boldface in
Table 2. It is clearly more diverse and representative than the original set that contains the
dominated explanations.

The dominance relations defined here are not restricted to GBF; they are also applicable
to other relevance measures. For example, they can potentially help the methods based on
the likelihood measure to find more concise explanations.
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5. Case Studies

We tested MRE on the explanation tasks of a set of benchmark Bayesian networks from the
literature, including Circuit (Poole & Provan, 1991), Vacation (Shimony, 1993), Academe
(Flores et al., 2005), Asia (Lauritzen & Spiegelhalter, 1988), and Circuit2 (Darwiche, 2009).
These networks were annotated such that the variables are classified into three categories:
target, observation, and auxiliary. A target node, also named fault, usually represents
a diagnostic interest (e.g., the health status of an engine). An observation node usually
represents a symptom (e.g., observing excessive smoking in the engine exhaust), built-in
error message (e.g., the status of a power supply), or a test (e.g., measuring the voltage of a
battery). A node which is neither target nor observation is classified as an auxiliary node.

We compared K-MRE against several existing explanation methods, including K-MAP
(Pearl, 1988), explanation tree (ET) (Flores et al., 2005), causal explanation tree (CET)
(Nielsen et al., 2008), and K-MAP simplification (K-SIMP) (de Campos et al., 2001). Sev-
eral of these methods have tunable parameters. The explanation tree (ET) method has two
parameters for controlling the growth of an explanation tree. One parameter is a threshold
value for deciding whether a target variable is significant enough to be used to expand a
branch of the explanation tree; the variable is used if the average mutual information be-
tween the target variable and the other unused target variables conditioned on the current
branch is larger than or equal to the threshold. The other parameter is a threshold value
on the probability of any branch of the explanation tree. A branch is not expanded further
if the probability of the branch is less than the threshold. We set these two parameters to
be 0.05 and 0 respectively. A branch in the explanation tree is marked with its posterior
probability.

The causal explanation tree (CET) method has only one parameter, a lower-bound
threshold on the causal information flow of a variable on the evidence conditioned on the
current branch. If the causal information flow is larger than or equal to the threshold,
the variable is used to expand the branch further. We set the threshold to be 0.01. Each
branch of a causal explanation tree is marked using the log ratio of the posterior and prior
probabilities of the evidence given the branch.

The K-MAP simplification (K-SIMP) method also has a threshold value which bounds
the reduction in the likelihood of evidence when simplifying an explanation. If deleting
a variable only reduces the likelihood of an explanation within a factor bounded by the
threshold, the simplification is allowed. We set the threshold value to be 0.05. We keep
track of the explanations with the highest likelihood values during the simplification.

All the parameters in these methods were set to allow as much expansion and simplifi-
cation as possible. But even so, the ET and CET methods may fail to find any significant
variable to create even the root of an explanation tree. When that happens, we force these
two methods to generate at least the root node by ignoring the thresholds.

5.1 Circuit

For the circuit network introduced in Section 3, Table 3 lists the top explanations found
by K-MRE, K-MAP, and K-SIMP. We set K to be 3 throughout the case studies. Figure 5
shows the explanation trees found by the ET and CET methods.
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Circuit Explanations Scores

K-MRE (¬B,¬C) 42.62
(¬A) 39.45
(¬B,¬D) 35.88

K-MAP (A,¬B,¬C,D) 0.0128
(¬A,B,C,D) 0.0099
(A,¬B,C,¬D) 0.0082

K-SIMP (¬B,¬D) 0.9818
(¬B,¬C) 0.9683
(¬A) 0.9014

Table 3: Top explanations found by K-MRE, K-MAP, and K-SIMP for the Circuit network
given the observation of electric current. Note the scores of the methods have
the following different meanings: GBF for MRE, probability for MAP, and the
likelihood of evidence for K-SIMP.

K-MRE was able to find intuitive explanations for the Circuit network. (¬B,¬C) is a
better explanation than both (¬A) and (¬B,¬D), because it has a larger posterior prob-
ability than the other two explanations (the posterior probabilities are 0.394, 0.391, and
0.266 respectively), while the prior probabilities of the explanations are 0.015, 0.016, and
0.01 respectively.

