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Abstract

Protein-protein interactions (PPI) are involved in virtually every cellular process and thus represent an attractive
target for therapeutic interventions. A significant number of protein interactions are frequently formed between
globular domains and short linear peptide motifs (DMI). Targeting these DMIs has proven challenging and classical
approaches to inhibiting such interactions with small molecules have had limited success. However, recent new
approaches have led to the discovery of potent inhibitors, some of them, such as Obatoclax, ABT-199, AEG-40826
and SAH-p53-8 are likely to become approved drugs. These novel inhibitors belong to a wide range of different
molecule classes, ranging from small molecules to peptidomimetics and biologicals. This article reviews the main
reasons for limited success in targeting PPIs, discusses how successful approaches overcome these obstacles to
discovery promising inhibitors for human protein double minute 2 (HDM2), B-cell lymphoma 2 (Bcl-2), X-linked
inhibitor of apoptosis protein (XIAP), and provides a summary of the promising approaches currently in
development that indicate the future potential of PPI inhibitors in drug discovery.

Keywords: Protein-protein interactions, Linear motifs, Drug discovery, Small-molecule inhibitors, Peptidomimetics,
Peptides as therapeutics

Background

Proteins form the basic machinery of cells, and the precise

interactions between them, known as Protein-Protein Inter-

actions (PPIs), are fundamental for appropriate execution

of all cellular mechanisms. At a high level, we can differen-

tiate two types of interactions: one involving more stable

interactions that establish macromolecular complexes, the

other involving transient interactions, usually between

proteins that mediate signalling pathways and regulatory

process [1].

The former group of PPI are usually mediated by recipro-

cal recognition interfaces at the protein surface – domain-

domain interactions (DDI) – while the latter involves

domain binding to a continuous binding epitope, or

domain-motif interaction (DMI). Generally, a short seg-

ment or an unstructured region of the target protein

contains the recognition motif [2]. These motifs can either

be in terminal regions or within a loop of the target protein,

and they bind to the relatively flat recognition domains

using a small groove (Fig. 1).

This mechanism of recognition is very common in cellu-

lar processes, evidenced by the large number of recognition

domains encoded by the human genome [1, 3–5]. There

are several diseases and syndromes related to the disruption

of specific DMI motifs [6–11]. For instance, Liddle’s,

Noonan’s and Usher’s hereditary syndromes can be caused

by mutations in the recognition motif (WW, 14-3-3 and

PDZ recognition motif respectively) leading to the deregu-

lation of important signalling pathways [12–14]. It has also

been recognized that several viruses, e.g., Ebola and Rabies

viruses, hijack the cell machinery using modified domain

motifs interactions [15–17]. In addition, numerous

oncogenic proteins either contain a motif, or recognise

motif interaction sequences for which inhibition is a

potential cancer treatment [11, 18]. As an illustration,

over-expression of the murine double minute 2 (MDM2)

protein, an E3 ubiquitin ligase, causes a decrease in the

apoptotic activities of p53 through the motif FxxxWxxL

[19, 20]. Other similar examples of proteins with experi-

mentally validated and cancer related DMI include B-cell
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lymphoma 2 (Bcl2) [18], bacuolovirus inhibitor of apop-

tosis repeat (BIR) [21] and Integrin receptors [22].

DMIs have therefore been an attractive group of new

drug targets, because their fine modulation would allow

for numerous desirable therapeutic effects [3, 6, 23–26].

However, despite the enormous interest in targeting

protein-protein interactions, developing such drugs has

proven to be very challenging. The transient nature of

these interactions, moderate affinity, promiscuity of recog-

nition, and binding interface structural properties, are

among the many factors that have contributed to difficulty

in discovering effective inhibitors. This had led to a gen-

eral sense that protein–protein interactions might not be

amenable to inhibition by small molecules [3, 27–32]. A

perhaps instructive counterpoint to this view is the case of

protein kinases: They were also considered to be challen-

ging to target until a few decades ago. This opinion was

based on the high homology of the enzymatic site and the

potent binding of the natural binder. These factors made

it difficult to find molecules specific enough to exclusively

inhibit the kinase involved in disease pathophysiology,

with high enough affinity to compete against the ATP. Of

course, currently, there are numerous kinase inhibitors on

the market. Similarly, researchers have made considerable

progress over recent years in finding drug molecules that

disrupt protein-protein interfaces.

