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Abstract

In this paper, the MOSUM tests with recursive and OLS residuals are considered, and

their asymptotic null distributions are characterized analytically. We show that the limit-

ing processes of moving sums of recursive residuals is the increments of a standard Wiener

process. For a particular choice of the size of moving sums, a formula representing the

probability of this limiting process crossing constant boundaries is derived, from which cor-

rect asymptotic critical values are calculated and tabulated. We also show that the limiting

process of moving sums of OLS residuals is the increments of a Brownian bridge whose

boundary-crossing probability is known in literature. We then prove that the MOSUM
tests are consistent and have non-trivial local power under a general class of alternatives.

Our simulation further indicates that the propsoed MOSUM tests can complement other

CUSUM-type of tests when there is a single structural change and have power advantage

when there are certain double structural changes.

JEL Classification Number: 211

Keywords: CUSUM, MOSUM, Recursive Residuals, OLS Residuals, Boundary-Crossing

Probability, Brownian Bridge, Wiener Process, Structural Change.





1 Introduction

For testing the null hypothesis that regression coefficients are constant over time, Brown,

Durbin & Evans (1975) (hereafter BDE) introduced the CUSUM test based on cumulated

sums of recursive residuals. Ploberger & Kramer (1992), motivated by the intuition that

OLS residuals can better approximate the true disturbances under the null hypothesis,

propose a CUSUM test based on cumulated sums of OLS residuals. (In what follows, the

CUSUM tests with recursive and OLS residuals will be referred to as the BDE- and OLS-

CUSUM tests, respectively.) While the BDE-CUSUM test is one of the most commonly

used tests for parameter constancy in applications, Bauer & Hackl ( 1978) find that cumu-

lated sums (of recursive residuals) may not be very sensitive to certain types of parameter

changes.

Another shortcoming of the CUSUM test seems to have been overlooked. Recall that

the limiting distribution of the BDE-CUSUM test is determined by the probability of a

standard Wiener process crossing a pair of linear boundaries. Intuitively, voot-t boundaries

should be used to account for the growing variance of the limiting Wiener process, but for

convenience BDE use a pair of straight lines tangent to the desired curved boundaries as

an approximation. This results in a loss of test power asymptotically because the diameter

of the acceptance region is larger than it should be. Also, the asymptotic null distribution

of the OLS-CUSUM test is determined by the probability of a Brownian bridge crossing

a pair of constant boundaries. This also results in biased power performance because the

variance of a Brownian bridge is not a constant.

In this paper we consider the MOSUM test based on moving sums of residuals. That

is, we fix the number of residuals in each moving sum and let these sums move accross

the whole sample. This is intuitively appealing because moving sums retain only recent

information by gradually discarding the residual in the distant past, hence may be more

sensitive to parameter variation. In particular, we study the MOSUM tests with recursive

and OLS residuals. The former is introduced in Bauer &: Hackl (1978), but its (conser-

vative) critical values are obtained by incorrectly ignoring correlations of moving sums;

the latter is new. (In what follows, these two MOSUM tests will be referred to as the

BH- and OLS-MOSUM tests, respectively.) We first show that the limiting processes of

moving sums of recursive and OLS residuals are, respectively, the increments of a standard



Wiener process and the increments of a Brownian bridge. As both limiting processes have

constant variance, it is legitimate to consider the probability of these limiting processes

crossing a pair of constant boundaries. The MOSUM tests thus avoid the aforementioned

drawback of the CUSUM test.

We also characterize the asymptotic null distributions of the proposed MOSUM tests

for a particular choice of the size of moving sums. We derive a formula representing the

boundary-crossing probability of the limiting BH-MOSUM process, which, to the best of

our knowledge, is a new result and yields correct asymptotic critical values. The boundary-

crossing probability of the limiting OLS-MSOUM process is obtained from a result in Chu,

Hornik, & Kuan (1992). Concerning the power performance, we show that the MOSUM
tests are consistent and have non-trivial local power against a wide class of alternatives.

Our simulation indicates that the BH-MOSUM test is comparable with the BDE- and OLS-

CUSUM tests when there is a single structural change, although none of them uniformly

dominates the other. Under the alternative of double structural changes, we also find that

the proposed MOSUM tests outperform both CUSUM tests quite significantly.

This paper proceeds as follows. We introduce the MOSUM tests in section 2 and derive

their asymptotic null distribution in section 3. We analyze the power performance of the

MOSUM tests and report simulation results in section 4. Section 5 concludes the paper.

All proofs are deferred to the Appendix.

2 The MOSUM Tests

Given the regression model

y t
= x'ifc + e„ i = 1,2,..., T,

where /?,• is a k x 1 vector, we are interested in the null hypothesis that [3 t
= j3q for

all i. Following Kramer, Ploberger, &: Alt (1988) (hereafter KPA) and Ploberger &

Kramer (1992) (hereafter PK), we assume that, in addition to other technical conditions,

{f,} is a martingale difference sequence with respect to some sequence of <7-algebras [Ti]

with E(€*\Ti-i) = v 2 and tnat x i is .Fi-i- measurable and obeys the weak laws of large

numbers:
T

p
A*, (!)

1
T

t=i



ij>*i -* Ri (2)

i=i

where —

>

p stands for convergence in probability, /x and R are k x 1 and k x k non-stochastic

matrices, respectively. These conditions are not the weakest possible but are general

enough to cover many interesting cases, including dynamic models; see KPA and PK

for more details. In what follows these conditions are always assumed but will not be

mentioned explicitly.

