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Abstract

We argue that identification problems bedevil most applied spatial research. Spatial
econometrics solves these problems by deriving estimators assuming that functional forms
are known and by using model comparison techniques to let the data choose between
competing specifications. We argue that in most situations of interest this, at best, achieves
only very weak identification. Worse, in most cases, such an approach will simply be
uninformative about the economic processes at work rendering much applied spatial
econometric research “pointless’, unless the main aim is simply description of the data. We
advocate an alternative approach based on the ‘experimental paradigm’ which puts issues of
identification and causality at centre stage.
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1. INTRODUCTION

The last two decades have seen economists become increasingly interested in geographical issues.
This has been variously attributed to theoretical developments (the New Economic Geography), a
growing interest in cities (the expansion of urban economics) or simply the greater availability of
geo-referenced data. Regardless of the reason, the upshot has been greater interaction between
economic geographers, regional scientists and economists in an attempt to understand spatial
aspects of the economy. More recently, a similar process has seen mainstream econometric
theorists becoming increasingly interested in spatial processes, traditionally the preserve of a
specialised group of spatial econometricians. One might think that the next step would be
convergence between the tools developed by spatial econometricians and the methods used by
applied researchers to assess the extent to which models of spatial economics fit real world data.
We argue that this is unlikely to happen because, while there may have been convergence between
mainstream and spatial econometric theory, most applied research is taking a different path.

Most modern applied economic investigation is concerned with answering questions about causal
relationships. If we increase an individual’s years of education, what happens to their wages? If we
decrease class sizes, what happens to student grades? These questions are fundamentally of the
type “if we change x, what do we expect to happen to y”. Just as with economics more generally,
answering such questions is fundamental to increasing our understanding of spatial economics.
When more skilled people live in an area, what do we expect to happen to individual wages? If a
jurisdiction increases taxes, what do we expect to happen to taxes in neighbouring jurisdictions?

In an experimental setting, agents (individuals, firms, governments) would be randomly assigned
different amounts of x and the outcomes y observed. Considering whether different levels of x are
associated with different outcomes would then give us the causal effect of x on y. The fundamental
challenge to answering these types of questions for (most) real world data is that we do not
randomly assign x and observe outcomes y. Instead, we jointly observe x and y so we lack the
counterfactual as to what would have happened if we were to change x. Fortunately, applied
economics has come a long way in its effort to find credible and creative ways to answer such
guestions by constructing counterfactuals from observational data.

A good starting point for thinking about whether a particular question about causality can be
answered and how to answer it, is to consider what an ideal experiment might look like. The
experiment may not be feasible, but with the design in mind it is easier to think of ways to find
sources of variation in the data that mimic or approximate the conditions of the ideal experiment.
The ‘experimental paradigm’ (Angrist and Pishke, 2009) does this by using simple linear estimation
methods, taking care to pinpoint and isolate sources of variation in x that can plausibly be
considered exogenous to y. The aim of these methods is to mimic as far as possible the conditions of
an experiment in which agents are randomly assigned different amounts of x and outcomes y
observed. The central idea is to find otherwise comparable agents (e.g. twins) who for some reason
have been exposed to different amounts of x. Whilst drawing on economic theory, a fundamental
attraction of this strategy is that the assumptions required for identification of causal effects are
usually clearly specified and understandable without reference to specific (and untested) economic
theories. Put another way, the aim is to obtain plausible estimates of causal effects without relying



on a specific and restrictive set of functional form assumptions. This approach is particularly
attractive in areas, like much of spatial economics, where we are far from having a structural model
that closely captures the complexities that drive the processes for which we observe data.*
Unfortunately, most applied research using spatial econometrics continues to ignore these insights
into framing research questions and arriving at credible research designs.

Why is this the case? An important part of the answer, we suspect, is because the underlying spatial
econometric theory has developed from time-series foundations, in such a way that questions about
causality have never been centre stage. The standard approach to spatial econometrics has been to
write down one of a number of spatial model specifications (e.g. the spatial autoregressive model),
to assume that the equation accurately describes the data generating processes, and then to
estimate the parameters by non-linear methods such as (quasi) maximum likelihood (ML). Because
estimation is not always simple, much effort has gone in to developing techniques that allow
estimation of parameters from a range of models for large data sets. Questions of identification (i.e.
does x cause y) have been addressed by asking which of these assumed spatial processes best fit the
data. While in principle this sounds straightforward, as we discuss further below problems of
identification mean it is hard to distinguish between specifications that have very different
implications for which causal relationships are at work.

In our opinion, the standard spatial econometric toolbox does not offer a solution to the problem of
the identification of causal effects in a spatial setting but too many applied researchers proceed as if
it does. Of course, much standard (i.e. non-spatial) analysis falls someway short of these lofty ideals.
Finding sources of truly exogenous variation in x is difficult and often we have to settle for examining
the effect of variation that is ‘approximately’ exogenous. Sometimes, it is difficult to get that far and
we are left with correlations which may still, we hope, provide some insight in to the problem at
hand. Despite these caveats however, for much applied research, identification of causal effects in
line with the experimental paradigm would remain the gold standard to which most researchers
claim to aspire. We will argue that this should also be the case in applied spatial research.

The rest of this paper is structured as follows. Section 2 provides a basic overview of standard spatial
econometric models, while section 3 discusses problems of identification. Section 4 returns to the
relationship between the spatial econometrics and experimental paradigms. Section 5 concludes.

2. SPATIAL ECONOMETRIC MODELS AND THEIR MOTIVATION

This section provides an introduction to spatial econometric models. It is not intended to be
comprehensive. Rather, we provide enough background so that someone who is unfamiliar with
spatial econometrics will be able to follow the arguments made later. We generally use the model
terminology of LeSage and Pace (2009) and the reader is referred there for more details.

* The assumption of linearity and the reliance on simple linear methods may appear like quite a strong
functional form assumption. However, as Angrist and Pishke 2009 (p.69) argue the assumption of a linear
structural relationship - the Conditional Expectation Function (CEF) - is “not really necessary for a causal
interpretation of regression”. If the CEF is causal then, because the linear regression provides the best linear
approximation to the CEF, the regression coefficients are informative about causality.