In this review, we describe in detail the challenges of

targeting DMI interactions. Following this we review

successful approaches and discuss how they overcame the

challenges of targeting DMI. We present specific cases,

categorized by the nature of the inhibitor (either small

molecules or biologics). We do not aim to set out the

detailed pros and cons of these two categories here, as

there are many insightful articles that do this elsewhere

[33, 34]. Finally, this review will focus on new methods for

detecting and targeting DMI, promising approaches that

will provide inhibitors in the future.

The challenges of targeting domain motif interactions

Although there is little doubt that small-molecules can

interfere with PPIs, there are currently only a limited

number of published examples of molecules capable to

inhibit DMIs. This limited success is mainly due to the

following factors.

Complex, transient and promiscuous interactions

As is mentioned above, the majority of DMIs are in-

volved in signalling, with moderate binding affinities.

This is important for precise control of the transmitted

signals, but makes their capture difficult, in particular in

high-throughput screens, where the majority of our data

stems from. This, together with the complexity of signal

pathways, makes identification of all the partners of critical

proteins in a key cellular process a challenging goal. While

recent methodologies have helped to provide increasing in-

formation, many such interactions remain undetected and

thus can’t be inhibited for therapeutic effect [35, 36].

Even if a particular interaction or a pathway is identi-

fied, the transient nature and moderate affinity of many

DMIs often leads to a lack of structural information,

which in turn makes it difficult design molecules that

mimic the natural interfaces [25, 26, 37–43]. In many

cases the protein domain of the target motif may also be

naturally disordered, or unfolded unless the conform-

ation is stabilized through binding [5].

DMI interfaces are modular, and present in a wide

number of proteins, cellular localizations and contexts.

Fig. 1 Classification of protein–protein interaction types based on

affinity and stability. Stable complex (PDB: 1 F34) Structure of Ascaris
pepsin inhibitor-3 bound to Porcine pepsin; Transient Domain-Domain
interaction (PDB: 1AY7) Structure of the Ribonuclease SA Complex With

Barstar; Transient Domain-Motif interaction (PDB: 1YCR) Structure of the
MDM2 oncoprotein bound to the p53 tumour suppressor. For each

complex, one of the interacting partners is displayed in blue cartoon
representation, while the other is displayed in grey surface representation
with the interface highlighted in red

Corbi-Verge and Kim Cell Communication and Signaling  (2016) 14:8 Page 2 of 12



This means that proteins involved in protein-protein

interactions can often be ‘promiscuous’ binders –

targeting several proteins using the same motif [2, 44].

They also may be common to other proteins that dis-

play high sequence identity [2, 26, 42, 45, 46]. Finding

inhibitors with an acceptable level of specificity is

therefore difficult to achieve, and often good candi-

dates show unforeseen toxicity by inhibiting multiples

pathways [47].

Structural and physiochemical properties of the interfaces

make them difficult to target with classical screening

methodologies

Typical protein-protein interaction interfaces tend to be

large, flat and mainly hydrophobic, where punctual electro-

static interactions are key for the binding [1, 3, 6, 28]. Only

a few amino acids in these interfaces are critical to the

binding and recognition. These residues, often referred to

as hotspots, are major determinants of affinity and specifi-

city, but at the same time allow flexibility to fit particular

modifications [2, 3, 25, 26, 42, 43].

In general these geometric and physiochemical proper-

ties are incompatible with the classic small molecules

that satisfy Lipinski’s rule of five, with good pharmaco-

kinetics properties. This is shown empirically given the

low ratio of success by high-throughput screening in

identifying compounds [24, 25, 27, 29]. The traditional

HTS compound libraries contain scaffolds without ap-

propriate physicochemical properties to maximize bind-

ing complementary with the PPI interfaces [6, 23, 37,

39]. It is also the case that in order to target these large

and complex interfaces with enough specificity, we need

to design larger compounds (Fig. 2). Increasing size

involves new challenges, for instance the rise of the

Fig. 2 Structural comparison between a drug within Lipinski’s rules (Lisinopril), a kinase inhibitor (Imatinib) and finally a protein-protein interaction
inhibitor (ABT-263). Panel a (PDB: 1O86); Crystal structure of the drug Lisinopril in complex with angiotensin-converting enzyme. Lisinopril inhibits

angiotensin-converting enzyme. This drug is used to treat hypertension and symptomatic congestive heart failure, and to prevent progression of
renal disease in hypertensive patients with diabetes mellitus and microalbuminuria or overt nephropathy. Angiotensin-converting enzyme is

represented in cartoon representation colored in grey with the active site in red. The drug is shown in licorice representation. Panel b (PDB:
2HYY); Crystal structure of the Human Abl (Abelson murine leukemia viral oncogene homolog 1) kinase domain in complex with the inhibitory
drug Imatinib (licorice representation). Imatinib, Gleevec (USA), or Glivec (Europe/Australia) is a kinase inhibitor used to treat chronic myelogenous