Let Xn = [x\ x'2 • • • xn ]' and Yn = [y\ y% • • yn ]' be the data matrices of dimensions nxk

and n x 1, respectively. Then J3n = (X'nXn )~ X'nYn is the OLS estimator at time n, and

en = yn — x'n /3n -i is the prediction error. Recursive residuals are defined as

en = —j= n = k + 1,-- • ,T.

y/l-{-x'n(X
t

n_ 1
Xn. 1

)- 1 Xn

For s = k + 1,. . . ,T, the 5-th cumulated sum of recursive residuals is

1 v^

where a-

is a consistent estimator of a. Let

QW) = ^7= E g n = ^= E n
(3)

v n=)t+ l
v n=k+\ n

be the corresponding empirical BDE-CUSUM process in J9([0,l]), the space of functions

that are right continuous with left-hand limits on [0, 1], where for notational convenience

we write r — T - k and vn = (1 + x'n (X'n _ x
Xn-\)~ in)^

2
, and [rt] is the integer part of

rt. Throughout this paper, we shall use the superscript "r" to signify the processes and

statistics that are based on recursive residuals. KPA show that under the null hypothesis,

Q
r

T => W, where => stands for weak convergence (of the associated probability measures)

and W is a standard Wiener process, cf. Sen (1982).

We first consider moving sums of recursive residuals, i.e., the sums of [rh] recursive

residuals moving across the whole sample, where h (0 < h < 1) denotes the proportion of

the residuals used to construct each moving sum. For j = 0, • • • , r — [r/i], the j'-th moving

sum is

k+j+[rh]

°^ n=fc +1



k+j+[rh] fc+j

2_> en - 2^ en
v \ n=k+l n=k+l

Let

k+[NTt]+[rh]

(4)

:k+[NT t}-

be the corresponding empirical MOSUM process on [0, 1 — h], where iVr = (r— [rh])/(l— h).

The BH-MOSUM test statistic introduced in Bauer & Hackl (1978) is

•-^X'-p^-p?)

MSr h — max ":—;=
0<j<r-[r/i] cr-/r

We then have

k+j+{rh]

n=k+j+l

= n<r^J5W*)l- (5)
U<-£<. 1 —

n

Theorem 2.1 Under the null hypothesis,

w/iere /or < / < 1 - /i, 5J[(<) = W(* + /*) - J^(t). /n particular,

MS T

Th ^ max |5I(*)|.J 'n 0<Kl-/i

This result says that the empirical BH-MOSUM process converges in distribution to the

increments of a Wiener process. We observe that for < s < t,

cov(S r

h (t),S
r

h (s))

= cov(W[t + h),W{s + h)) - cov(W{t + h),W(s))

- cov(W(t),W(s + h)) + cov(W{t),W(s))

= s + h — s — min(t,s + h) + s

= max(/i -f (s — t), 0).

The covariance function of 5£ is thus max(/i — \t — s\, 0) so that the variance is h. The

asymptotic critical values of the MOSUM test are then determined by the two-sided

boundary-crossing probabilities of S£:

lim ]P{MS^h > 6*} = JP{\Srh (t)\ > b* for some < t < 1 - h).
T—>-oo



Let 6T,n — Vn — x'nftT De the OLS residual. Note that there are T OLS residuals, but

there are only T — k recursive residuals. For s = 1, . . . , T, the 5-th cumulated sum of OLS

residuals is

and the corresponding empirical OLS-CUSUM process in D([0, 1]) is

, [Tt]

GHO = T"7= X>,». (6)

We also use the superscript "o" to signify the processes and statistics that are based

on OLS residuals. PK show that under the null hypothesis, Qj> => W°, where W° is a

Brownian bridge, provided that x contains a constant term. For j = 0, • • • , T — [Th], the

ji-th moving sum of OLS residuals is

1
3+[Th]

^vT n=j+1

Similar to (4), let

sr.^--/f L. <ta-Qt
{ T -Qt{— (?)

n=[NTt\+l

be the empirical OLS-MOSUM process on [0, 1 - h], where NT = (T - [T/i])/(l - /*), and

let the OLS-MOSUM statistic be defined as

1
3+[Th]

MSt h = max —

=

' 0<j<T-[Th] ffy/T

The result below is analogous to Theorem 2.1

Theorem 2.2 Under the null hypothesis,

= max |5fiA (0|. (8)
U<.£<- L— ft



where for < t < 1 - h, S%(t) = W°{t + h) - W°(t). In particular,

MS$ h ^ max \S°h (t)\.
' 0<t<l-h

We note that the limiting process 5£ is the same as that of the empirical moving-estimates

process studied in Chu, Hornik, & Kuan (1992); in particular, its covariance function is

h{\ — h) — min(/i, \t — s|), and the variance is h(l — h). Again, the asymptotic critical values

of the OLS-MOSUM test are determined by the two-sided boundary-crossing probability

ofS°h :

lim W{MS$ h > b*} = W{\S°h(t)\ > b* for some < t < 1 - h}.

The MOSUM test differs from the CUSUM test in the following respects. First, each

moving sum uses the most recent [rh] {[Th]) residuals, whereas cumulated sums incor-

porate more and more residuals. Intuitively, moving sums should be more sensitive to

parameter changes because they contain only recent information. A similar intuition has

been confirmed in Chu, Hornik, & Kuan ( 1992), where a moving-estimates test is shown to

be more sensitive to double structural changes than the recursive-estimates- based fluctua-

tion test of Sen (1980) and Ploberger, Kramer, & Kontrus (1989). Second, as the variances

of the limiting BH-MOSUM and OLS-MOSUM processes are h and h{\ — h), respectively,

it suffices to consider the probability of S^ (££) crossing a pair of constant boundaries. On

the other hand, the desired boundaries for the BDE-CUSUM test should be of the form

±\y/t, where A is a constant depending on the size of the test, to account for the growing

variance of the Wiener process (BDE, p. 153). However, BDE use linear boundaries tan-

gent to the desired curved boundaries as an approximation to derive asymptotic critical

values. This approximation causes loss of test power when the change point of parameter

is away from the center of sample. Also, the limiting OLS-CUSUM process is a Brownian

bridge whose variance is t(l — t). Thus, the OLS-CUSUM test with critical values derived

from the probability of a Brownian bridge crossing constant boundaries will also result

in biased power performance. The MOSUM tests discussed above obviously do not suffer

this drawback.

An interesting and important issue arising in the MOSUM test is of course the choice of

h, the size of moving sums. If h is large, each moving sum includes "too many" residuals,

6



and only a few moving sums are available to detect possible parameter changes. Hence,

moving sums with large h are not very sensitive to parameter variation. If h is small, the

limiting process Sr

h (5£) is not a good approximation of moving sums in finite samples,

and sample variation of each moving sum is likely to be large. Therefore, the leading

choice is h = 1/2 so that the number of residuals in each moving sum equals [r/2] ([T/2]).