To develop ideas, start with a basic linear regression:
Y, =x;B+uy; (1)

where i indexes units of observation, Y, is the outcome of interest, X; is a vector of explanatory

variables, U, is an error term and B is a vector of parameters. > In the most basic specification it is

common to assume that outcomes for different units of observation are independent of each other.
This is a strong assumption and there may be many reasons why outcomes are not independent,
particularly when observations are for geographically referenced events, agents or places. In a
spatial setting, this model is not very interesting. There are many contexts in which estimating and
interpreting the parameters that characterise this dependence is of academic and policy interest.
This might be, for example, because the dependence arises from causal spatial linkages that can be
exploited for policy advantage, or because knowing these parameters increases understanding of
the causes of spatial disparities.

Unfortunately, allowing for arbitrary correlations between observations is impractical because with

n observations there aren® —n possible relationships. However, if the data are spatial, i.e. they can
be mapped to locations, we may use information on relative positions (and possibly direction) to
restrict the nature of the connection between observations. For example, we might assume that
outcomes at a given location depend on outcomes in other locations that are ‘nearby’ but not those
further away. A simple way to capture these assumptions about the spatial dependence between

observations is to write down a vector w; where thejth element of w;, takes a value that is bigger,
the more closely connected j is with i (e.g. 1/ distance;; ). If we have n observations, then multiplying
W; by the nx1 vector of outcomes y gives us a value W;y that spatial econometricians refer to as a
spatial lag. For each observation, W;y is a linear combination of all y; with which the i"
observation is connected. If, as is usually the case, we normalise W; so that the elements sumto 1,

then W'iy is a weighted average of the 'neighbours' of i.

What now if we want to understand whether changes in the outcome Y; are caused by changes in

the places to which i is connected? A simple solution, proposed by Ord (1975) is to assume that the

dependence between Y, and its spatial lag is linear and common across observations. This gives the

spatial autoregressive model (SAR):
Y =pw;y+x;|3+ui (SAR)

LeSage and Pace (2009) suggest a “time dependence motivation” for the SAR model. Imagine that

fixed across time exogenous variables X; determine outcome Y; . Now assume that when

determining their own outcome, agents take in to account not only their own characteristics, but

® For ease of exposition we subsume the constant in X;f} .



also recent outcomes for other agents located close to them. We might think of Y; as the price of a

house, Xx; as the (fixed) characteristics such as number of rooms and assume that when agreeing a

sale price, people consider not only the characteristics of the house, but also the current selling price
of nearby houses. In this case B captures the causal effect of house characteristics and p represents
the causal effect of neighbouring prices (conditional on observed housing characteristics).

We could drop the assumption of dependence between Y; and the spatial lag of y; and instead
assume that Y, depends on spatial lags of the explanatory variables. If X denotes the matrix of

explanatory variables and y a vector of parameters, we have the spatial (lag of) X model (SLX):
Y, =X, p+w,Xy+u, (SLX)

LeSage and Pace (2009) provide an ‘externality motivation’ for this model. In this case, we assume

that the exogenous characteristics of nearby observations directly affect outcome y; . Continuing

with the housing example, we assume the characteristics of nearby houses, e.g. their size and state
of repair, directly determine prices (rather than working through observed sales prices). Of course,
an externality motivation could also be used to justify the SAR model if the externality works

through the spatial lag of Y;

Next, drop the assumption of dependence on spatial lags of the explanatory variables and instead
assume spatial dependence in the error process. We can use the SAR process to place structure on
that dependency.® If u denotes the vector of residuals, this gives the spatial error model (SE):

Y =x;|3+ui U, =,ow'iu+vi (SE)
Finally, combining the SAR and SLX models gives us the Spatial Durbin Model (SD):
Vi = Wiy +x;B+ W, Xy +u, (SD)

which assumes dependence between Yy, and the spatial lags of both the dependent and explanatory

variables, but drops the assumption of spatial dependence in the error process.

The SD model can be motivated by a combination of the arguments above (causal effects from
neighbouring outcomes and neighbouring characteristics). Alternatively, it can be motivated by
simply re-arranging the SE model in a spatial Cochrane-Orcutt style transformation:

Ui =i _X'iB (2)
Y, —X,B=pw,y— pw,XB+V, (3)
Y, = pw,y +X.B— pw, XB +V, (4)

® More general specifications are available, but the SE model defined in the text is sufficient for our purposes.



An extension to this idea is used as another motivation for including spatial lags of y and X in a

model, as a solution to the problem of omitted variables. Consider a situation where Y; depends on

an exogenous variable ( X; ) and unobservable factors ( Z; ). That is, the true model is:
Y, =X[+1 (5)

Further, assume that the error term Z; is both spatially correlated and correlated with the observed

X; through an omitted variable, which is partly determined by X;, such that:

Z; = PNZ+ % +V, (6)

substituting z, = Y, — X; # into (6) and rearranging gives

Vi =pwWy+ (7 +B)% —pwixB+v, (7)

From (4) and (7) we see that the presence of a spatially correlated error term, whether or not this is

correlated with X;, leads to the SD model involving a spatial lag in y and X. It is important to

emphasise, however, that the in this motivation for the SD model, p cannot be interpreted as
revealing anything about the causal effect of spatial lags of y or X on outcomes. The spatial lags of y
and X are simply being used to control for spatial correlation in the error term.

These five processes are not exhaustive of all possible spatial econometric models, and we consider
a particularly important generalisation further below, but for the moment they are sufficient for our
purposes. In the text, we use the acronyms (SAR, etc) to refer to the specifications above.

Estimation of spatial econometric models using OLS leads to inconsistent parameter estimates if the
models include a spatially lagged dependent variable and p is non-zero (e.g. the SAR and SD models).

This inconsistency arises because of a mechanical link between U, and w.y for most standard

specifications of w; . Standard errors are also inconsistently estimated for these models, as well as

for models including a spatial lag in the error term (e.g. the SE model). OLS provides consistent
estimates of the parameters if the spatial correlation occurs only through the error term (SE model)
or exogenous characteristics (SLX model). In both cases standard errors are inconsistent, and OLS
estimation of the SE model is inefficient. In contrast, Lee (2004) shows that (quasi) ML estimation
provides consistent estimators for all these models conditional on the assumption that the spatial
econometric model being estimated is the true data generating process. Alongside theoretical
developments, advances in computational power and methods have made ML estimation feasible
for large datasets.” As a result, ML estimation is preferred in the spatial econometrics literature.
Inspection of the SAR and SLX models reveals they are nested within the SD model. We have also
shown that the SE model can be rearranged to give the SD model. The fact that the SD model nests

7 According to LeSage and Pace (2009, p.45) “these improvements allow models involving samples containing
more than 60,000 US Census tract observations to be estimated in only a few seconds on desktop and laptop
computers”



many of the other models provides an argument for estimating the SD model and then testing this
against the nested models through the use of likelihood tests. This is the approach advocated by
LeSage and Pace (2009). Model comparison techniques can be used to compare models based on
different weight matrices and explanatory variables.