The explanations found by K-MAP are mostly consistent with what K-MRE found,
although the K-MAP solutions are all supersets of the K-MRE solutions. It is not surprising
because MAP has to find complete assignments to the target variables. MAP has no ability
to indicate which parts of the explanations are most important, which we believe is a
fundamental drawback of MAP. Users are now burdened by the task of identifying the most
important parts of the explanations.

The K-SIMP method first finds the top K MAP solutions and then simplifies them
by deleting variables that do not reduce the likelihood of evidence much, if any. The set
of top solutions found by K-SIMP is the same as that of K-MRE. The results indicate
that the simplification method helped to prune less relevant target variables for the Circuit
network. However, K-SIMP’s ranking of the explanations is different. (¬B,¬D) is its best
explanation. The number of variables of an explanation was also considered as a ranking
criterion for the explanations (de Campos et al., 2001), but then (¬A) becomes the best
explanation.

The ET method selects node A as the root of the explanation tree. A is important
because whether A is closed or not significantly affects the likelihood of the evidence. How-
ever, the ET method selects variable D as the second most important variable, which does
not lead to any good explanation. Moreover, there is no easy way to extract the top ex-
planations from the explanation tree. The ET method relies on probability in ranking the
explanations. It seems that we should not consider partial paths as the solutions. For
example, (A) has a higher probability than (¬A) but is clearly not a good explanation. If
we only consider the full paths from the root to the leaves, (¬A) is the best explanation.
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Figure 5: (a) Explanation tree and (b) causal explanation tree for the Circuit network
given the observation of electric current.

Although (A,D) has a probability that is only slightly smaller than (¬A), it is not a good
explanation at all. Moreover, using probability to rank the explanations inevitably makes
the threshold value for bounding the probabilities of the branches have a significant effect
on the ranking, which we believe is a fundamental flaw of the ET method.

The CET method also selects node A as the root of its explanation tree. However, it
selects C as the second most important variable, which does not lead to any good expla-
nation either. Since the branches of a causal explanation tree are marked by the log ratio
of the posterior and prior probabilities of the evidence, it makes sense to consider all the
partial branches as explanations. The top two explanations according to the CET method
are (¬A) and (A,¬C), but (A,¬C) is clearly not a good explanation.

Both explanation tree methods failed to find either (¬B,¬C) or (¬B,¬D) as a top
explanation. The main reason is that they are greedy search methods. They may be good
at identifying individual variables that are important, but they often fail to identify the
compound effect of multiple variables. Even though variable B itself may not have as large
an effect as A, it forms excellent explanations together with C or D. The explanation tree
methods both failed to find these variable pairs as they only consider one variable at a time.

5.2 Vacation

Two versions of the vacation network were introduced in Section 3. One version models all
the possible hiking trips as one state named “hiking”, while the other version models the
100 hiking trips as separate but identical states. For both networks, we first consider the
scenario in which Mr. Smith is alive after his vacation. Table 4 shows the top explanations
by K-MRE, K-MAP, and K-SIMP, and Figure 6 shows the explanation trees by the ET and
CET methods.
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Vacation One-state model Multi-state model
Explanations Scores Explanations Scores

K-MRE (healthy) 1.3378 (healthy) 1.3378
(home) 1.0078 (any trip) 1.0034

K-MAP (healthy, hiking) 0.6336 (¬healthy, home) 0.1440
(healthy, home) 0.1584 (healthy, home) 0.0792
(¬healthy, home) 0.1440 (healthy, any trip) 0.0071

K-SIMP (healthy) 0.9900 (healthy) 0.9900
(home) 0.9450 (home) 0.9300

Table 4: Top explanations found by K-MRE, K-MAP, and K-SIMP for the two Vacation
networks given that Mr. Smith is alive after his vacation.

K-MRE only found two top explanations for each model because the other explanations
all have GBFs less than or equal to 1.0. (healthy) is the best explanation for both models.
In fact, the explanation has the same score in both models. Vacation location is treated by
K-MRE as irrelevant because the probability of staying alive is the same regardless of where
Mr. Smith decides to spend the vacation. Although the second best explanation changed
from (home) to (any tip), we note that both explanations have GBF scores very close to 1.0
and are barely worth mentioning according to Table 1. Actually the best explanations also
have GBFs only slightly over 1.0 and are not interesting explanations either. The reason
is that Mr. Smith’s being alive after his vacation is not a surprising event; there is no real
need for explaining the observation.