We note that the MOSUM tests with h < 1/2 and h not "too" small are also of interest;

their asymptotic distributions appear to be difficult to calculate, though.

3 Asymptotic Null Distributions

We first derive the asymptotic null distributions of the BH-MOSUM test.

Lemma 3.1 Let AW(t) = W(t + 1) - W(t). Then

max -7=\Sl(t)\ = d max \AW(t)\,
0<t<l-h y/h ^ "

0<t<l/h-l
'

where = d stands for equality in distribution.

Let b = b* /y/h, then by Theorem 2.1 and Lemma 3.1,

r
limIP{M5^>6*} =

r
limIp{-^M^>6}

= Wl max \AW{t)\ > b\ . (9)
I 0<t<l/h-l

In what follows, we compute this probability for h = 1/2 such that l/h -1 = 1.

For / 6 C[0, 1], the space of all continuous functions on [0, 1], define

m(f) = min <t<i f(t), M(f) = max <Ki /(*)•

We also let $ and (p denote the distribution and density functions of the standard normal

random variable, respectively. We first consider the probability that AW stays within two

constant boundaries a and b on [0, 1] conditional on AM^(O) = x:

W{a < AW{t) < b for all < t < l\AW{0) = x}

= W{a < m(AW) < M{AW) < b\AW(0) = x}.

Let fJ>&w\xi VZ, and ^w be the measures on C[0, 1] induced by AW conditional on

AW(0) = x, Z = x + \/2W, and the Wiener process, respectively.



Lemma 3.2 (Shepp (1966)) The measures ii&w\x and p.z are equivalent, and the Radon-

Nikodym derivative of p>&w\x w^^ respect to p>z is

P±W\x ,~ _ y2e^/2 e
-(x+/(i)) 2

/4_

dfxz

Observe that under /x^, the functions g(t) = (f(t) — x)/\/2 are distributed according

to nw Then by Lemma 3.2 and the Radon- Nikodym theorem,

W{a < m(AW) < M{AW) < b\AW(0) = x}

= / dt*AW\x(f)
Ja<m(f)<M{f)<b

f dp,^w\x
, n= / —, -(f)d^z(f)

Ja<m(f)<M(f)<b dfiz

J(a-x)/s/2<m(g)<M(g)<(b-x)/V2 .

= f
ib-X)/V

~
2

I c
-i2x+V2u^M

dwi^S- <m(W) <M(W) < ^-^-, W(l) <u\. (10)

By (11.10) of Billingsley (1968),

dW {a < m(W) < M(W) < (3, W(l) < u} /du
00 oo

- £ <t>(u + 2k(P-a))- Yl <t>(u-2f3-2k((3-a)). (11)

k= — oo k= — oo

From (10) and (11), routine calculation shows that

Lemma 3.3 For a < b,

IP{a < AW(t) <b for all < t < l\AW{0) = x}

1
°°

= —— Y \<f>(x-k(b-a))($(b + k{b-a))-$(a + k(b-a)))
<n x ) i.

L
v ' fc=— oo

- ${x - k(b - a)){(f>(b + k(b - a)) - 4>{a + k(b - a)))] ; (12)

in particular, when a = —b,

JP{\AW{t)\ <b for allQ<t< l\AW(0) = x}

1 oo

= -7-T E ks-2*&)(*((2* + l)6)-S((2*-l)&))

- $(x - 2kb)((f>{{2k + 1)6) - <j>{{2k - 1 )&))!. (13)



Remark: For a —> — oo, all terms (p(y ± k(b — a)) tend to zero unless k — 0. It follows

from Lemma 3.3 that

W{AW{t) < b for all < t < l\AW(0) = x}

= <f>{x)-
1
(<p{x)$(b) - <fi{b)$(x))

= *(6)-^*(s). (14)

This is the same as the result calculated from (17.8) of Shepp (1966).

Because AW(0) = W(l) — W(Q) is a standard normal random variable, the uncon-

ditional probability that AW stays within the constant boundaries —b and b on [0, 1] is

thus

IP{|AW(i)| < 6 for all < t < 1}

= f W{\AW(t)\<b(ov al\0 <t <l\AW(0) = x}(f)(x)dx

= Y^ (
(^((2A; + 1)6) - ^((2Ar - 1)6)) / 4>{x-2kb)dx

k=—oo \
~

+ (<p((2k + l)b) - 4>{{2k - l)b)) I $(x + 2kb)dx) .

Note that we have changed the sign of the second term in (13) by replacing k by -k. As

clearly

rb r(2k+l)b

'(2k-\)b

and

rb

fb f(2k+\)b

/ (f>(x - 2kb) dx = (j>(u)du = ${(2k+l)b)-$((2k-l)b)
J-b J(2k-\)b

I $(x + 2kb)dx

r(2k+l)b

=
/

*(«)
J(2k-l)b

•(2k+l)b

du
<{2k-\)b

(2k+\)b

V V " (2k-\)b

= {2k + l)b${(2k + l)b)-(2k- l)b$((2k- l)6) + 0((2Ar+ l)b) - <f>{(2k - 1)6),

we thus obtain



Theorem 3.4 For 6 > 0,

oo

IP{|AW(0I < b for all < t < 1} = £ (Ak + Bk + C*), (15)

k= — oo

where

A k = ($((2tc + l)b) - <f>((2k - l)b))\

Bk = (<K(2k+l)b)-<t>((2k-l)b))

x ((2fc + l)6$((2fc + 1)6) - (2k - l)6$((2Jfe - 1)6)),

Cfc
= (0((2fc + 1)6) - 0((2^ - 1)6))

2
.