We have shown that contrasting motivations lead to different spatial econometric specifications.
Taken at face value, this suggests we might learn about the underlying processes at work if we use
ML estimation and model comparison to identify the correct specification for given data.
Unfortunately, as we show in the next section, these different specifications will generally be
impossible to distinguish without assuming prior knowledge about the true data generating process
that we simply do not possess in practice. In short, contrasting motivations lead to spatial
econometrics specifications that cannot usually be easily distinguished in applied research.

It is useful to see how these models are related in terms of their structure. Consider first the reduced
form (which expresses Y, in terms of exogenous factors) of the SAR model. The way the model is
written down, the only exogenous factors affecting Y, are X;and U;, so the only factors affecting
W;y (the spatial lag of Y;) are W;X and W;“ (the spatial lags of X and u, respectively). The spatial
lag of Y, (W'iy ) also depends on the second order spatial lag of Y, (W;Wy ), that is, on outcomes

for the “neighbours of my neighbours”. By repeated substitution (first for W'iy , then for w'iWy

etc), we derive the reduced form as:
Y, =X.B+ pw, XB+ p*w, WXB + p°w W?XB+[..]+V, (8)
where V, = pw v +U; , W is the matrix of stacked weight vectors (w,) and W> = WW .

Notice that, in the reduced form, the only thing that distinguishes this from the SLX model is the
absence of terms in p”W;W”_lX'y for n>1. As we explain in the next section, in practice these two

models will often be hard to tell apart even if, in theory, both are identified. This is, of course,
problematic because they have different implications for the economic processes at work.

It is also informative to derive the reduced form for the general SD model. Substituting for y we get:

Y, = ow. (pWy + XB + WXy +u) + x;B +w Xy +U,
= p’w, Wy + pw XB + pw, WXy +x;B+ W Xy +V, (9)
= p*W, Wy +x,B+w X(oB+7)+ pw; WXy +V,
~[..]
=p"WW 7y +x,B+ W X(Bpo +7) + oW WX(Bo+7) + o'W, W X(Bpo+7) +[.. ] +v,

where, for simplicity, V; denotes the spatial lag terms in U;. Under standard regularity conditions on
pandw;, Iimn%m p”w'iW”_ly = 0so we can ignore the spatially lagged term in y. Notice that, in
the reduced form, the only thing that distinguishes this from the SLX model is the cross coefficient

restrictions on the terms in w, W" "X for n>1.



In short, spatial interaction in Y;, spatial externalities in X;, or spatially omitted variables lead to

different spatial econometric specifications. However, the reduced form for all these models is:
Y, =x;p+w Xm, +w,WXn, +w,WXn, +[..]+V, (10)

and the only differences arise from how many spatial lags of X are included, constraints on the way
the structural parameters enter into the composite parameters IlI, and whether or not the error
term is spatially correlated. It should be clear that distinguishing which of these models generates
the data that the researcher has at hand is going to be difficult. This is the case, because the
specification of W is (in most situations) arbitrarily chosen, and because all the spatial lags of X are
just neighbour averages that are almost always very highly mutually correlated. We now consider
these difficulties in detail.

3. THE REFLECTION PROBLEM AND IDENTIFICATION IN SPATIAL
ECONOMETRIC MODELS

Readers familiar with the ‘neighbourhood effects’ literature, will see immediate parallels between
the spatial econometrics models (SAR, etc) and ‘linear-in-means’ neighbourhood and peer effects
models that appear in many branches of applied economics. The SAR model is identical in structure
to what Manski (1993, 2000) termed an ‘endogenous’ neighbourhoods effects model:

yi = pE[y; lal+x;p+u,  (11)

where Y, is the outcome of interest, X; a vector of exogenous variables, U; an error and a indexes

areas (non-nested ‘neighbourhoods’). This specification captures the direct effect of neighbours’
expected outcome on own outcomes. The endogenous effects model uses expected outcomes to
capture the idea that decisions are simultaneous. As agents do not observe outcomes before making
their own decision they instead have to form an expectation of other outcomes in their
neighbourhood. The endogenous effects model is essentially a SAR model where, for a

neighbourhood of size n, the " element of W, takes value 1/nif i and j are in the same

neighbourhood, zero otherwise. Using w; so defined, we can write:

Yi :,awgy+x'i|3+ui (11a)

(11a) is the empirical counterpart to (11) in the sense that W, is a neighbourhood weighting vector

that provides an estimate of the mean, conditional on the location of i.

There are three endogeneity problems if (11a) is estimated using data on Y;, X; and neighbourhood
averages W;y (the sample analogue to E[yj | a] ). As usual, the explanatory variables x; may be
correlated with U;, which is a general issue that we will come back to later in this paper. The first

specifically spatial endogeneity problem is that, by construction, w;y depends on u when p#0.
The second is that the error term may be spatially autocorrelated which provides another reason

why w;y depends on u. For the moment, we focus on the first of these spatial endogeneity issues.
8



One possible solution is to use the reduced form and see if this provides estimates of both p and B.
As with the standard SAR model, repeated substitution (for E[y; |a] ), gives:

Y, =X, B+ pow X+ p°w WXB + p°w, W?XB +[.. ] +u, (12)

where, once again, we are using W;X as the empirical counterpart to E[X | a]. In contrast to the
standard SAR model, repeated substitution leaves the error (U; ) unchanged, assuming E[u] =0,
because the expectations operator passes through the linear spatial weights so

that E[w;u;]=w,E[u;]=0. As we see later, this will not be the case if the errors are correlated

within neighbourhoods. Providing p is less than one in absolute value and using the fact that in the
neighbourhoods literature (once we order observations by neighbourhood) W is typically block
diagonal and idempotent allows us to simplify the reduced form as follows:

Yy, =x,B+w, XBo/(l-p)+u, (13)

The reduced form models outcome Y; as a function of individual exogenous characteristics ( X; ) and
the neighbourhood average of those characteristics (W;X). Armed with data on these, OLS will give
a direct estimate of B (from the coefficient on X; ). We can then back out p using the estimate of B

and the fact that the coefficients on neighbourhood average characteristics W;X equal Bo/(1-p).

That is, the reduced form allows for the separate identification of B and p.