K-MAP is extremely sensitive to the modeling choice. Not only did the best explana-
tion change from (healthy, hiking) to (¬healthy, home), but also the highest probability
decreased significantly from 0.6336 to 0.1440. (¬healthy, home) is ranked third in the one-
state model, but became the best explanation in the multi-state model.

Although the K-SIMP method started by simplifying the top three explanations by
K-MAP, it ended up with only two explanations for both models. It is because the sim-
plification method resulted in duplicate solutions. Otherwise, the simplification method is
quite robust in the face of the modeling choice; (healthy) is the best explanation in both
models.

The ET method produced similar trees for both models. However, it selects Vacation
location as the most important variable. This is counterintuitive because Vacation location
does not even affect the probability of Mr. Smith being alive when he is healthy. This result
indicates that the mutual information between the target variables is not a good indicator
of their relevance in explaining the evidence. Also, it is again unclear which explanations
we should extract from the tree. If we rely on probability in selecting full branches, we will
select (hiking) for the one-state model and (¬healthy, home) for the multi-state model.
Neither of them is a good explanation for Mr. Smith’s being alive after his vacation.

The causal explanation tree method is also robust in the face of the modeling choice.
It selects Healthy as the most important variable. It also finds (healthy) as the best
explanation in both models.
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Figure 6: Explanation trees (ET) and causal explanation trees (CET) for the Vacation
networks give that Mr. Smith is alive after his vacation.

Next we consider the scenario in which Mr. Smith died after his vacation. Table 5 and
Figure 7 show the explanations found by the various methods for this observation.

MRE finds (¬healthy, hiking) as the best explanation for the one-state model and
(¬healthy) for the multi-state model. It is a rather intuitive result. For the one-state
model, hiking is a likely event and significantly increases the chance of Mr. Smith’s death
if he is unhealthy. For the multi-state model, however, the hiking trails are modeled as
individual states, each of which has rather low prior and posterior probabilities. As a re-
sult, MRE considered the individual hiking trips as unimportant details and excluded them
from the best explanation. Some may argue that each individual hiking trip has the same
effect as the hiking state in the one-state model. However, that reasoning ignores the prior
probabilities of the explanations and essentially supports the use of the likelihood measure
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Vacation One-state model Multi-state model
Explanations Scores Explanations Scores

K-MRE (¬healthy, hiking) 36.00 (¬healthy) 26.0000
(home) 1.2310

K-MAP (¬healthy, hiking) 0.0360 (¬healthy, home) 0.0160
(¬healthy, home) 0.0160 (healthy, home) 0.0008
(healthy, hiking) 0.0064 (¬healthy, any trip) 0.0004

K-SIMP (¬healthy, hiking) 0.9000 (¬healthy, any trip) 0.9000
(¬healthy) 0.2600 (¬healthy) 0.2600
(hiking) 0.0624 (home) 0.0700

Table 5: Top explanations found by K-MRE, K-MAP, and K-SIMP for the two Vacation
networks given that Mr. Smith died after his vacation.

to select explanations. As we already discussed earlier, the likelihood measure has some
significant drawbacks.

K-MAP is again shown to be sensitive to the modeling choice. The best explanation
changed from (¬healthy, hiking) for the one-state model to (¬healthy, home) for the multi-
state model. (¬healthy, home) is not a good explanation because staying home reduces the
likelihood of Mr. Smith’s death after his vacation.

The K-SIMP method selects (¬healthy, hiking) for the one-state model and (¬healthy,
any trip) for the multi-state model. Therefore, there are 100 best explanations with exactly
the same score according to this method.

The ET method creates simple trees with only a root for both models. However, the
variable chosen by this method is again counterintuitive. Vacation location is not the most
important variable for explaining Mr. Smith’s death.

The CET method made a good choice in selecting Healthy as the most important vari-
able. Similar to K-SIMP, CET also included the detailed vacation locations as part of its
explanations, so it has 100 best explanations with the same score.

5.3 Academe

Figure 8 shows the Academe network introduced by Flores et al. (2005) to discuss the
explanation tree method. The prior probability distributions of the four target variables
Theory, Practice, Extra, and OtherFactors are parameterized as follows.

P (Theory) < good, average, bad > = < 0.4, 0.3, 0.3 >;

P (Practice) < good, average, bad > = < 0.6, 0.25, 0.15 >;

P (Extra) < yes, no > = < 0.3, 0.7 >;

P (OtherFactors) < plus,minus > = < 0.8, 0.2 >;

The conditional probabilities of MarkTP, GlobalMark, and FinalMark given their par-
ents are parameterized as follows.