leukemia (CML), gastrointestinal stromal tumours (GISTs) among other malignancies. Abl kinase domain protein surface is colored in grey with the
active site in red. Imatinib is represented in licorice representation. Panel c (PDB: 4LVT); High-resolution crystal structure of the drug ABT-263
(licorice representation) bound to Bcl-2 (grey surface with interface highlighted in red). ABT-263 or Navitoclax is an orally bioavailable small

molecule inhibitor of Bcl-2 family proteins currently in clinical trials for the treatment of lymphomas and other types of cancer. Bcl-2 is shown as
a grey surface, where the motif recognition interface is highlighted in red. ABT-263 is represented in licorice in the complex. A 2D representation

of each drug is displayed in the lower section of the figure
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entropic penalty to bind (less potential to reach lower

affinities) [33, 48] as well as poor cell delivery [3, 28,

30–32].

Reaching the interactions is not easy. Intracellular targets

A common scenario is that a lead shows promising

binding affinity, but is not active in cell-based or in vivo

assays. One example is the inhibitor for the transcription

factor HIF-1 PAS domain [23]. In order to target intra-

cellular interactions, the inhibitor must be capable of

both surviving in an environment exposed to proteases,

immune response, etc., and crossing the cell membrane.

As mentioned, DMI interfaces tend to be relatively large,

and thus their inhibitors are often large as well (more

complex molecules, even peptides or peptidomimetics).

These molecules have more difficulties in passively cross-

ing the membrane or surviving in the cell. In addition,

DMI are highly localized inside the cell, adding an extra

challenge for the molecule to hit its target with enough

local concentration to trigger a therapeutic response.

Main methodologies to inhibit PPIs: targeting protein-

protein interactions with small molecules

Classic drug development works with small, chemically

manufactured active molecules. These molecules have a

wide range of desirable properties for drug discovery.

For instance, they are relative easy to synthetize and

manipulate, and in general they have a good cellular

uptake. However, these molecules tend to bind better

with smaller and deeper grooves than the DMI interfaces

[2]. Therefore targeting DMI with small molecules

required an evolution in classical methodologies to fit

these new challenges [29].

This has been accomplished by increasing the complex-

ity of drug molecules, in order to fit the properties and

sizes of the DMI interfaces. At the same time, growth and

refinement of the lead was carried out with a complete

structural description of the natural binding motif. Precise

identification of the motif, and of hot spots involved in the

interaction, were critical to maximize specificity and affin-

ity while keeping the compound size reasonable.

Targeting DMI with HTS. Example MDM2/p53

In many cases there is little information available on the

targets, and High Throughput Screening (HTS) is a more

effective approach. However, as we mentioned, HTS has

shown limited success against PPIs due to a bias of scaf-

folds in the compound libraries [6, 23]. Notwithstanding,

a specific inhibitor for the MDM2/p53 interaction was

discovered. Success was partially due to the fact that

successfully inhibited interactions are domain-motif inter-

actions, and the resulting molecule was mimicking the

peptide motif. Thus through a considerable efforts in in

medical chemistry and careful structural considerations, a

high affinity binder was generated [30–32].

The tumor-supressor gene p53 induces cellular apop-

tosis in response to DNA damage, avoiding possible

tumorigenesis. Although many human cancers have a mu-

tation or deletion in p53, in a significant proportaion of

cancers the function of p53 is inactivated by a deregulated

expression of the onco-protein, HDM2 (an E3-ubituitin

ligase also know as MDM2), promoting tumorigenesis

and poor response to cancer therapy [20]. Therefore, the

interaction MDM2/p53 has been a potential target for

chemotherapeutics agents. MDM2 binds to a mostly

hydrophobic 15 reside α-helix region at the C-terminus of

p53. Alanine scanning of the 15 residues in p53 identified

3 residues with a major contribution to the binding;

PHE19, TRP23 and LEU26 [49]. The crystal structure of

MDM2 bound to the p53 helix reveals how these residues,

in the centre of the interface, fit in a small pocket in

MDM2. The existence of such a pocket on MDM2 raised

the expectation that small compounds would block the

interaction. A subsequent HTS and a medicinal-chemistry

effort at F.Hoffman-LaRoche led to the discovery of

several inhibitors. The most promising one was Nutlin,

which mimics interactions of the p53 peptide in the

pocket of MDM2. Despite early promise, Nutlin was ul-

timately unsuccessful in clinical trials [50]. However, the

crystal structure of this small compound, together with a

detailed description of the binding motif, facilitated the

development of new inhibitors. Recently, using this infor-

mation as template, in a combination of rational design,

computational modelling, structural screening and bio-

physical techniques, several new classes of inhibitors were

developed. These included spiroxindole-base molecules

(MI-219 and its posterior improved version MI-888) [51],

morpholinones (AM-8553) [52], piperidiones (AMG-232)

[53] and sulphoanomide (NSC279287) [54]. All of them

had sub-nanomolar affinity to MDM2, good pharmakoki-

netic properties, tumour suppression and are currently in

different phases of clinical trial [55].