Things are much more problematic if neighbourhood exogenous characteristics (W;X) directly

influence individual outcomes. That is, if we allow for what Manski (1993) called ‘exogenous’ or
‘contextual’ neighbourhood effects. As is well known in the neighbourhoods literature and as

demonstrated by Manski (1993), once we allow for direct effects from W;X on Y; we can no longer

separately identify B and p. To see why, note that the assumed relationship in the population
becomes

y; = pE[y; |a]l+x;p+E[X|a]y +u, (14)

where notation is identical to equation (11) and E[X|a]y captures the direct effect of

neighbourhood characteristics on individual outcomes. As already noted, the endogenous effects
model can be written as a SAR model with the spatial weight matrix block diagonal and idempotent.

Similarly, allowing for exogenous neighbourhood effects gives the SD model with y; determined by

a spatial lag of both the endogenous and exogenous variables. As with the standard SD model (see
equation (9)), repeated substitution gives the reduced form:

Vi =xiB+w X(y+Bp)/(1-p)+u; (15)



where the only difference with the standard SD model is that the error is unchanged.? OLS

regression of Yy, on individual characteristics ( X; ) and the neighbourhood average of those

characteristics (W;X) gives two reduced form coefficients in three unknown structural coefficients.
As before, OLS gives a direct estimate of B, but only the composite parameter vector

(Y +Bp)/(1— p) is identified. That is to say, only the overall effect of neighbours’ characteristics is
identified, but not whether they work through exogenous or endogenous neighbourhood effects

(i.e. through W;X or W;y , respectively). This is the ‘reflection’ problem of Manski (1993).

Serious problems also arise if there is spatial correlation in the unobserved components U; . This may
happen because of sorting (unobservably similar agents tend to be co-located), common unobserved
shocks or causal linkages between neighbours unobserved characteristics. For simplicity, assuming

that neighbourhood exogenous characteristics (W;X) do not directly affect outcomes this gives:
yi:plE[yjla]+XliB+ui;ui:sz[ujla]+Vi (16)
Substituting U; = Y; — o, E[Y; |a]—x;B for u,in U, = P,E[U; |a]+V; and rearranging gives:

Yi =(p+ P, — PP ) ELY; 2]+ x;p— p,E[X|alp+v, (17)

Letting Yy =—p,P and p=(p, + p, — p,p,) and using W;X and W;y as empirical counterparts to

the expectation terms we get:
yi = pwiy +X;B+w Xy +U, (18)

which, ignoring the parameter restrictions on p and vy, is identical to (14a) with the reduced form as
in (15). Again, estimation provides two coefficients which identify B but do not allow separate
identification of p and y (which, in turn, means the underlying structural parameters in (16a) are not
separately identified). Intuitively, this makes sense: with cross-sectional data how can you
distinguish between something unobserved and spatially correlated driving spatial correlation iny
from the situation where y is spatially correlated because of direct interaction between outcomes?
Of course if, in addition to ruling out a direct impact for neighbourhood exogenous characteristics,
we also rule out a direct impact from neighbourhood endogenous outcomes (i.e. set p; =0 in (16))

then the coefficients are separately identifiable just as they were in the endogenous effects model.
Notice, also, that (16) cannot be distinguished from the SD model involving spatial lags of the
endogenous and exogenous variables without prior knowledge of the sign on coefficienty in
equation (14a) or other ad-hoc assumptions. Of course, all these conclusions are conditional on the

maintained assumption that X; and U; are uncorrelated. We will return to this issue later.

Now we have outlined the reflection problem, it is useful to consider to what extent it applies to
general applications of the SAR, SD and SAR plus SE models. This has been the subject of surprisingly

& See the discussion following equation (12).

10



little discussion (Lee, 2004 and Pinkse and Slade, 2010 are notable exceptions). In the most trivial
case, if the spatial weights matrix is idempotent and interactions are contemporaneous then the

reflection problem must apply if spatial lags of the exogenous variables also influence Y; because

the correct model is exactly equation (14a). This makes it clear that spatial econometrics cannot help
with the identification problem in the neighbourhood effects specification. Of course, one could take

dataony;, W;y ,and W;X, estimate the SD model using ML and sampling variation would ensure

you got estimators of B, y and p. Clearly, however, it is pointless trying to reach any conclusions
about the actual process at work on the basis of these estimates.

What if we are truly interested in spatial lags of observed, rather than expected Y, ? Again, if the

spatial weights matrix is idempotent the same problems arise as for the neighbourhood effects
literature. Taking the SAR reduced form given in equation (8) and simplifying using the fact that W is
idempotent gives the reduced form:

Y, =x;p+w. XBp/(l-p)+V, (19)

where the fact that v; = pw'iv +U; is the only difference with the neighbourhoods effect literature.

As before OLS estimation identifies B and p. Clustering by the blocks in W provides robust standard
errors, although we could increase efficiency by exploiting the fact that we are assuming the exact
structure of dependence is known. We reach exactly the same conclusion for the SD and the SAR
plus SE model. If we have cross section data, and are interested in situations where W is idempotent,

switching from E[ y; ] to Y; does nothing to solve the identification problem.

For researchers from the neighbourhood effects literature, the reflection problem raises such
profound identification issues that they find it baffling that spatial econometrics generally ignores
them. Most would assume that the ML estimators exploit some non-linearity to achieve
identification. This is probably because the use of non-linearities to identify neighbourhood effects
has been suggested by Brock and Durlauf (2001) in the neighbourhood effects literature — for
example, when the outcome is a discrete variable, and the researcher is willing to impose a logit or
probit functional form. More precisely, ML estimation uses a combination of cross coefficient
restrictions and the structure of W to achieve identification. In the neighbourhoods effect literature
W is idempotent. In traditional spatial econometric models, it is the assumption that most standard
W matrices are not idempotent that allows identification.’

It is useful to think about the way in which this helps solve the identification problem. If all the
assumptions are correct, then SAR models are identified even with an idempotent W matrix,
because direct effects from spatial lags of X have been assumed away. There thus seems little point
in considering them further. Instead, consider the SD model (and by extension the SE model as they
have the same reduced form). Equation (10) showed how substitution for y gives the reduced form:

? Interestingly, the idea of putting more structure on neighbourhood effects (e.g. by assuming a hierarchical
network) has recently been suggested as a way of solving the identification problem. See Lee (200x).

11



Yi = p"W Wy £ x,B+w X(Bo+7) + oW, WX(Bo +7) + o'W W X(Bo +7) +[..]+Vv, (20)

As discussed above, under standard regularity conditionsonpandw, lim___ p"w,W" "y =0so
we can ignore the spatially lagged term in y. The final part of this expression makes it clear how
restrictions on the coefficients on W;X, W;WX, W;WWX etc, could be exploited to help with

identification (remembering that there are only three underlying structural parameters).