P (MarkTP = pass|Theory = bad ∨ Practice = bad) = 0.0;
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Figure 7: Explanation trees (ET) and causal explanation trees (CET) for the Vacation
networks given that Mr. Smith died after his vacation.

P (MarkTP = pass|Theory = good, Practice = good) = 1.0;

P (MarkTP = pass|Theory = good, Practice = average) = 0.85;

P (MarkTP = pass|Theory = average, Practice = good) = 0.9;

P (MarkTP = pass|Theory = average, Practice = average) = 0.2;

P (GlobalMark = pass|MarkTP = pass,Extra = ∗) = 1.0;

P (GlobalMark = pass|MarkTP = fail, Extra = yes) = 0.25;

P (GlobalMark = pass|MarkTP = fail, Extra = no) = 0.0;

P (FinalMark = pass|GlobalMark = pass,OtherFactors = plus) = 1.0;

P (FinalMark = pass|GlobalMark = pass,OtherFactors = minus) = 0.7;

337

337



Yuan, Lim, & Lu

�����

������

���������

 ��������

����
���

!"
��

�
��� ��
�#

Figure 8: The Academe network.

Academe Explanations Scores

K-MRE (bad theory) 3.0205
(bad practice, no extra) 2.2986
(good theory, bad practice,minus otherFactors) 2.0209

K-MAP (bad theory, good practice, no extra, plus otherFactors) 0.0958
(bad theory, average practice, no extra, plus otherFactors) 0.0399
(average theory, bad practice, no extra, plus otherFactors) 0.0399

K-SIMP (bad theory, no extra) 0.9600
(average theory, bad practice) 0.7260

Table 6: Top explanations found by K-MRE, K-MAP, and K-SIMP for the Academe net-
work given that the FinalMark is fail.

P (FinalMark = pass|GlobalMark = fail, OtherFactors = plus) = 0.05;

P (FinalMark = pass|GlobalMark = fail, OtherFactors = minus) = 0.0.

We consider the problem of finding explanations for the observation that FinalMark is
fail using the target variable set {Theory, Practice,Extra,OtherFactors}. Table 6 and
Figure 9 show the explanations found by the various methods for this observation.

K-MRE selects (bad theory) as the best explanation for the failing final grade. There
are other good explanations that contain bad theory as a part, but (bad theory) dominates
all those explanations. (bad practice) itself is a good explanation, but the combination of
bad practice and no extra preparation turns out to be a better explanation.

The top three explanations found by K-MAP all have probabilities smaller than 0.1. In
general, it is highly domain-dependent as to which probabilities mean good explanations
and which mean bad explanations. In comparison, GBFs and the likelihood of evidence
are more consistent across different domains. Note that we are not claiming that the top
explanations ranked by probability are necessarily bad; we just believe that probability may
not be a good measure for the explanatory power of an explanation.

The K-SIMP method selects (bad theory, no extra) as the best explanation. This expla-
nation is a good explanation itself. However, it is not really the explanation with the highest
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Figure 9: (a) Explanation tree and (b) causal explanation tree for the Academe network
when the FinalMark is fail.

likelihood. For example, the likelihood of a failing grade given (bad theory, bad practice, no
extra,minus otherFactors) is equal to 1.0, but K-SIMP is limited to the top solutions
found by K-MAP. Also, the method again ended up with only two explanations, because
the top two MAP solutions are simplified to the same explanation.

The ET method incorrectly selects Practice as the most important variable; Theory has
a higher impact on the final mark according to this model. Again, it is because the ET
method measures the importance of a target variable using its mutual information with
other target variables, not with the evidence variable. Recall that it made bad choices for
the Academe and Vacation networks as well.

The CET method made a more sensible choice by selecting Theory as the most important
variable. There are three equally good explanations according to this method: (bad theory),
(average theory, bad practice), and (good theory, bad practice). The reason that this
method cannot distinguish these explanations is that it marks the branches using the log
ratio between the posterior and prior probabilities of the evidence, which is proportional to
the likelihood measure.

5.4 Asia

The Asia network is first introduced by Lauritzen and Spiegelhalter (1988) and was used
by Nielsen et al. (2008) to discuss the CET method. The probabilities of this network are
parameterized as follows.