Fragment-based methodologies. Example Bcl2/BH3

A successful alternative to HTS are fragment-based drug

discovery strategies. These methodologies are based on

identifying small chemicals, which may bind weakly at

different spots on the target interface, and then combin-

ing them to produce a single lead with higher affinity

and specificity. These approaches allow the construction

of larger, more complex compounds, more likely to block

specifically DMI interfaces. For instance, using Fragment-

based drug discovery a potent inhibitor for B-cell lymph-

oma 2 (Bcl-2) has been discovered.

The Bcl-2 family proteins are important regulators of

the cellular apoptosis mechanism. Aberrations in this de-

cision mechanism can enable cancer cells to evade death
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[56]. For instance, overexpression of the antiapoptotic Bcl-2

genes is frequently observed in solid human tumours.

Inhibition of relevant members of this family therefore

represents a novel and promising strategy for new types of

anticancer drugs. A key element in the signalling process of

Bcl-2 family members is the direct binding of a protein

containing a BH3 domain (Bcl-2 homology domain 3) [18].

Their interaction mode consists of a slight groove

on the multidomain protein, serving as a receptor site

for docking of the signature α-helical BH3 domain.

For example, Bcl-2 and Bcl-XL inhibit apoptosis by

binding a 16 residues α-helical portion of the pro-

apoptotic protein Bcl-2 antagonist/Killer (BAK) or a

26 residue α -helix portion of Bcl-2 antagonist of Cell

Death (BAD). This structural information was com-

pleted by identification of the hot-spots at the inter-

face through alanine mutational scanning [57] Much

effort was then focussed on the development of synthetic

inhibitors of these protein-protein interactions using small

molecules that mimic the interactions of the α-helices of

BAK and BAD. Classical approaches, such as high-

throughput screening of a historical compounds, failed to

provide high-affinity compounds [29], and several other

approaches have been developed with only partial suc-

cess [29, 58]. Finally, a dual inhibitor of Bcl-2 and Bcl-

XL was discovered by Rosenberg, Fesik and co-workers

[4, 59–62]. The successful strategy was to apply what

has since become known as fragment-based drug dis-

covery [38, 41, 63, 64]. The methodology consisted of

identifying two or more simple molecules that bind

adjacent, but without overlapping at the interface, and

use the structural information provided by these frag-

ments as a guide to build one unique compound. Ro-

senberg and Fesik used nuclear magnetic resonance

spectroscopy for both screening and connectivity-guid-

ing aspects in discovery of the high-affinity organic com-

pound, ABT-737 (obatoclax). This small molecule binds

to the BH3 domains with high affinity and inhibits inter-

action with the pro-apoptotic proteins BAX and BAK. It

was also active in cell-based assays and in tumour xeno-

graft models in animals. ABT-263 (navitoclax), a derivative

of the former molecule is currently in clinical trails

(Fig. 2c). Recently, ABT-199 was developed by Sours and

coworkers [65]. This structure based-redesigned version

of ABT-263 has shown suppression of tumor growth and

a higher specificity for Bcl-2 without losing affinity [66].

However, the enormous tumour lysis after treatment with

ABT-199 caused serious complications in patients, leading

to suspension of the clinical trials and reconsidered doses

and route of administration [67]. Recently, new clinical

trials reported promising results and ABT-199 is close to

FDA approval. This will be a real step forward in chronic

lymphocytic leukemia (CLL), and potentially several other

forms of leukemia, lymphoma, and myeloma.

Main methodologies to inhibit PPIs: targeting protein-

protein interactions with biologics

In the previous section we showed how natural protein

interactions can be used as a template to design syn-

thetic molecules that imitate the natural interactions. It

is also true that peptides and proteins are themselves a

viable alternative to small compounds for targeting PPI

motifs, because of their high selectivity, low toxicity and

predictable metabolism [2, 3, 30–32, 34, 44].