Clearly, whether these restrictions are useful depends crucially on two factors. The first is the extent
to which the SD model and the spatial weights are correctly specified. If the higher order lags

W;WX, W;WWX affect y directly, then they cannot provide additional information that is useful
in identifying p. One good reason for worrying about this is that if the true W is unknown, the W? W?

etc may be better specifications of the connectivity between i and its neighbours than W (e.g. X;

has an effect up to 5km, but w;

i incorrectly restricts effects to within 2km). Secondly, the spatial lags

of x; will tend to be highly collinear. If collinearity means that the reduced form coefficients are not

precisely estimated then this means the underlying structural parameters will not be precisely
estimated.

In theory the degree of collinearity depends on sample size, sampling frame and how W changes as
observations are added.™ In practice, in reasonable sized samples and using standard specifications

for W, W;X, W;WX, etc are likely to be highly correlated for the simple reason that they are a
weighted average (and consistent estimate of the mean) of Xx; in some neighbourhood of i. As a

result in many applications the parameters on W;X, W;WX, etc are likely to be weakly identified. A

nice way to illustrate this, which will resonate with researchers from the experimental paradigm is to
consider using IV, rather than the reduced form, to estimate the SD model.

In fact, before theoretical and computational advances made ML estimation of the SD model
possible for large samples, IV estimation was the only feasible approach. If we assume that the SD
model is the correct spatial model, then IV estimation is attractive because the spatial structure of

the data can be used to construct valid instruments forw;y . Specifically, from equation (9) it is clear
that, assuming the SD model is correct, w; WX and w, WWX do not directly determine Y; , except
via their effect on w.y . Thus w, WX, w, WWX,, etc provide valid instruments for w.y . This idea

is the basis for the various IV estimators of spatial models that have been proposed.

For simplicity, if only the second order lag is used as an instrument, the first stage regression is:

1%1n theoretical analysis it is usual to distinguish between increasing domain asymptotics (adding observations
expands the space over which we estimate) and infill asymptotics (increasing sample size means sampling
more observations in a given area). The latter makes more sense in many micro-econometric settings, which is
problematic because, general results are not available for MLE under infill asymptotics (see Lee (2004)). Our
intuition is that consistency under infill asymptotics will be difficult to derive precisely because, for many
common W matrices, infill asymptotics increases the correlation between x and its spatial lags.
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w,y =x,B, +w,XB, + w,WXB, +U, (21)

Following an influential paper by Staiger and Stock (1997) applied researchers worry about the
strength of the instruments in the first stage regression (and the implications that weak instruments
have for the coefficient estimates in the second stage, which can be both biased and imprecisely

estimated as a consequence). Given our discussion above it should be clear that as W;X and
W;WXwiII tend to be highly correlated, it is unlikely that W;WX will provide a very strong

instrument conditional on W;X. There is simply very little meaningful information in the spatial

average-of-spatial-averages, conditional on the spatial average of X in that location. This is in
addition to the point we make above: that the assumptions on W and the spatial lag structure are

crucial to ensuring W;WX, W;WWX, etc satisfy the exclusion restrictions for a valid set of

instruments.

We demonstrate the collinearity and weak instrument issues that occur in practice using a simple
example based on census data for one year on the population of children in state schools in London
at the end of primary (elementary) school. The data, described in detail in Gibbons and Telhaj (2008)
is taken from an administrative database and records whether the child was registered for free
school meals (FSM) at the time of the census, their scores in national science tests, and their
residential postcode.™ Each unique postcode generally identifies 10-20 contiguous houses. The data
is aggregated to give mean FSM and mean science scores by postcode. We define (normalised)
spatial weights using inverse distance weighting with a cutoff at 2000 metres.

Table 1 reports correlations between these variables and various 'spatial lags'. The top panel reports
these for the full census sample. The first column shows that the variables (FSM, Science) are only

moderately correlated with their spatial lags."”> However, it is clear that, W;X, W;WX and
W;WWX are all highly correlated. It would be extremely unwise to include all these variables in a

regression and, conditional on W;X (which we assume directly influences Y; ), the higher order

spatial lags will clearly be weak instruments. A smaller sample buys more independent variation, but
not much more, as evidenced by the correlations for a 10% sample reported in the lower panel.
What is more, this independent variation arises simply from sampling variation (noise) which is of no
value as a source of identification of causal parameters.

" Free school meals are offered to children of families who are in receipt of a range of welfare benefits.

2 The Moran’s | — which is the coefficient from a regression of W;X on X; -are0.11 for FSM and 0.07 for

Science Scores.
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Table 1: Example correlations between spatial lags

100% census

FSM w,FSM w WFSM  w, WWFSM
w,FSM 0.3378 1.0000
W WFSM 0.3508 0.9844 1.0000
W, WWFSM 0.3373 0.9763 0.9980 1.0000
W, WWWFSM 0.3328 0.9692 0.9947 0.9991

Sci w Sci w WSci  w,WWSci

w;,Sci 0.2671
w, WSci 0.2859 0.9688
W, WWSCi 0.2637 0.9501 0.9950
w, WWWSci 0.2554 0.9330 0.9867 0.9977
10% sample

FSM w FSM w, WFSM  w, WWFSM
w,FSM 0.2773 1.0000
W, WFSM 0.4303 0.9140 1.0000
W, WWFSM 0.3637 0.9261 0.9872 1.0000
W, WWWFSM 0.3630 0.9002 0.9847 0.9962

Sci w,Sci w, WSci w, WWSci

w;Sci 0.2246 1.0000
w, WSci 0.4127 0.8669 1.0000
W, WWSCi 0.3190 0.8938 0.9691 1.0000
w, WWWSci 0.3193 0.8410 0.9717 0.9865

If further evidence is needed, consider the results from IV estimation of the SD model in which we

instrument w,y with w; WX. Note that w, WXis unlikely to be a valid instrument because it will
be correlated with unobservables (U, ) that determine science scores (an issue to which we return

below). But here we are simply making a point about weak instruments (and as W;WX proxies for

unobservables this will make it appear like a stronger instrument).