P (V isitToAsia = yes) = 0.01;

P (Smoking = yes) = 0.5;

P (Tuberculosis = yes|V isitToAsia = yes) = 0.05;
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Figure 10: The Asia network.

P (Tuberculosis = yes|V isitToAsia = no) = 0.01;

P (LungCancer = yes|Smoking = yes) = 0.1;

P (LungCancer = yes|Smoking = no) = 0.01;

P (Bronchitis = yes|Smoking = yes) = 0.6;

P (Bronchitis = yes|Smoking = no) = 0.3;

P (TborCa = yes|Tuberculois = yes ∨ LungCancer = yes) = 1.0;

P (TborCa = yes|Tuberculois = no,LungCancer = no) = 0.0;

P (Dyspnea = yes|TborCa = yes,Bronchitis = yes) = 0.9;

P (Dyspnea = yes|TborCa = yes,Bronchitis = no) = 0.7;

P (Dyspnea = yes|TborCa = no,Bronchitis = yes) = 0.8;

P (Dyspnea = yes|TborCa = no,Bronchitis = no) = 0.1;

P (X ray = abnormal|TborCa = yes) = 0.98;

P (X ray = abnormal|TborCa = no) = 0.05;

We consider two different observations in the Asia network: Dyspnea is present, or X-ray
is abnormal. Table 7 and Figure 11 show the explanations found by the various methods for
these two observations using the target variable set {Bronchitis, LungCancer, Tuberculosis}.
It is interesting that K-MRE obtained quite intuitive and concise top explanations for both
observations: (Bronchitis), (LungCancer), or (Tuberculosis). Here we use a disease name
such as Bronchitis to denote the presence of the disease and a negation such as ¬Bronchitis
to denote the absence of the disease. The ranking of the explanations, however, is differ-
ent. For the first observation, (Bronchitis) is a better explanation for Dyspnea than both
(Tuberculosis) and (LungCancer) because the conditional probabilities show that the pres-
ence of Bronchitis has a larger effect on Dyspnea. For the second observation, Tuberculosis
and LungCancer are the ancestors of X-ray, while Bronchitis has no direct effect on X-ray
and only receives a small GBF. The reason that (Bronchitis)’s GBF is still greater than 1.0
is that Bronchitis increases the likelihood of Smoking, which in turn increases the likelihood
of abnormal X-ray.

K-MAP identified Bronchitis as part of the best explanation for the first observation,
but it included both Bronchitis and LungCancer as part of the best explanation for the
second observation, even though Bronchitis is not a direct contributor to the abnormal
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Asia Explanations Scores

Dyspnea present

K-MRE (Bronchitis) 6.1391
(LungCancer) 1.9678
(Tuberculosis) 1.8276

K-MAP (¬LungCancer,¬Tuberculosis,Bronchitis) 0.3313
(¬LungCancer,¬Tuberculosis,¬Bronchitis) 0.0521
(LungCancer,¬Tuberculosis,Bronchitis) 0.0521

K-SIMP (¬LungCancer,¬Bronchitis) 0.9000
(Bronchitis) 0.8080
(¬Tuberculosis) 0.4323

Abnormal X-ray

K-MRE (LungCancer) 16.4231
(Tuberculosis) 9.6886
(Bronchitis) 1.2535

K-MAP (LungCancer,¬Tuberculosis,Bronchitis) 0.0305
(¬LungCancer,¬Tuberculosis,Bronchitis) 0.0261
(LungCancer,¬Tuberculosis,¬Bronchitis) 0.0228

K-SIMP (¬LungCancer) 0.9800
(¬Tuberculosis) 0.1012

Table 7: Top explanations found by K-MRE, K-MAP, and K-SIMP for the Asia network
given two different observations.

X-ray. The second best explanation for the first observation claims none of the diseases is
present, which is clearly not a good explanation.

The K-SIMP method found quite perplexing explanations for the observations. The best
explanation is (¬LungCancer,¬Bronchitis) for the first observation and (¬LungCancer)
for the second observation. The reason that K-SIMP did not find good explanations for
this network is that K-SIMP is restricted to the solutions found by K-MAP. The method
was still able to find (Bronchitis) as the second best explanation for the first observation,
but it missed altogether for the second observation.

The ET method was able to find the most important variables in explaining both ob-
servations, but it fell short in recognizing the importance of Tuberculosis in explaining the
second observation. It only expanded LungCancer in explaining the first observation.