Concerrning the boundary-crossing probability of the limiting OLS-MOSUM process,

Chu, Hornik, & Kuan (1992) show that

oo

JP{\W°(t + \)-W°(t)\ < 6* for allO < t< ±} = 2 ^-l^+V*2*2^*)2

. (16)

Combining (9), (15), and (16) we immediately get

Corollary 3.5 Under the null hypothesis, the BH-MOSUM test has the limiting distribu-

tion

oo

lim W{MS r

Tl/2 <b*}= T (A k + Bk + Ck ),
T—kx> ' '

,

"-^
k=— oo

where A k , Bk , and Ck are defined in Theorem 3.4; the OLS-MOSUM test has the limiting

distribution

lim W{MS°Ttl/2 < 6*} = 2£(-l) fc+1
e

/ —>-oo '
'—^
k=l

Given different probabilities, the asymptotic critical values of the BH-MOSUM test are

6* = b/y/2, where 6's are computed from (15). The asymptotic critical values of the OLS-

MOSUM test are calculated directly from (16). Some of these values are summarized in

Table 1.

[ Table 1 About Here]

10



Remarks:

(1) Quails & Watanabe (1972) study the asymptotic distribution of sup0<t<T X (t) , where

X(t) is a Gaussian process with covariance function

1 — 1*— s\
a
H(\t - s\) + o(\t - s\

a
H(\t - s\)l

< a < 2, and H is a function slowly varying at zero. Their result, however, does not

give a readily usable representation of the distribution.

(2) In the Appendix we show that

JP{AW(t) < b for all < t < 1} = $(6)
2 - (j){b)(b$(b) + <A(6)), ( 17)

which is the asymptotic distribution of the one-sided BH-MOSUM test. The one-sided

MOSUM test becomes relevant when one is concerned only whether the parameter has

changed in a particular direction. For probabilities 0.90, 0.95, 0.975, and 0.99, (17) yields

one-sided critical values (b/y/2) 1.57596, 1.80413, 2.00372, and 2.23765, respectively. Some

of the one-sided critical values of the OLS-MOSUM test can be found in Chu, Hornik, &

Kuan (1992).

4 Test Performance and Simulation

Consider a sequence of alternatives

0? = Po + T- C
g(i/T), (18)

where g : [0, 1] —* IR fc

is a vector- valued, non-constant function of bounded variation on

[0, 1]. Note that (18) represents a general class of alternatives including a global alternative

(c = 0), a sequence of local alternatives (c = 1/2), and a sequence of non-local alternatives

(0 < c < 1/2). Here, g may e.g. be a step or continuous function to characterize various

types of parameter changes.

Under the maintained assumptions, it can be shown that if

T
1

T

* 2 = ^D2/'-^t) 2
(19)

i=i

11



is the standard OLS estimator of a 2
, then a2 — p a2

, where

r
2

, < C < 1/2,

<j2 + /o (#( w )
- f£g{v)dv)R(g{u) -fog(v)dv) du, c = 0,

and i? is defined in (2). It is evident from (20) that a 2
is not consistent under the global

alternative but is consistent otherwise. We obtain the following result for the BH-MOSUM

test.

Theorem 4.1 Under the alternative (18), ifO < c < 1/2,

Tc~ l l 2MS^h -* <?;
1 max |j*'Jfo(*)|,

where fi is defined in (1) and

*t+h

JT
h9(t) = I \9 (

u)) ~u 9(v)dvj du;

ifc= 1/2,

MS^,^ max ST(*) + a
-1

u'' Jlg{t)
o<t<i-h

Similarly, the following result holds for the OLS-MOSUM test.

Theorem 4.2 Under the alternative (18), if < c < 1/2,

T c-" 2MS°^h
-> a; 1 max |/Jfa(t)|,

u;/iere

Jh9(t) = g(u)du-h g{u)du\

if c = 1/2,

M5fA = max |52(0 + <ryjjfo(*)|.

Remarks:

(1) Under the alternative (18) with < c < 1/2, if ft''J
T

h g{t) £ and n'J%g{t) ^ for some

t, then MSj h and MS? h must grow at the rate T x l2
~ c so that the two MOSUM tests are

consistent for such sequences of alternatives. In particular, as noted in Chu, Hornik, &

Kuan (1992), if \i'g is not periodic with period /i, then fi'J%g(t) does not vanish identically.

On the other hand,

12



• if fi'g = 0, i.e., /x is orthogonal to g, then p'

J

T

h g(t) = for ail /;

• if fi'g = or if p'g is periodic with period h and \/h is an integer, then ix'J^g(t) =

for all t.

Under these situations, consistency of the MOSUM tests is not ensured.

(2) Under local alternatives (i.e., c = 1/2), if// is orthogonal to g, then the weak limits

of the BH- and OLS-MOSUM tests reduce to their corresponding weak limits under the

null hypothesis. Thus, the MOSUM tests have only trivial local power when the mean of

regressors is orthogonal to parameter changes; in particular, they should not be applied

when the regressors have mean zero. Note that the BDE- and OLS-CUSUM tests suffer the

same local problem, as shown in KPA and PK. Similarly, if g is periodic with period h and

1/h is an integer, the OLS-MOSUM test again has trivial local power. This local power

deficiency is the same as that of the moving-estimates test (Chu, Hornik, & Kuan (1992)).

(3) If in a model the mean of regressors is a zero vector, one should subtract a nonzero

constant from the regressors, which helps to circumvent the local power problem and

affects only the estimates of the constant term in the model.

Our simulation uses the location model

Vi = Pi + €i, (21)

where c, generated from i.i.d. N{0,1). The results of size simulation are summarized in

Table 2. It can be seen that all the tests are conservative, in the sense that the type I

errors are less than nominal sizes. We also observe that the BDE-CUSUM test has the

least size distortion and that the OLS-MOSUM test has the greatest size distortion in all

cases considered.

[Table 2 About Here]

Consider the alternative of a single structural change:

&=
{

» »l Ji

(22)

\ (3 + A, i = [TA] + l,...,T,

where A/0 represents the jump in the parameter and A characterizes the change point.

The result below follows from Theorems 4.1 and 4.2.

13



:MSr

Tfh
-" A(log(min(A + /i,l))-logA)i-i, (23j

Corollary 4.3 Under the alternative (22), we have

-±=MSr

Th -p A(log(min(A + /i,l))-logA)l^i
VT (To

-^=MS^ h ^p max(min(A(l-/i), /i(l- A)), min((l -/i)(l - A), /iA))!^-,(24)

where ctq is defined in (20).