Table 2: Example spatial IV

OoLS v
w,Sci 0.97 15.18
(0.02) (7.44)
FSM -11.67 -7.32
(0.35) (2.54)
w'i FSM 7.94 461.13
(1.28) (237.00)
Constant 2.24 -822.81
(1.43) (432.00)
First stage
Partial R-squared - 0.001
F test - 4.11
Obs 37968 37968

The results are shown in Table 2. The first column reports OLS estimates, which indicate that
children's scores tend to move one-for-one with neighbours' scores. This obviously isn't because of
neighbourhood effects, but because neighbours share many characteristics like income, parental
education, local school quality, etc. in common. Column 2 shows results when we implement the

traditional spatial econometrics approach and use the higher order lags of x (in this case W;WFSM )

as instruments. The coefficient on the spatial lag jumps up to an implausible magnitude, and
becomes only marginally significant. But the first stage diagnostics are of more interest than the
coefficients themselves, and are shown at the bottom of the table. The partial r-squared of the

instruments (i.e. the share of the variance in w;SCi that is not explained by FSM and w . FSM,

but that is explained by W;WFSM is a mere 0.1%). The F-statistic of the excluded instrument in the

first stage is 4, which is well below the simple rule-of thumb minimum of 10 (Staiger and Stock 1997)
and the tabulated critical values of Stock and Yogo 2005. In short, there is a fundamental weak
identification problem with this model (coupled in this case with a problem of implausible exclusion
restrictions).

To summarise, in theory if W is not idempotent identification is possible, but the parameters in the
SD model are likely only to be weakly identified in many applications. In addition to the weak
instruments problem there are also good reasons to doubt the validity of the exclusion restrictions

that make higher order spatial lags of X; valid instruments. First, and most fundamentally, we

cannot be sure that the included variables X; are exogenous. In many applied situations X; is likely
to be endogenous, a problem that has essentially been ignored by much of the spatial econometrics

literature, to focus instead on the issue that by construction W'iy depends on u (providing p #0).
If X;is endogenous then, as usual, we cannot get consistent estimators without finding some
suitable set of instruments for X; . In addition, if there is spatial autocorrelation in the errors, then

the endogeneity of X; rules out the possibility of using spatial lags of X; as instruments for W;y .
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Of course, the problem of endogenous X; is not unique to spatial econometrics. A more specific
problem is that, for the exclusion restrictions on the spatial lags of X; to be valid w; must be
correctly specified. If it is not then W;WX, etc will simply pick up problems arising from the

misspecification of w; . Itis not clear how this assumption could ever satisfactorily be evaluated.

It should be clear that there are fundamental problems in using the spatial structure of the data to
generate instruments that allow estimation of the SD model. The problems are even more profound
if we allow for spatial autocorrelation in the error terms, and drop the assumption of the exogeneity

of X;. These changes give rise to the general spatial model:

Yi = oWy +X,B+w Xy +u, (22)
u; :pwliu—’_vi (23)
X, =2,8,+5,U, +€, (24)

where X is an element of X; and z; is a vector of factors determining X; , which may include
elements of X; . This general spatial model presents all the challenges described above, plus the

additional problem of one (or more) explicitly endogenous explanatory variables. Typical spatial ML

methods simply assume away (24) and treat X; as exogenous. True, the parameters of this model

could all, in principle, be estimated by ML techniques or spatial IV techniques, imposing all the
restrictions that are implied by the specification of W and the way the model is written down.
Nevertheless, this mechanical approach to estimation will not appeal to many applied researchers
who view minimal assumptions on functional forms and strong identification as necessary conditions

to infer anything about causality.

A better approach is to more precisely delineate the research question, and focus on the key
parameter of interest, whether this parameter is relevant for policy or because of its theoretical
importance. The design-based, experimental paradigm insists that a satisfactory strategy must use
theoretical arguments or informal reasoning to make a case for a source of exogenous variation that
can plausibly used to identify this parameter of interest. In addition, this mode of research would
expect rigorous empirical testing to show demonstrate the validity of these assumptions, as far as
possible. We now consider these issues in more detail.

4. THE EXPERIMENTAL PARADIGM AND SPATIAL ECONOMETRICS

The discussion so far has been critical of the spatial econometrics approach, particularly regarding
the crucial issue of identification of causal parameters. Others have made similar arguments
although perhaps not as forcefully (see for example McMillen 2010). Of course, any alternative
approach also has to solve the identification problems that bedevil spatial analysis. Our argument is
that these problems are so fundamental that they must sit at centre stage of good applied work, not
be shunted to the sidelines through the use of ML that assumes knowledge of the appropriate
functional forms and spatial weights. In this section we argue that spatial research would be best
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served by turning away from the application of generic spatial models and from the obsession with
trying to distinguish between observationally equivalent models using contestable parameter
restrictions that emerge only from the fairly arbitrary way the assumed model is specified. Instead,
we advocate using strategies that have been carefully designed to answer well-defined research
questions. In short, whilst not ignoring lessons from spatial econometrics, applied research should
focus on the use of identification strategies that are at the core of the design-based experimental
paradigm.

To simplify, start by assuming that we have some spatial data and are interested in estimating:
Yi =x;p+y; (21)

When a spatial econometrician estimates (21) they would check whether the residuals are spatially
correlated. We think this is good practice, which should be extended to non-spatial econometric
treatment of spatial data. What if spatial correlation is detected? The default approach of most
applied econometricians would be to assume the presence of a spatially correlated unobserved
variable and to cluster the errors using pre-defined spatial units, content to err on the side of
caution to avoid Type | errors (perhaps reporting standard errors under different clustering
assumption). If one is willing to impose more structure, e.g. assume the errors follow the SE model,
ML gives efficient estimates of B and correct standard errors. In structural modelling if theory places
structure on the spatial correlation this may be useful. When working with reduced forms any

efficiency gain depends on how well the assumed w; approximate the true w,; governing the error

process. Given the true w; are unknown, the spurious precision offered by ML is a poor reason to

implement it in practice.