Despite these features and the number of available ad-

vanced methodologies for their synthesis and study, pep-

tides have many intrinsic limitations for use as drug

molecules. Limitations include lack of proteolysis stability,

relatively low affinity, poor cell-penetrability and short

plasma half-life [24, 25, 30, 34, 68, 69]. Fortunately, there

are many methodologies to address these issues and pro-

vide promising drug candidates.

Peptidomimetics. Example IAPs

One promising approach is the design of peptidomi-

metics molecules. These molecules typically derive from

existing peptides and tend to conserve a protein-like

chain, but with its chemical structure modified in order

to adjust the molecular properties to become more

drug-like. These modifications involve the introduction

of non-canonical amino acids [70–72], chemical stapling

α-helix conformations [45, 50, 73–75], modifying the

chirality [76–79] and cyclization [80–83].

The Inhibitors of apoptosis (IAPs) proteins are a family

of negative regulators of apoptosis. IAPs, first identified in

baculoviral genomes, bind to caspases – enzymes re-

sponse of cellular death, through physical interactions

mediated by the baculovirus IAP repeat domain (BIR) [21,

31, 32]. These domains recognize and inhibit caspase

activity, stopping cell death. The most characterized mem-

ber is X-linked inhibitor of apoptosis protein (XIAP),

which appears to be frequently deregulated in cancer.

Thus, inhibition of the BIR domain-caspase interaction

becomes a promising approach towards treating cancer.

XIAP contains three consecutive BIR domains at the N-

terminus, but only two are involved in caspases inhibition.

BIR2 binds and inhibits Caspase-3 and Caspase-7, and

BIR3 is involved in Caspase-9 inhibition. Nevertheless,

repression of XIAP activity can be achieved by the en-

dogenous mitochondrial protein; second mitochondria-

derived activator of caspases (Smac/DIABLO). Smac/DIA-

BLO bind at BIRC3 domain of XIAP releasing capases and

re-activating apoptosis using a conserved tetrapeptid motif

(AVPI) [32, 68, 84–86]. The isolated 4-mer peptide derived

from Smac also binds to XIAP with 3 digit nanomolar

affinity, and the crystal structure revealed the tetrapeptide

binds to a surface groove present in the BIR domain [68,

73]. Following the discovery and characterization of the

Smac sequence, several groups used the information to
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develop new peptides capable of binding to XIAP with

refined affinity [73, 87, 88]. The importance of each pos-

ition was also established from peptide libraries. However,

the early short peptides, though displaying relatively high

affinity, lacked favourable physiochemical properties, and

efforts to find a lead by HTS were ineffective [73].

A successful approach was to develop the tetra-

peptide into peptidomimetic molecules. A systematic

examination of peptide tolerance to substitution by each

amino acid for non-canonical amino acids led to differ-

ent compounds with more drug-like properties [84–86].

Shortly after the first reports appeared detailing Smac-

derived peptidomimetic, a set of patents emerged that

disclosed dimeric derivatives of these peptidomimetics.

The dimeric Smac peptidomimetics are capable of inter-

acting simultaneously with BIR2 and BIR3 domains of

XIAP to induce a more potent response than the mono-

valent [73]. Currently, four compounds (AEG-40826/

HGS-1019 Aegera therapeutics; AT-406, Debiopharm

and Ascenta Therapeutics; LCL-161, Novarits; GDC-

0152, Genentech) are in different phases of clinical trial

[29, 73, 87, 88] (Fig. 3a).

Fig. 3 Targeting Protein-Protein interactions with Biologics. Panel a; Crystal structure of the complex of Smac homodimer protein with two XIAP
BIR3 proteins (PDB: 1G73). The XIAP proteins are shown as a grey surface, with the motif recognition interface highlighted in red. The dimeric
Smac is represented in blue cartoon representation. Next to the complex, the 2D molecular representation of the peptidomimetics of Smac in

clinical trials is shown. Panel b. Structure of the Stapled p53 Peptide (SAH-p53-8) Bound to Mdm2. (PDB: 3V3B). MDM2 protein surface is displayed in
grey with the motif recognition interface highlighted in red. The Stapled peptide is shown as a cartoon representation in blue and the covalent
linkage is displayed in licorice representation. Panel c. Structure of the αvβ (3) integrin bound to the Arg-Asp-Gly (RGD) motif of fibrinogen.

(PDB: 2VDR). The integrin surface is colored in grey, and the recognition motif interface is highlighted in red. The Fibrinogen binding motif is
represented in licorice. Below the complex structure, a 2D representation of the protein-protein interaction macrocyclic inhibitor Cilengitide

is shown
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Stapled peptides example MDM2/MDMX

There are several good inhibitors of the complex MDM2-

p53, leading to restoration of p53 activity. However, these

molecules are only active against MDM2, and some authors

have argued that dual inhibitors of MDM2 and MDMX are

needed to expand the range of tumours that can be treated.