MSfci/a-M _ 6
\,

'
6

"
. 7 JJ (25)

Without loss of generality, we set A = (To = 1. If /i = 1/2, then

_l_M5r _ p f A(log( A + 1/2) - log A), A < 1/2,

VT T
' 1/2

~

\ A|logA|, A> 1/2

This limit, as a function of A, reaches its maximum at A = 1/2. Note, however, that

the power performance of the BH-MOSUM test is not symmetric about 1/2. Also, when

h = 1/2, we have

-±=MS°TA/2 ^ ^min(A, 1 - A). (26)

The above limit is just a linear interpolation of the points (0,0), (1/2,1/4), and (1,0),

which is the same as that of the moving-estimates test. It is clear that the power perfor-

mance of the OLS-MOSUM test with h = 1/2 is symmetric about A = 1/2.

For the BDE-CUSUM statistic, it can be shown that

—= max \QUt)\ — p max max(Alog(*/A), 0) = Al log Al, (27)

cf. equation (33) of PK. This limit reaches its maximum at A = 1/e w 0.368. It is also

readily seen that

-4= max \QUt)\ -^ p max max(*(l - A), (1 - t)X) = A( 1 - A), (28)

cf. equation (34) of PK. The limit of (28) is clearly symmetric in A. It can also be seen that

the limit in (26) is no greater than the limit in (28) and that both limits have the same

maximum 1/4 at A = 1/2. As the critical values of the OLS-MOSUM test are greater than

those of the OLS-CUSUM test, the latter rejects whenever the former rejects. Therefore,

the OLS-CUSUM test dominates the OLS-MOSUM test for all possible change points.

The results of power simulation under a single structural change with the break point

A = 0.1, 0.2, . .
.

, 0.9 and parameter jumps A = 0.4, 0.6 are summarized in Table 3. These

results basically agree with the qualitative findings of the analytic results above. We also

observe the following.

14



1. The BDE-CUSUM test performs the best when the break point is at 0.1, the BH-

MOSUM test performs the best when the break point is at 0.2, and the OLS-CUSUM

test outperforms the other tests for other break points.

2. When the break point occurs at and after 0.3, the BDE-CUSUM test is dominated

by the other three tests quite significantly.

3. The OLS-CUSUM test beats the OLS-MOSUM test for all possible change points.

4. Owing to the asymmetric performance of the BH-MOSUM test, the BH-MOSUM

test outperforms the OLS-MOSUM test when the break point occurs before 0.5 but

is beaten by the OLS-MOSUM test when the break point occurs after 0.5,

We conclude from these simulation results that, under a single structural change, the

OLS-CUSUM (BDE-CUSUM) test is the most (least) favorable except when the break

point occurs at the beginning of the sample. Also, the BH-MOSUM test performs quite

well when the break point occurs at and before 0.5.

[Table 3 About Here]

Under the alternative of double structural changes:

'

po, i= 1,---,[TA!],

ft=< Jflb + Ai, i = p
,

Ai] + l,...
f
[rAa ] l

(29)

k

/?o + A 2 , i = [TA2] + l,-..,T,

where Ai / A 2 and Ai ^ 0, we may also derive analytic results from Corollary 4.3.

analogous to (25) and (26). However, as we are unable to compute the size-corrected

power function, we do not pursue these technical details. Our simulation is based on

Ai = 0.4,0.6 and A 2 = 0. We fix the first break point at 0.3 and consider the second

break point A 2 = 0.4, 0.5, . .
. , 0.9. These results are collected in Table 4 from which we

can see that the following ordering holds for all models under consideration:

OLS-MOSUM y BH-MOSUM >- OLS-CUSUM y BDE-CUSUM,

where >- is used to denote "'performs better than". In fact, both the BH- and OLS-

MOSUM tests dominate the two CUSUM tests quite significantly. Note also that the

OLS-MOSUM test has the greatest power when the duration of parameter changes equals

the size of moving sum, i.e., A 2 - X\ = 0.5.
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[Table 4 About Here]

Instead of postulating that the parameter jumps suddenly from one regime to another

as in (22), we consider the case that there is a smooth transition between two regimes:

A,, i= l,---,[rA x ],

A) + A„ i = [TAi] + l
I -..,[TAa] l (30)

Aj + A, i = [TA2 ] + l,---,r,

where

A, = A
- [TAx]

[rAal-ITAi].

That is, during the transition period between [T\\] and and [TA2], the parameter j3i

increases linearly from /3o to a new level j3q + A. We simulate the case where A = 0.4,

0.6 and transition periods 0.3-0.5, 0.3-0.7, and 0.3-0.9. These results are summarized in

Table 5. We find that the OLS-CUSUM (BDE-CUSUM) test is the most (least) favorable

in the models considered, while the BH-MOSUM test also performs very well. These

conclusions are similar to those under a single structural change.

[Table 5 About Here]

We further consider the case that the parameter first has a sudden jump and then

gradually returns to its original level. The model is

ft, »= 1,---,[TA 1 ],

/Jo + A t , i = [TA1 ] + l,-.-,[TA2 ],
(31)

A>, i = [rA2] + !,-••, T,

where

VrA 2 -rA 1 yV[rAa]-[TAi];'

This model may be more realistic than the model of double structural changes (29), because

an economic relationship may change after a sudden shock but will gradually adjust back

to the original level. In this simulation, A is taken to be 0.4 and 0.6, and the change

periods are again 0.3-0.5, 0.3-0.7, and 0.3-0.9. These results are summarized in Table 6.
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The conclusions here are similar to those under double structural changes. It can be seen

that the OLS-MOSUM (BDE-CUSUM) test is the most (least) favorable and that the

BH-MOSUM test performs better than the OLS-CUSUM test when the change period is

long.

[Table 6 About Here]

Harvey (1975) proposes a different variance estimate for the CUSUM test:

t=k+l

where e is the average of e x . We have found that the general conclusions of power perfor-

mance are not altered if this variance estimate is used.