If spatial correlation arises from an unobserved variable correlated with X; we have an omitted
variable problem and estimates of B are biased. Spatial autocorrelation in X; and in the omitted

variables is likely to exacerbate this bias relative to the case where the variables do not exhibit
spatial autocorrelation. Increasingly, following the derivation in section 2, the presence of spatially
correlated omitted variables is used in spatial econometrics to justify estimation of the SD model, in
order to ‘solve’ the omitted variable problem. However, if this was a general solution, it would also
work for non-spatial panel data. The equivalent of (5)-(7) with panel data is:

Yie = ﬂxit + Z;; (22)
Ziy = PLiy + MK Vi (23)
Yii = Miea — PP + (7 + B) Xi‘t + Vit (24)

This equation can be estimated consistently by ML or non-linear least squares, or estimates of the
various parameters retrieved from the OLS coefficients.
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Although endogeneity problems of this type might be mitigated by this strategy, it is certainly not a
complete fix. To see this, modify the set up in equations (5)-(7) slightly to cope with more general

endogeneity in that X; is partly determined by the omitted variable ( f, ). In this case we have:
i =X +Z; (25)

Z; :pw‘iz+7fi +V;

X, = f. +u,

Yi =p\N{y+(7/+ﬂ)Xi _plb\Ni'X—i_(Vi — ;)

The error term now has a component U; that is negatively correlated with fi , S0 the coefficients

cannot be estimated consistently by OLS, NLS or ML. In this more general setting, the SD model does
not provide a solution that gives consistent estimates for the parameter of interest (B). See, for
example, Todd and Wolpin (2003) for a related discussion in the context of ‘value-added’ models in
the educational literature. In short, the SD model should not be seen as a general solution to the
omitted variable problem in spatial research, and it is a mistake to proceed as if it is one. A better
solution is to treat this as a standard endogeneity problem that makes X, correlated with the error,
and to bring to bear tools for dealing with such problems. In the applied microeconometric literature
this would usually mean adopting one of two approaches based on either instrumental variables or
some kind of differencing (e.g. the use of fixed effects or discontinuities).

What about the situation where we are interested in estimating the SAR or SD model to test for the

presence of direct spatial interaction between outcomes Y; ? It is hard to imagine situations in which

this is the true data generating process because simultaneous decisions based on y must rely on
expectations (as in the neighbourhoods effect literature), but let us suppose that estimation of p is
the goal. As argued above, in most situations, we find ML solutions unconvincing, fundamentally

because of the unverifiable restrictions on W, . In some settings, the spatial econometrics literature
may offer interesting insights in to the potential for using specific, restrictions on W, to achieve

identification, where these restrictions arise from the institutional context (e.g. from the directed
structure of friendship networks, or the spatial scope of area targeted policies). However, for most
applied problems, however, uncertainty about functional forms and spatial weights mean alternative
strategies are more appropriate.

One possibility is to consider IV. As we argued above, if the SAR model is correctly specified then
W;X provides an instrument for W;y . In practice, researchers working in most areas of modern

micro-econometric practice would expect very careful arguments to justify the exclusion of W;X

from the estimating equation.® Institutional arrangements might provide exogenous variation in

Bof course, if W;X can be excluded then this solves the identification problem for ML as well. Even in this

case, we still think that the case for switching to ML is weak because it relies on precise knowledge of w; .
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W;X that has no direct influence on Y, . For instance, a researcher might argue that there are no

direct impacts from a policy intervention in neighbouring districts, but the policy does have effects
via neighbouring outcomes. Researchers also use similar ideas to argue that certain ‘natural

experiments’ directly induce exogenous variation in w'iy . In both cases IV is justified, although a

researcher employing this strategy often faces difficulty convincing others that there are no direct
effects from neighbours’ policies (i.e. justifying the exclusion restrictions).

Given the difficulty in justifying the exclusion restrictions on WIiX , coupled with the conceptual

problems in thinking about what the SAR model implies about underlying causal relationships, we
argue for abandoning the SAR model altogether. We advocate the path taken by most recent

neighbourhood effects literature and argue for estimation of reduced form SLX models in X; and

spatial lags of X; , rather than any attempt at direct estimation of the SAR or SD model. Given the

identification problems the reduced form approach is simply far more credible and honest. The
composite reduced form parameter that describes the influence of neighbours characteristics or
outcomes is itself a useful and policy relevant parameter. With this in hand judgements can be made
based on theory and institutional context about the likely channels through which the effects
operate, without imposing the untestable assumptions on model structure at the outset that are

implicit in spatial econometric approaches to estimating specifications involving w;y . Setting to

one side the challenge of estimating p directly also leaves the researcher free to focus on the
remaining threats to consistent estimation of the composite parameters in the reduced form, which
are still formidable.

The key challenge that remains is the one discussed above. That is, the fact that X, and w X are

unlikely to be exogenous, and will be correlated with the unobserved determinants of Y, via causal

linkages or because of the sorting of agents across geographical space. This issue is generally ignored
in ML-based spatial econometrics in which the main focus of attention is consistent estimation of
models under very strong (but poorly justified) assumptions. Estimation of the reduced form SLX

models would instead force researchers to focus on finding sources of exogenous variation in X; and

W;X with which to identify their corresponding parameters: which is in itself a challenge.

How then should researchers working on spatial empirical analysis proceed? There are many
potential examples of 'natural experiments' in the spatial context which offer channels for
identification of interesting spatial parameters (e.g. Redding and Sturm, 2009). Some settings also
offer explicit sources of randomisation due to institutional rules and processes (Sacerdote 2001,
Giorgi et al 2008). Field experiments designed specifically for purpose are also clearly very useful.
However, big ones like the Moving to Opportunity Programme are rare, costly and often suffer from
unavoidable design flaws, and small ones tend to suffer from concerns about external validity. It
would also be very difficult to design experiments to answer many spatial questions and we do not
advocate this as a general way forward. However, the standard toolkit of IV and differencing based
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strategies employed by researchers in many other fields of applied economics can be used
effectively, if applied carefully and with attention to the identification of specific causal parameters
rather than an arbitrarily specified system of equations.

If we want to use an IV strategy to get consistent estimates of the parameters of interest in these
reduced form SLX models, we need instruments that satisfy the usual relevance and exclusion
restrictions. In the highly unlikely situation that we know the structure of the spatial dependency

spatial econometricians might argue for the same strategy discussed above forW;y . That is, to use

higher order spatial lags of X; as instruments. However, using lags as instruments isn't often a good

idea in the time-series context when causality runs in only one direction. For example, using
historical city populations as instruments for current city populations to studying agglomeration
economies can only work if the researcher is sure that whatever unobservable factors made a city
big in the past are not what makes it big in the present. In the spatial case, bi-directional causality
makes this kind of strategy even less compelling. Further, as discussed above, we expect weak
instrument problems even in situations where the exclusion restrictions are valid. Finally, in most
applications the true spatial weights are unknown raising considerable uncertainty about the
exclusion restrictions.' For all these reasons, we believe that standard IV strategies which require
the researcher to pay careful attention to the omitted variables and to clearly justify the validity of
instruments represent a more appropriate way to address the problem of spatially correlated
omitted variables™. In contrast, we have little faith in generic spatial econometric solutions which
rely on generic assumptions about the functional form and spatial weights, with little focus on
careful research design.