The CET method was able to find intuitive explanations. The best explanations are
(Bronchitis) for Dyspnea and (LungCancer) for abnormal X-ray. However, one drawback
of its explanation tree is that the tree structure requires each explanation to start from the
root. For example, one of the explanations for explaining Dyspnea is (¬Bronchitis,¬Lung-
Cancer, Tuberculosis). It is arguable that (Tuberculosis) itself is a good explanation for
explaining Dyspnea; it is not really necessary to include ¬Bronchitis and ¬LungCancer
as part of the explanation. We believe that this is another common drawback of the two
explanation tree methods caused because of the tree representation that they use.

341

341



Yuan, Lim, & Lu

Bronchitis

0.834

yes

LungCancer

no
0.166

0.038

yes

0.128

no

Bronchitis

0.887

yes

LungCancer

no
-1.650

0.683

yes

Tuberculosis

no
-2.037

0.683

yes

-2.124

no

(a) ET for Dyspnea (b) CET for Dyspnea

LungCancer

0.489

yes

0.511

no

LungCancer

3.151

yes

Tuberculosis

no
-0.886

3.151

yes

-1.141

no

(c) ET for abnormal X-ray (d) CET for abnormal X-ray

Figure 11: Explanation trees (ET) and causal explanation trees (CET) found for the Asia
network given two different observations.

5.5 Circuit2

Model-based diagnosis is an application of abductive inference in Horn-clause logic theo-
ries (Peirce, 1948; de Kleer & Williams, 1987), which tries to find a minimal set of assump-
tions that, together with background knowledge, logically entail the observations that need
explanation. However, methods for model-based diagnosis are developed based on logic
theories. Entailment is either true or false for logic systems. These methods cannot be
easily generalized to probabilistic expert systems such as Bayesian networks. In contrast,
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Figure 12: (a) A digital circuit from Darwiche (2009) and (b) its corresponding Bayesian
network.

Circuit in Figure 12 Explanations Scores

K-MRE (¬OK3) 4.0000
(¬OK1,¬OK2) 2.0000

K-MAP (¬OK1,¬OK2,¬OK3) 0.1250
(¬OK1, OK2,¬OK3) 0.1250
(OK1,¬OK2,¬OK3) 0.1250

K-SIMP (¬OK3) 1.0000
(¬OK1,¬OK2) 1.0000

Table 8: Top explanations found by K-MRE, K-MAP, and K-SIMP for the Circuit2 network
given that the output is observed to be low.

MRE can be easily applied to model-based diagnostic systems in which the faulty behaviors
of the components are also specified.

We consider the digital circuit in Figure 12(a) used by Darwiche (2009) to discuss
methods for model-based diagnosis. Gates 1 and 2 are inverters, and gate 3 is an OR
gate. The prior probability that each of the gates is abnormal is 0.5. When an inverter
is abnormal, it outputs low when the input is low, and outputs high with probability 0.5
when the input is high. When an OR gate is abnormal, it always outputs low. This digital
circuit can be modeled as the Bayesian network in Figure 12(b). We consider the case when
output E is observed to be low. The two kernel model-based diagnoses are (¬OK1,¬OK2)
and (¬OK3). Table 8 and Figure 13 show the explanations found by the various methods
for the observation using the target variable set {OK1, OK2, OK3}.

K-MRE was able to find the two kernel diagnoses as its top two explanations, with
(¬OK3) receives a higher GBF than (¬OK1,¬OK2). The higher GBF score is due to
(¬OK3)’s higher prior and posterior probabilities than (¬OK1,¬OK2). In comparison,
methods for model-based diagnosis typically treat the two explanations as equally good.
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Figure 13: (a) Explanation tree and (b) causal explanation tree for the Circuit2 network
given that the output is observed to be low.

K-MAP was not able to single out the two kernel diagnoses. In fact, many MAP solutions
have the same posterior probability, including the explanation in which all the gates are
defective.

The K-SIMP method found the same two explanations as K-MRE. Therefore, the simpli-
fication method helped in simplifying the explanations in this network. However, K-SIMP
was not able to rank the two explanations either.

The two explanation tree methods completely misfired on this network. It is unclear
how to make sense of the explanation tree by the ET method in Figure 13(a). The causal
explanation tree in Figure 13(b) only expanded variable OK 2 and failed to find any of
the kernel diagnoses. Again, it is because the explanation tree methods are greedy search
methods and cannot recognize the compound effect of multiple variables.