5 Summary

In this paper, two MOSUM tests for parameter constancy are proposed, and their asymp-

totic null distributions are characterized analytically. In particular, a formula representing

the boundary-crossing probability of the increments of a standard Wiener process is de-

rived. Our analytic result shows that both the MOSUM tests are consistent and have

non-trivial local power against a general class of alternatives. Our simulation results in-

dicate that the BDE-CUSUM test performs quite poorly under various alternatives and

that the OLS-CUSUM test usually outperforms other tests when the parameter basically

obeys two regimes, whether the transition between these two regimes is abrupt or smooth.

We also find that the BH-MOSUM test can complement other CUSUM tests if a single

structural change is present, and the OLS-MOSUM test dominates the other tests when

the parameter first changes to a new level and then returns to the original level. However,

we have only obtained the boundary-crossing probability for the MOSUM process such

that the size of moving sums equals one half of the entire sample, i.e., h = 1/2. The

general case where h < 1/2 is currently under investigation.
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Appendix

Chu, Hornik, & Kuan (1992) prove the following lemma.

Lemma A Let Xj be a sequence of random processes in D([0, l])
k converging in distri-

bution (with respect to the Skorohod topology) to a random process X in C([0,l]) /c
(i.e.,

the limiting process has continuous paths). Further, let < hj < 1 be a sequence converg-

ing to < h < 1, and let kj : [0,1 — h] — [0, 1 — hx] be a sequence of maps such that

suPo<t<i-/i \

KT{t) — t\ tends to zero. Then, if Zt is the random process on Z}([0, 1 — h])
k

given by

ZT (t) = XT (KT (t) + hT ) - XT (KT (t)),

we have ZT => Z, where for < t < 1 - h, Z(t) = X{t + h) - X(t).

Proof of Theorem 2.1. We apply Lemma A by setting Xj = Qj, X = W, Kr{t) —

[NT t]/r and hj = [rh]/r. Clearly, [r/i]/r —» /i, and

[Nrt]

T

so that sup0<i<1 _^ |«t(0 — t\ —> as T —
> oo. It follows from Lemma A that

=> {W(t + h) - W{t), < t < 1 - h) .

This proves the first assertion. In light of (5), the second assertion follows immediately

from the continuous mapping theorem.

Proof of Theorem 2.2. The assertions also follow from Lemma A and the continuous

mapping theorem, as in the proof of Theorem 2.1.

Proof of Lemma 3.1: Observe that Wh(t) = W(th)/Vh is again a Wiener process,

hence, as

-Lsm =
W{t + ^" w{t)

= wh{ t/h + 1) - wk{t/h),

we obtain by writing u = t/h that

max \£rk (t)\ = max \Wh (u + 1) - Wh (u)\
0<t<l-h 0<u<(l-h)/h

= d max \W(u + l)-W(u)\.
0<u<l//i-l
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Proof of Lemma 3.2: Clearly, AW is zero-mean Gaussian process with continuous

paths. Also, for < s < t < 1,

cov(AW(t),AW{s))

= cov(W(t + l),W(s+ l))-cov(W(t+ l),W(s))

-cov(W(t),W{s + 1)) + cov{W(t),W(s))

= s + l — s — t + s

= l + (s-t).

Thus, AW has linear covariance 1 — |/ — s\. The lemma now follows immediately from

Shepp (1966, pp. 345-347).

Proof of Lemma 3.3: In view of (10) and (11), we must compute

1 [0

V 7T Ja

and

f
e
-(i*+^) 2

/*
<p( u - 2/3 - 2k(f3 - a))du,

V7T Ja

for a = (a — x)j\/2 and (5 = (b — x)/\/2. It is straightforward to see that

I e-(
2x+^ 2

/4<fi(u+V2v)du
Ja

r0

V2^

V2^

\_ f
e
-(2x+y2u) 2 /4

e-("+V
/
2^) 2

/2 du
2tt Jc

^ r
e
-

(S2u+r+V )i/2
e
-(r-v)>/2 du

27T Ja

1 , »a/« rV2(3+x+v i
= JLe

-(*-v
)

2
/2 I JLe

-*2/2 d2
V2 J\/2a+x+v \Z27T

= -L e
- (x" v)2/2

($(^/3 + x + v) - $( V2a + x + v))

.

Setting a = (o — x)/\/2, /? = (&— x)/\/2, and u = y/2k{(3 - a) = fc(6 - a), we have

V 71" -/a

= -l= e-(x
-'c

< 6
- <1 ))

2
/ 2 ($(6 + /t(6 - a)) - $(a + fc(6 - a)))

= <f>(x - k(b - a))($(6 + k{b - a)) - $(a + fc(6- a))),
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and similarly for v = \/2(—/3 — k(/3 — a)) = — (6 — x + k(b — a)),

J_ f
e
-(2*+Siv) 2

/*
(t)( u -2P-2k(f3-a))du

V 71" Ja

= -^=e- (b+k(b- a» 2/2 U(x - k(b - a)) - $(x - (k + 1)(6 - a)))
V27T V '

= 0(6+fc(6-a))($(x -fc(6-a))- $(x - (fc + l)(b - a)

The first assertion (12) now follows by combining these results and rearranging terms.

The second assertion follows immediately form (12) by substituting -b for a.

Proof of Theorem 3.4: Obvious from the text.

Proof of Corollary 3.5: The assertions follow from Theorem 3.4 and (16).

Proof of Equation (17): We have from (14)

lP{AW(t) < b for all < t < 1}

rb

= $(6)
2 -0(6)/ <f>(x)dx

J — oo

$(6)
2

-4>{b)
(
(x$(x) + 4>{x)

b

— oo

= $(6)
2 - 0(6)(6$(6) + 4>{b)). D

Proof of Theorem 4.1: The proof of this theorem relies heavily on the results in the

proof of Theorem 2 of KPA. If c = 1/2, we follow KPA to write

yj = xpfi + *

= xJ'{3o + ^=xJ'g(i/T) + e t .

Because x may contain lagged y, hence x t also depends on T under local alternatives.