[89]. MDMX, also known as MDM4, shares a high degree

of sequence similarity with MDM2 and it is another nega-

tive regulator of p53 activity [90]. Despite its homology

with MDM2, the mechanism of MDMX is not well under-

stood [91, 92]. Nutlin and other small molecules are

incapable of disrupting MDMX-p53 complexes; the ap-

pearance of chemoresistance appears to be a result of

MDMX overexpression [8, 19, 93].

While the evidence suggests that p53 binds to MDMX

through the same interface, designing a small molecule able

to target both proteins proved to be a challenging goal. The

most successful strategy was to convert the C-terminal p53

α-helix from the native p53– MDM2/X complexes to a

more stable molecule by peptide stapling [89, 94].

The term “staple” reflects the covalent linkage of two

non-consecutive α −methyl- amino acids through its all-

hydrocarbon tethers. This methodology was initially devel-

oped Gubbs and coworkers to create macrocyclic peptides

[95] and refined by Verdine and coworkers with the

intention of stabilizing helical peptides [75]. The α-helix

represent a common structural motif in protein-protein

interactions, but a synthetic helical peptide can lose this

secondary structure, decreasing the affinity through en-

tropic affects. The stapled helices have been proven to

maintain their structure and biological activity, and at the

same time increase cellular uptake and protease resistances,

all of them favourable drug-like properties [96].

Bernal and coworkers applied this strategy of chem-

ical stabilization to the α-helix peptide of p53, where

they designed and studied 16 different variants [97,

98]. The variant SAH-p53-8 was demonstrated to

have dual activity against MDMX and MDM2. Later,

after some iteration over SAH-p53-8, Sawyer and co-

workers reported an enhanced version with drug-like

properties [99]. This new stapled-peptide has shown

antitumor activity where MDM2 and MDMX were

overexpressed, both in cell assays and in vivo. In

addition, it exhibited enhanced cell penetration and in

vivo half-life. In 2013, Aileron Therapeutics com-

pleted the first phase of clinical trial for a stapled

peptide and it is currently in a further stage of trial

[96] (Fig. 3b).

As mentioned above, helices are a popular structural

motif in protein-protein interactions and therefore the

potential of this approach to discover new inhibitors is

really promising. Not only can peptide affinity be im-

proved, but also its pharmokinetic properties. Therefore

numerous studies have proposed stapled peptides as lead

molecules, including BH3, Ras-Sos and other oncogenic

targets [100–103].

Macrocycles. Example cilengitide

Linear peptides in solution can explore an enormous

number of conformations. This entropic behaviour is

often related with poor selectivity and affinity because

there is a large entropic penalty to adopt the bioactive

conformation [104]. One strategy to reduce the con-

formational space is cyclization of the peptide, analogous

to stapling above. A collateral effect of cyclization is that

cyclic peptides show higher resistance to proteases [58].

Development of the Cilengitide is an example of a success-

ful application of this approach. In addition to cyclization,

other modification were made that introduced conform-

ational restrictions, to increase affinity and specifity of the

pentacyclic peptide to targeting αvβ3 and αvβ5 integrin

Receptor. This example is remarkable since the structure-

activity development of this lead was carried out mainly

without any structural information of the complex [82].

Integrins are heterodimer receptors that are crucial in

cell-adhesion, providing signalling into the cell in case of

proper adhesion. Among other processes they play a key

role in the angiogenesis and metastasis of solid tumours

being a promising target for cancer therapy [22]. A sub-

group of the integrins recognise and bind proteins in the

extracellular matrix through the tripeptide motif, Argin-

ine, Glicine and Glutamic acid (RGD) [82]. While flanking

amino acids appear unimportant for binding, Integrins

can discriminate between different targets, suggesting a

secondary mechanism of recognition. It was later shown

that integrin receptors recognize a distinct conformation

of the RGD motif, modulated by the target protein [82].

Preliminary experiments with disulphide cyclized peptides

showed how the cyclic peptides inhibit specifically only

vitronectin mediated adhesion and do not affect fibronec-

tin adhesion, while the linear peptide indiscriminately

inhibited both processes [105]. Nevertheless, these experi-

ments validated the conformation-dependent recognition

mechanism, despite a lack of structural information on

binding.

In order to investigate which conformations were pre-

ferred by the Integrins, Kesseler and collaborators, explored

the conformation space of pentapeptides (RGDFV), and

hexapeptides (RGDFVA) containing the binding motif.