5.6 Summary of the Case Studies

The case studies show that K-MRE was able to identify the most relevant target variables
and find more concise and intuitive explanations than the other methods. GBF seems to be
a plausible measure of explanatory power that can achieve both preciseness and conciseness
in explanations at the same time. Another advantage of GBF is that we can use Table 1 as
a general guidance for determining the significance of the explanations found by K-MRE.
In contrast, probability seems not to be a good measure of explanatory power. Methods
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based on probability, such as K-MAP, are quite sensitive to modeling choices; they also
lack the capability to indicate the most important parts of their explanations. The K-MAP
simplification method was shown often to be able to simplify the solutions of K-MAP to
get more concise explanations. But its fundamental drawback is that it is restricted to
the solutions found by K-MAP and may not be able to find the best explanations. Also,
it may reduce multiple top MAP solutions to the same explanation. The ET method
uses the mutual information between the target variables as the criterion to select target
variables to explain the evidence. The criterion was shown not to be very effective. Also,
using probability to rank the explanations makes the ET method very sensitive to the
user-specified threshold value for bounding the probabilities of the branches. The CET
method is good at identifying individual target variables that are important, but it often
fails to recognize the significant compound effect of multiple variables. It is because the
CET method, as well as the ET method, is based on a greedy search that only considers
one variable at a time. Another common drawback of the explanation tree methods is that
the tree representation fundamentally limits the capability of these methods to find concise
explanations.

6. Concluding Remarks

In this paper, we introduced the Most Relevant Explanation (MRE) method for finding
explanations for given evidence in Bayesian networks. Our study shows that MRE has
several desirable theoretical properties that enable MRE to automatically identify the most
relevant target variables to find an explanation for the evidence. MRE is also able to
capture the unique explaining-away phenomenon often represented in Bayesian networks.
We defined two dominance relations among the MRE solutions and used them to develop a
K-MRE method to find a set of top MRE solutions that is both diverse and representative.
The results of the case studies on a set of benchmark Bayesian networks agree quite well
with our theoretical understandings of MRE. Another contribution of this research is that
it also made clear the properties and drawbacks of several existing relevance measures and
explanation methods.
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Appendix A. Proofs

The following are the proofs of the theorems and corollaries.
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A.1 Proof of Theorem 1

Proof: The likelihood measure can be expressed as

P (e|x) =
P (x|e)P (e)

P (x)
= r(x; e)P (e).

Therefore, a fixed likelihood P (e|x) indicates that the belief update ratio r(x; e) remains
constant while the prior and posterior probabilities may vary. Furthermore, GBF can be
expressed as follows.

GBF (x; e) = 1 +
r(x; e) − 1

1 − r(x; e)P (x)
.

Therefore, GBF is monotonically non-decreasing for a fixed belief update ratio r(x; e)
greater than or equal to 1.0 as the prior and posterior probabilities increase.

�

A.2 Proof of Theorem 2

Proof:

GBF (x,y; e) =
P (x,y|e)(1 − P (x,y))

P (x,y)(1 − P (x,y|e))

=
P (x|e)P (y|x, e)(1 − P (y|x)P (x))

P (x)P (y|x)(1 − P (y|x, e)P (x|e))

=
P (x|e)

P (x)

1 − P (x) + 1
P (y|x) − 1

1 − P (x|e) + 1
P (y|x,e) − 1

The above equation is less than or equal to GBF (x; e) when

1
P (y|x) − 1

1
P (y|x,e) − 1

≤
1 − P (x)

1 − P (x|e)

⇔
P (y|x, e)(1 − P (y|x))

P (y|x)(1 − P (y|x, e))
≤

P (x)

P (x|e)

⇔ CBF (y; e|x) ≤
1

r(x; e)
.

�

A.3 Proof of Corollary 1

Proof: The corollary follows from Theorem 2. Here we present another way to prove it.