Under the alternative (18), denote the OLS estimator at time n as

and recursive residuals as e^ = (y^ — a?„ Pn-i)/vn- The cumulated sums of recursive

residuals under local alternatives can be written as

k+M T TTif>TUn ~ *n Pn-l— y
v n=k+l nk+l
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1
fc+™ xl'Po + T-^xT

n 'g(n/T) + en - a^-i
*v^»£i e

— y
k^]

€n -Xt

n n.1 -fiO )

V

k+[rt] ^ /yi y \~ l
i i n-1

'

l l*"-^- 1
^

l l ^~~'
i9(i/T) (33;

The first term of (32) is just Qj{t) under the null hypothesis, hence converges weakly to

W(t). KPA show that the second term of (32) converges weakly to

1 ['
-\i \ g{u)du,
a Jo

and the third terms behaves like

which converges weakly to

— \x / I
—

/ g(v)dv) du.
o Jo V " Jo J

In view of (4), we can apply the above limits to get

/k+[NT t]+[rh] k+ [rt] \

=> SJ(*) + i^jT (g{u)-?-J\(v)dv)du.

This proves the second assertion. If < c < 1/2,

yf = xf% + T'c
xf'g(i/T) + €i,

and

i
fc+M „T _ rr//5Tyc-1/2 x T^ Vn x n Mn-1

-1/2 1 ^t] xJU + r-^^(n/T) + en -a;J'C 1rpC-l/2

&,/¥ ? vT
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C-l/2 1
k

\^ €n -x'n (Pn-l -ft)— T

_J_
fe+™ xT,g{n/T)

k+[Tt]
<{k-i - ft) - xJ'OSJL, - ft

+ Tc-l,2J_ V- X^n-l-ft)-X^(^-l-ft)
(34)

Owing to the presence of T c~ 1
'
2 and c < 1/2, the first term of (34) above converges to

zero; the probability limit of the second term is again

1 f*
-fji / g{u)du.
o Jo

Note that the third term in (34) differs from the third term in (32) by a factor J10-1 / 2
;

but in view of equations (55) and (56) of KPA, they have the same limit

—

A

4' / (
~ / 9i v )dv) du.

<7 Jo \ u Jo J

Hence, for < c < 1/2, the probability limit of T c~ l ^ 2MS^ h is the same as the determin-

istic part of the limit under local laternatives. This gives the first assertion and completes

the proof.

Proof of Theorem 4.2: We use the same notations as in the preceding proof. By

Theorem 2 of PK, we have under local alternatives,

i
[Tt]

—="£(yn- *1@t) => W°{t) + a' l

fi'J°h g(t).

°VT n=l

Hence, the assertions can be proved along the the same line as the proof of Theorem 4.1.

We omit the details.

Proof of Corollary 4.3: By Theorem 4.1,

Now

W) = P Uu)-±J\{v)dv\du

I

0, t < A - h,

Alog((* + /i)/A)A, \-h<t<\,
Alog((* + h)/t)A, t > A,

22



attains the maximum of its absolute value over [0, 1 — h] at t — min(A, 1 — h) with value

Alog(min(A + h, 1)/A)|A|. This proves the first assertion. By Theorem 4.2,

^MSJ, ft
^->

o m^_JW )|.

We observe that /t

t+
g{u)du is non-decreasing in t and

L
*+A max(/i- A, 0)A, t = 0,

g(u) du = <

min(l - A, /i)A, ^ = 1 - h.

Consequently,

•t+h

\J°h9(t)\ =
/t+n rl

g(u)du — hi g(u)du

= max(|[max(/i - A, 0) - h{l - A)]A|, |[min(l - A, h) - h(l - A)]A|)

= max( min(A(l - /i), h(l - A)), min((l - A)(l - h), h\))\A\.

This estabhshes the second assertion.

23



References

Bauer, P., & P. Hackl (1978). The use of MOSUMS for quality control, Technometrics,

20, 431-436.

Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley.

Brown, R. L., J. Durbin, & J. M. Evans (1975). Techniques for testing the constancy of

regression relationships over time, Journal of the Royal Statistical Society, Series B,

37, 149-163.

Chu, C.-S. J., K. Hornik, & C.-M. Kuan (1992). A moving-estimates test for parame-

ter stability and its boundary-crossing probability, BEBR Working Paper 92-0148,

College of Commerce, University of Illinois, Urbana-Champaign.

Harvey, A. (1975). Comment on the paper by Brown, Durbin, & Evans. Journal of the

Royal Statistical Society, Series B, 37, 179-180.

Kramer, W., W. Ploberger, & R. Alt (1988). Testing for structural change in dynamic

models, Econometrica, 56, 1355-1369.

Ploberger, W., & W. Kramer ( 1992). The CUSUM test with OLS residuals, Econometrica,

60, 271-285.

Ploberger, W., W. Kramer, h K. Kontrus (1989). A new test for structural stability in

the linear regression model, Journal of Econometrics, 40, 307-318.

Quails, C, & H. Watanabe (1972). Asymptotic properties of Gaussian processes, Annals

of Mathematical Statistics, 43, 580-596.

Sen, P. K. (1980). Asymptotic theory of some tests for a possible change in the regression

slope occurring at an unknown time point, Zeitschrift fur Wahrscheinlichkeitstheorie

und Verwandte Gebiete, 52, 203-218.

Sen, P. K. (1982). Invariance principles for recursive residuals, Annals of Statistics, 10,

307-312.

24



Shepp, L. (1966). Radon- Nikodym derivatives of Gaussian process, Annals of Mathemat-

ical Statistics, 37, 312-354.

25



Table 1: The Asymptotic Critical Values b* of the MOSUM Tests.

MOSUM
Tests

Probabilities

0.80 0.85 0.90 0.95 0.975 0.99

BH 1.57368 1.67357 1.80345 2.00350 2.18316 2.39798

OLS 1.21803 1.28636 1.37506 1.51151 1.63408 1.78082

Note: The critical values of the MOSUM tests are solved using Mathematica. For the BH-MSOUM
test, we use k = —5, • • • ,5 in the summation of (14), even though we notice that the effective terms

are k = —1,0,1. For the OLS-MOSUM test, we use 5 terms in the summation of (15).