They controlled the conformational space of the library by

generation of peptides where one amino acid was a system-

atically substituted by its D-form. This substitution, pro-

motes a conformational change without changing the

chemical nature of the sequences. This approach, later

named “spatial screening”, led to the discovery of a specific

inhibitor for αvβ3 integrin Receptor, a promising start-

ing point to discovery a new drug [106]. This cyclic-

pentapeptide was used as a framework for a wide range
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of different substitutions, and finally introduction of N-

methyl amino acids in the sequence led to the discovery of

Cilengitide (Fig. 3c). Unfortunately, recent results from

phase III clinical trials showed a non-significant increase in

patient survival in patients diagnosed with glioblastoma

and methylated MGMT (O6-methylguanine–DNA methyl-

transferase) gene promoter. Currently Cilengitide has en-

tered in phase II trials with glioblastoma patients with

unmethyleted MGMTgene promoter [107].

Outlook and new trends

Screening

Perhaps the most important lesson learned from success-

ful PPI inhibitors is the value of quality structural informa-

tion describing the interaction, and accurate knowledge of

the binding motif. When little information about the

targets is available however, HTS is the better approach.

As already mentioned, HTS has shown limited success

against PPIs due to a bias of scaffolds in the compound

libraries [6, 23]. For this reason, current libraries are

focussed on maximizing the molecular complexity and di-

versity rather than complying with the rule of five [25, 26,

38, 41, 42]. These new libraries of natural and synthetic

compounds have demonstrably been a more efficient

approach for the discovery of small molecules capable of

interference with PPI motifs [3, 43, 60–62, 108, 109]. Re-

cently, a library of 10,000 compounds was screened for

potential inhibitors of Min1-PDZ (involved in the synaptic

function and target to treat pain) identifying several lead

molecules [110]. Lately, several companies, e.g. ASINEX,

OTAVA Chemicals, made commercially available libraries

specifically designed to target DMI. Moreover, there are

successful studies using virtual compound libraries

specifically designed to target a family of domains, as

shown by Optiz et al. targeting proline rich binding

domains [111, 112].

In parallel, screening methodologies are evolving as

well to achieve better ratios of success targeting PPI

motifs. As we explained in a former section, fragment

based screening has shown as a successful approach tar-

geting DMI. However, This methodology requires high

fragment concentrations for a detectable occupancy, in-

creasing the possibility of unspecific interactions and

false positives [113]. This limitation can be overcome

with a variant of fragment based screening known as

Tethering. This methodology, first reported by Erlanson

and coworkers [114], relies on the amplification of

fragment affinity, by reversible covalent bond formation

between fragment and target. Tethering methodology re-

quires both, a library of fragments with a disulfide group,

and a cysteine residue next to the interface. The screen

is then performed under moderately reducing conditions

to promote thiol-disulfide exchange with the target. A

fragment with favourable interactions with at interface

will then stay at the interface longer than other frag-

ments, shifting the equilibrium and becoming the most

abundant species. Mass spectrometry analysis can subse-

quently reveal which fragment has the highest protein

affinity [115]. For instance, Braisted and co-workers

employed the tethering approach to identify small mole-

cules capable of binding to IL-2 (interleukine-2), and

modulating the activity of its hetero-trimeric receptor.

They prepared and validated 11 different cysteine mutants

to cover the entire interface of this DDI, and screened a

library of 7000 fragments for each of them. By assembling

all of the information provided by tethering screening,

SP4206, a compound with nanomolar affinity, was finally

synthetized [115]. Furthermore, tethering has been shown

to be a valid approach for targeting both DDI and DMI in-

teractions. Wang et al. have reported the application of

tethering to discover small molecule ligands for the KIX

domain of the master co-activator CBP/p300.9 [116].

Nonetheless, continuous improvement is an on-going

effort to improve this methodology. Recently, Lodge et al.

have shown how tethering can be performed rapidly and

inexpensively using a homogenous fluorescence polarization

(FP) assay that detects displacement of a peptide ligand

from the protein target as an indirect readout of disulphide

formation [117].

Another approach is to screen directly using cyclic

peptide libraries genetically encoded in cells [81, 118].

The classic two-hybrid system can be altered to link cell

growth to the disruption of a complex rather than the

complex formation, a method called reverse two-hybrid

system (RTHS). In parallel, cells are transformed with an

extra vector that encodes for a peptide of a combinator-

ial library and the necessary proteins to perform the

intracellular synthesis of cyclic peptides (SICLOPPS) [81,

118]. This methodology allows the discovery of cyclic

peptide-base dissociative inhibitors through the combin-

ation of SICLOPPS technology with RTHS. It has been

applied to different proof of concepts resulting in cyclic

peptides with comparable affinity to known inhibitors,

and others with unprecedented binding modes [81, 118].