GBF (x, y; e) =
P (x, y|e)(1 − P (x, y))

P (x, y)(1 − P (x, y|e))

=
P (x|e)P (y)(1 − P (y)P (x))

P (x)P (y)(1 − P (y)P (x|e))

=
P (x|e)(1 − P (y)P (x))

P (x)(1 − P (y)P (x|e))
.
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Because P (x|e) > P (x), we have

GBF (x, y; e) =
P (x|e)(1 − P (y)P (x))

P (x)(1 − P (y)P (x|e))

=
P (x|e)(1 − P (x) + (1 − P (y))P (x))

P (x)(1 − P (x|e) + (1 − P (y))P (x|e))

<
P (x|e)(1 − P (x) + (1 − P (y))P (x))

P (x)(1 − P (x|e) + (1 − P (y))P (x))

≤
P (x|e)(1 − P (x))

P (x)(1 − P (x|e))

= GBF (x; e) .

�

A.4 Proof of Corollary 2

Proof: This corollary can be proved in a similar way as in Corollary 1.

GBF (x, y; e) =
P (x, y|e)(1 − P (x, y))

P (x, y)(1 − P (x, y|e))

=
P (x|e)P (y|x, e)(1 − P (y|x)P (x))

P (x)P (y|x)(1 − P (y|x, e)P (x|e))

=
P (x|e)P (y|x)(1 − P (y|x)P (x))

P (x)P (y|x)(1 − P (y|x)P (x|e))

=
P (x|e)(1 − P (y|x)P (x))

P (x)(1 − P (y|x)P (x|e))
.

Because P (x|e) > P (x), we have

GBF (x, y; e) =
P (x|e)(1 − P (y|x)P (x))

P (x)(1 − P (y|x)P (x|e))

=
P (x|e)(1 − P (x) + (1 − p(y|x))P (x))

P (x)(1 − P (x|e) + (1 − p(y|x))P (x|e))

<
P (x|e)(1 − P (x) + (1 − p(y|x))P (x))

P (x)(1 − P (x|e) + (1 − p(y|x))P (x))

≤
P (x|e)(1 − P (x))

P (x)(1 − P (x|e))

= GBF (x; e) .

�

A.5 Proof of Corollary 3

Proof:

GBF (x, y; e) =
P (x, y|e)(1 − P (x, y))

P (x, y)(1 − P (x, y|e))
=

P (x|e)P (y|x, e)(1 − P (y|x)P (x))

P (x)P (y|x)(1 − P (y|x, e)P (x|e))
.
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Because P (y|x, e) ≤ P (y|x),

GBF (x, y; e) ≤
P (x|e)P (y|x)(1 − P (y|x)P (x))

P (x)P (y|x)(1 − P (y|x)P (x|e))
=

P (x|e)(1 − P (y|x)P (x))

P (x)(1 − P (y|x)P (x|e))
.

Because P (x|e) > P (x), we have

GBF (x, y; e) =
P (x|e)(1 − P (y|x)P (x))

P (x)(1 − P (y|x)P (x|e))

=
P (x|e)(1 − P (x) + (1 − p(y|x))P (x))

P (x)(1 − P (x|e) + (1 − p(y|x))P (x|e))

<
P (x|e)(1 − P (x) + (1 − p(y|x))P (x))

P (x)(1 − P (x|e) + (1 − p(y|x))P (x))

≤
P (x|e)(1 − P (x))

P (x)(1 − P (x|e))

= GBF (x; e) .

�

A.6 Proof of Theorem 3

Proof: When C is not observed, we have the following equality.

P (B|A,x,y) = P (B|x,y) = P (B|¬A,x,y) = P (B|y). (19)

Therefore, we have

P (B|A, c,x,y) ≤ P (B|c,x,y) ≤ P (B|¬A, c,x,y)

⇔ 1 − P (B|¬A, c,x,y) ≤ 1 − P (B|c,x,y) ≤ 1 − P (B|A, c,x,y)

⇔ P (B|A,c,x,y)
1−P (B|A,c,x,y) ≤

P (B|c,x,y)
1−P (B|c,x,y) ≤

P (B|¬A,c,x,y)
1−P (B|¬A,c,x,y)

⇔ P (B|A,c,x,y)
1−P (B|A,c,x,y)

1−P (B|A,x,y)
P (B|A,x,y) ≤ P (B|c,x,y)

1−P (B|c,x,y)
1−P (B|x,y)

P (B|x,y) ≤ P (B|¬A,c,x,y)
1−P (B|¬A,c,x,y)

1−P (B|¬A,x,y)
P (B|¬A,x,y)

⇔ GBF (B; c|A,x,y) ≤ GBF (B; c|x,y) ≤ GBF (B; c|¬A,x,y) .

�
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