Table 2: Size Simulation of the MOSUM and CUSUM Tests.

Tests a= 5% a = 10%

T=100 T=200 T=300 T=100 T=200 T=300

BDE-CUSUM 4.04 4.14 4.51 8.37 8.67 8.94

OLS-CUSUM 3.26 3.83 4.25 7.57 8.58 8.56

BH-MOSUM 3.64 3.74 4.33 7.71 8.66 8.49

OLS-MOSUM 3.02 3.58 4.00 6.72 7.84 7.96

Note: The numbers in the table are empirical sizes (in percentages). Observations are generated from

i.i.d. iV(2, 1); The number of replications is 10,000.
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Table 3: Power Simulation of the Model (22): A Single Structural Change.

A Parameter CIlange: A = 0.4 Parameter Change: A = 0.6

BDE- OLS- BH- OLS- BDE- OLS- BH- OLS-

CUSUM CUSUM MOSUM MOSUM CUSUM CUSUM MOSUM MOSUM
0.1 23.28 14.36 20.52 12.56 36.92 21.52 32.88 15.84

36.88 19.76 31.56 16.04 63.48 35.28 55.56 23.48

0.2 28.52 27.96 32.76 20.48 49.80 51.36 57.92 33.88

48.96 46.96 54.44 33.60 78.76 81.56 84.56 58.40

0.3 28.16 43.40 41.68 31.04 52.56 73.36 72.92 52.76

49.00 70.24 67.96 51.56 80.24 95.96 94.24 81.92

0.4 25.76 50.80 47.40 39.72 50.60 82.96 78.96 68.60

44.12 77.92 72.00 64.96 80.76 97.84 97.12 93.56

0.5 21.80 53.96 46.76 44.40 42.04 85.24 79.76 77.48

39.84 81.68 75.00 73.60 71.64 98.88 97.68 97.40

0.6 17.16 52.52 35.92 39.20 30.68 82.36 65.08 68.56

32.20 79.28 61.28 66.00 58.00 98.04 91.64 93.92

0.7 13.72 42.56 25.36 31.20 20.56 74.92 46.96 54.28

20.00 67.44 42.68 50.72 39.80 95.64 73.48 81.76

0.8 11.08 28.40 16.24 20.28 12.24 52.20 24.44 32.92

14.20 47.40 22.16 32.92 21.28 81.72 41.88 56.76

0.9 09.04 14.88 10.64 13.00 10.40 24.20 13.32 17.56

10.20 19.68 11.16 16.60 11.76 37.76 15.84 24.92

Note: The first and second numbers in each cell are empirical power (in percentages) of the samples

100 and 200, respectively, based on empirical critical values at 10% level. The other tables use the

same convention. For all power simulations, j3 = 2, e, i.i.d. ./V(0,1), and the number of replications

is 2500.
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Table 4: Power Simulation of the Model (29): Double Structural Changes with X
x
= 0.3.

A
2

Parameter Changes: A
x
= 0.4 A 2

=0 Parameter Changes: A
x
= 0.6 A =

BDE- OLS- BH- OLS- BDE- OLS- BH- OLS-

CUSUM CUSUM MOSUM MOSUM CUSUM CUSUM MOSUM MOSUM
0.4 11.12 11.64 11.92 12.84 13.64 16.12 15.08 17.04

13.04 15.60 14.36 17.84 18.64 21.00 20.64 23.08

0.5 14.88 16.32 19.32 22.20 20.96 26.00 31.00 31.96

21.32 23.72 26.80 31.52 35.40 43.52 50.72 55.40

0.6 16.32 21.12 23.32 31.36 29.20 36.92 42.72 53.80

29.60 34.52 39.00 51.40 53.92 63.60 69.80 82.36

0.7 21.68 23.60 31.04 39.64 37.68 44.52 55.84 70.08

36.80 40.80 51.60 66.76 64.48 73.36 83.44 93.56

0.8 24.28 25.80 38.80 45.64 41.04 45.96 66.36 76.84

40.04 41.72 59.88 71.40 74.20 79.24 91.60 96.60

0.9 25.80 29.88 40.12 39.20 47.04 52.92 67.04 68.04

47.44 53.60 66.92 66.36 77.92 84.32 92.64 92.96
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Table 5: Power Simulation of the Model (30): Smooth Transition between Two Regimes.

Change

Period

Parameter Changes from 2 to 2.4 Parameter Changes from 2 to 2.6

BDE-

CUSUM
OLS-

CUSUM
BH-

MOSUM
OLS-

MOSUM
BDE-

CUSUM
OLS-

CUSUM
BH-

MOSUM
OLS-

MOSUM
0.3-0.5 25.92

44.96

49.64

76.32

44.84

71.68

36.36

62.68

47.44

80.80

80.44

97.20

76.28

96.24

65.56

91.84

0.3-0.7 22.40

37.44

48.48

72.28

40.36

64.08

35.72

59.36

37.12

70.24

77.36

96.04

67.56

93.32

61.84

89.92

0.3-0.9 16.24

25.96

39.84

62.68

29.96

48.28

26.32

45.12

27.88

53.64

65.76

91.08

52.56

82.72

49.00

77.52

Table 6: Power Simulation of the Model (31): Parameter has a Sudden Jump and Then Declines

Gradually.

Change Initial Parameter Change: A = 0.4 Initial Parameter Change: A = 0.6

BDE- OLS- BH- OLS- BDE- OLS- BH- OLS-

Period CUSUM CUSUM MOSUM MOSUM CUSUM CUSUM MOSUM MOSUM
0.3-0.5 10.52 12.40 12.56 12.56 13.00 15.04 14.84 16.88

12.56 15.20 14.40 16.24 17.36 21.08 21.72 25.12

0.3-0.7 13.24 14.92 16.80 17.16 17.28 20.72 21.80 27.88

17.16 19.84 22.28 27.00 30.24 33.96 38.16 50.12

0.3-0.9 15.28 15.88 20.20 22.24 24.32 23.76 32.60 40.32

23.36 23.00 29.52 35.92 39.60 38.96 53.64 66.08
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