Peptides and peptidomimetics – and even proteins –

present a completely new set of challenges to solve, but

there are proposed solutions with promising preliminary

results. Probably the largest challenge for employing bio-

logics as inhibitors of intracellular interactions is cellular

uptake.

Delivery and pharmacokinetic properties

Recent discovery of potent therapeutic molecules, which

did not reach the clinic due to poor delivery and low

bioavailability, has made the delivery of such molecules a

key issue in therapeutic development. A wide range of

different strategies are being explored to achieve this, as

such, lipid-derived compounds (pepducins and liposiomes)
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[119, 120], polymeric nanoparticules [121], inorganic car-

riers [122, 123], super charged proteins [124], deactivated

pathogen toxins [125, 126] and, most commonly, cell pene-

trating peptides (CPP) – like the transactivatior of tran-

scription (TAT) of HIV-1 [127, 128]. CPP mechanisms are

still poorly understood and the subject of strong contro-

versy [127, 129]. Other strategies that have proven success-

ful are peptides with reversed chirality and stapled peptides.

These approaches not only improve cell permeability, but

also reduce proteolysis and enhance metabolic stability [27,

29, 59, 130]. Finally, another limitation arises from the poor

pharmacokinetic properties of these types of molecules.

Peptides present low toxicity and predictable metabolic

properties, but are easily degraded either in cells or blood.

The addition of non canonical aminoacids, D-forms, and

punctual modifications as such as N-Methylation of peptide

bonds to the candidates, have proven to be powerful ap-

proaches in increasing peptide drug potential [131–133].

However, target identification still presents a major bottle-

neck in the discovery of new inhibitors [58]. Screening

methods to discover new targets modulated by DMIs.

Identification of new targets

The initial research of a drug, often occurring in aca-

demia, generates data to develop a hypothesis that the

inhibition or activation of a protein or pathway will re-

sult in a therapeutic effect in a disease state. The out-

come of this activity is the selection of a target, which

may require further validation prior to progression into

the lead discovery phase in order to justify a drug dis-

covery effort.

The complexity of PPI networks make it difficult how-

ever, to identify clear targets, even using high-throughput

methods such as yeast two-hybrid (Y2H) or affinity-

purification mass spectrometry (AP/MS). While other

methodologies, like peptide arrays, split-protein systems

[134, 135], and peptide-phage display [136] can identify

DMI, they too have their limitations. Peptide arrays have

very limited coverage, because the number of peptides

that can be printed on an array and conventional phage

libraries display can identify biophysically optimal ligands

of modular domains, but this approach can exhibit a

hydrophobic bias and may not be ideal for detecting

natural binders [137]. Thus, there is a need for alternative

approaches for the identification of relevant domain–

motif interactions.

Ivarsson and coworkers use custom oligonucleotide

arrays to construct defined phage display libraries com-

prising the entire human and viral C-terminuses found

in Swissprot. Oligonucleotides encoding the c-terminal

heptapeptide sequences were printed on microarray

slides, PCR amplified, and cloned into a phagemid de-

signed for the display of peptides fused to the C-

terminus of the M13 major coat protein p8. The libraries

were used in binding selection with PDZ domains and the

selected pools were analysing by next-generation sequen-

cing on the illuminia platform. This approach allowed

them to screen several orders of magnitude larger than

peptide arrays, avoid the bias inherent in random explor-

ation, and scan natural interactions. Using this approach

they identified known and novel human and viral ligands,

and validated candidates in vivo and in vitro [40].

Conclusions

Discovery and subsequent refinement of PPI inhibitors

with strong affinity has proven to be a challenging, though

not impossible, quest. A number of inhibitors were discov-

ered by close examination of the interactions and precise

identification of DMI hot-spots. Likewise, the adaptation

of techniques used to investigate specific characteristics of

PPIs has been critical to the successful identification of

new inhibitors.

Several inhibitors for DMI are currently in the late stages

of clinical trial and more are expected to follow. Further-

more, inhibitors that failed during late stages of clinical

trials, such as Nutlin and Cilengitide, have a second chance

to be used in combination therapies [138–140].

New approaches and new targets are currently emerging,

and new developing technologies of the post-genomic era

may yield more advanced methodologies for PPI inhibition.

In the coming decades we may plausibly reach the capabil-

ity to disrupt PPI networks and modulate signalling path-

ways at libitum, and develop therapeutic solutions to

individual pathologies.
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