There are many examples of these kinds of instrumenting strategies applied to spatial problems, by
researchers working outside the traditional spatial econometric mould. For example, Michaels
(2008) uses the grid-like planning of the US highway network to predict whether towns experienced
exogenous improvements in market access as the network developed. Luechinger (2007) use the
sites of installation of SO2 scrubbers and prevailing wind directions to predict pollution levels.
Gibbons, Machin and Silva (2008) use distances to school admissions district boundaries to predict
levels of choice and competition in school markets. These strategies may not be without their
problems, but at least provide some hope of uncovering causal relationships in the spatial context,
which off-the-shelf spatial econometrics techniques do not.

A good alternative to IV is differencing to remove relevant omitted variables, either through
difference-in-difference, fixed effects or regression discontinuity designs. In this case, the fact that
the unobserved component is spatially correlated helps because it suggests that spatial differencing

“ Note, however, that while the spatial structure of the data doesn’t help, neither does it especially hinder the
search for a suitable instrument. If we have an instrument that is independent of U, , then it is also

independent of W‘iu , (unless the weights are endogenous) so the fact that X; and U, are both spatially

correlated is irrelevant (aside from the implications for standard errors).

!> Control function approaches may also be equally valid, but require instruments too, and generally require
more assumptions than IV.
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(of observations with their “neighbours”) is likely to be effective. Holmes (1998) provides an early
example. Gibbons, Machin and Silva (2009) provide more recent discussion. Other differencing
strategies drawing on a “case-control” framework may also be appropriate, for example the 'million
dollar plant' analysis of Greenstone et al (2008) which compares the effect of large plant relocations
on the destination counties, using their second ranked preferences — revealed in a real estate journal
feature —as a counterfactual. Both Busso, Gregory and Kline (2010) and Kolko and Neumark (2010)
evaluate the effects of spatial policies by comparing policy-treated areas with control areas that
were treated in later periods, as a means to generating plausible counterfactuals. Of course,
differencing can also be combined with instrumenting as discussed in, for example, Duranton,
Gobillon and Overman (2009).To summarise, different economic motivations lead to spatial
econometric specifications that will be very hard to distinguish in practice. Add to the mix the fact

that in (nearly) all applications we face uncertainty about the endogeneity of X;, the appropriate

functional form and spatial weights and it becomes clear why many applied researchers find ML or
IV estimation of some assumed spatial econometric specification uninformative. Instead, we support
a focus on attempting to solve identification problems using empirical strategies that have been
carefully designed for the specific application. Further, if empirical strategies cannot be devised that
satisfactorily identify the causal impact of the spatial lag in the endogenous variable (i.e. most
applied situations) then we advocate a reduced form approach paying particular attention to the

problems raised by endogeneity of the X;.

So far we have said little about the role of theory. Many spatial econometricians are defensive about
the role theory plays in the construction of their empirical models and see comments about the lack
of theory as a misguided criticism of their work (e.g. see Fingleton and Corrado in this journal
volume). But the role played by theory is not our main criticism, that is the failure to adopt a careful
research design that solves the problems specific to the research question being addressed, and the
lack of attention to finding credible sources of random or exogenous variation in the explanatory
variables of interest. This is not to say we do not think that theory is very important. Theorising, of a
formalistic or more heuristic type, is of course essential in organising thoughts about how to design a
research strategy and theory and assumptions at some level are necessary for any empirics. Theory
is also useful once you have these causal parameter estimates to hand, when it comes to making
predictions about general equilibrium effects, as long as it is made clear that these predictions are
valid only for that theoretical view of the world.

Consistent with our overall approach, we argue that testing theories means correctly estimating the
coefficients on specific causal variables (as suggested by the theory). This provides another point of
contrast to most applied spatial econometrics where the role of theory is to derive a generic
functional form with ML applied to give the parameters that ensure the best “fit” to readily available
data. For example, to test the predictions of NEG models, our approach insists on a research
strategy to identify whether market potential has a causal impact on wages while recognising that
no model is going to completely explain the spatial distribution of wages. This contrasts strongly
with the applied spatial econometrics approach which uses the extent to which different spatial
econometric models ‘fit’ the data as a way to test competing theories. This has the unfortunate side
effect of encouraging the inclusion of endogenous variables in empirical specifications as, for
obvious reasons, these tend to increase the fit of the spatial model with the data.
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In many spatial economic problems, theory may thus play an important role in identifying variables
for which we would like to know the causal effects. But empirical implementation requires careful
research design if the results are to have any general scientific credibility or to be considered
trustworthy for policy making. It is surely wrong to use specialised theory alone to impose specific
restriction on the research design (e.g. by assuming away potentially confounding sources of
variation) unless you have reasonable confidence that the theory is correct and that it is
demonstrably so to a general audience. Unfortunately, this is the role played by theory in most
applied spatial econometrician research. Theory is used to justify the inclusion of a spatial lag,
assumptions are made about the form of the spatial weight matrix (possibly derived from theory),
ML is used to achieve ‘identification’ and then model “fit’ is used as a basis for testing theory which
justified the inclusion of the spatial lag. It should be clear by now that, for most spatial problems, we
simply do not find this a convincing approach. Without wishing to weigh further into the vigorous
debate on structural versus experimental approaches to empirical work (e.g. Journal of Economic
Perspectives, Vol 24 (2) 2010) we simply make the point that whatever method is adopted
(structural, experimental, qualitative or any other) any empirical research that aims to find out if x
causes y needs to find a source of exogenous variation in x.

5. CONCLUSIONS

We have argued that identification problems bedevil most applied spatial econometric research.
Most spatial econometric theorists are aware of these problems but downplay their importance by
deriving estimators assuming that functional forms are known and by using model comparison
techniques to choose between competing specifications. While this raises interesting theoretical and
computation issues that have been the subject of a growing literature it does not provide a toolbox
that gives satisfactory solutions to these problems for applied researchers interested in causality and
the economic processes at work. It is in this sense that we think of much applied research using
standard spatial econometric techniques as “pointless”.

Paradoxically, we think that using the standard spatial econometric specifications (adapted, as we

have done throughout the text, to reinforce the focus on the causal factors that drive outcome Y;)

helps clarify identification problems for those researchers who are interested in causality. In
particular, we think that closer attention to model specification will be helpful in understanding the
exclusion and relevance assumptions that underlie IV approaches. Spatial econometrics also
provides important insights on the correct interpretation of model parameters that we may identify
from the IV or some other suitable estimation strategy. In short, there are lessons to be learnt from
the spatial econometrics literature but for most applied researchers the appropriate strategy should
be based on the experimental paradigm which puts issues of identification and causality at centre
stage.
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