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Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of
generating a large repertoire of functional states. We detect characteristic network building blocks (structural and
functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly
increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the
diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as
a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a
broad spectrum of structural measures, including small-world attributes. These results are consistent with the
hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support
highly efficient integration of information.
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Introduction

The complex vertebrate brain has evolved from simpler
networks of neurons over a time span of many millions of
years. Brain networks have increased in size and complexity
(Jerison 1973; Butler and Hodos 1996; Kaas 2000; Krubitzer
2000), as have the flexibility of interactions with the
environment and the range of potential behaviors that can
be generated (Changizi 2003). Most of the rules governing the
evolutionary process toward more complex brains are still
unknown, although the central roles of modularization (Kaas
2000), conservation of wiring length (Cherniak 1994; Chklov-
skii et al. 2002), and of the elaboration of network
connectivity (Laughlin and Sejnowski 2003) are becoming
increasingly evident.

Systematic investigations of neuronal connectivity in the
nematode Caenorhabditis elegans (White et al. 1986) and of
large-scale interregional pathways in the mammalian cerebral
cortex of rat (Burns et al. 2000), cat (Scannell et al. 1995;
Scannell et al. 1999; Hilgetag et al. 2000; Kötter and Sommer
2000), and macaque monkey (Felleman et al. 1991; Young
1993; Hilgetag et al. 2000; Stephan et al. 2000) have
demonstrated that the topology of these networks is neither
entirely random nor entirely regular. Instead, analysis of
structural and functional data has shown (Hilgetag et al. 2000;
Sporns et al. 2000; Stephan et al. 2000; Sporns and Zwi 2004)
that these networks can be characterized by a high degree of
clustering, with short path lengths linking individual compo-
nents, thus exhibiting small-world properties (Watts and
Strogatz 1998; Watts 1999) as do many other complex
networks (Strogatz 2001; Albert and Barabasi 2002). These
structural attributes are instrumental in generating func-
tional specialization (Zeki 1978; Passingham et al. 2002) and
functional integration (Bressler 1995; Tononi et al. 1998;
McIntosh 2000; Varela et al., 2001; Friston 2002), and they
support a large repertoire of complex and metastable
dynamical states (Bressler and Kelso 2001; Sporns and Tononi
2002; Sporns 2004). Fluctuating and distributed patterns of
dynamical interactions among functionally specialized areas
result in rapid switches in functional and effective connec-
tivity (McIntosh et al. 1999; Büchel and Friston 2000;
McIntosh et al., 2003; Brovelli et al. 2004). The structural

and functional anatomy of brain networks reflects the dual
challenges of extracting specialized information and integrat-
ing the information in real time (Tononi and Sporns 2003).
What rules underlie the organization of the particular

types of networks that we see in complex brains? It is likely
that, as networks become more complex, already existing
simpler networks are largely preserved, extended, and
combined, while it is less likely that complex structures are
generated entirely de novo. One hypothesis states that
complex and highly evolved networks arise from the addition
of network elements in positions where they maximize the
overall processing power of the neural architecture. This
could be achieved by increasing the number of existing
processing configurations or by introducing new processing
configurations that add to the robustness or range of
cognitive and behavioral repertoires. We may gain insight
into the rules governing the structure of complex networks by
investigating their composition from smaller network build-
ing blocks. Those building blocks are called ‘‘motifs’’ (in
analogy to driving elements that are elaborated in a musical
theme or composition), and they have been examined in the
context of gene regulatory, metabolic, and other biological
and artificial networks (Milo et al. 2002; Milo et al. 2004).
Motifs occur in distinct motif classes that can be distin-
guished according to the size (M) of the motif, equal to the
number of nodes (vertices), and the number and pattern of
interconnections. For a more formal definition of motifs and
related concepts, see Materials and Methods.
While the most common definition of network motifs is

based on their structural characteristics (Milo et al. 2002),
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structural motifs of neuronal networks form the physical
substrate for a repertoire of distinct functional modes of
information processing. In brain networks, a structural motif
may consist of a set of brain areas and pathways that can
potentially engage in different patterns of interactions
depending on their degree of activation, the surrounding
neural context or the behavioral state of the organism. Thus,
we propose a distinction between structural and functional
motifs. Structural motifs quantify anatomical building blocks,
whereas functional motifs represent elementary processing
modes of a network (Figure 1). In this paper, functional
motifs refer to specific combinations of nodes and con-
nections (contained within structural motifs) that may be
selectively recruited or activated in the course of neural
information processing. Sorting all possible structural motifs
within a network as a function of motif class yields a motif
frequency spectrum that records the number of distinct
motifs in each structural motif class. Given the motif
frequency spectrum, one can easily obtain the motif number,
defined as the total number of distinct occurrences of any
motif of size M, and the motif diversity, defined as the
number of classes that are represented within the network by
at least one example.

Clearly, the number of vertices (N) and edges (K) within a
large network has a strong effect on the motif number and
diversity of its constituent structural and functional motifs.
But even if N and K are held constant, different connection
patterns will result in different repertoires of such network
motifs, expressed in terms of both number and diversity.
These considerations lead us to formulate hypotheses
concerning the rules for brain network organization in terms
of network motifs. We hypothesize that neuronal networks
have evolved such that their repertoire of potential func-
tional interactions (functional motifs) is both large and highly
diverse, while their physical architecture is constructed from
structural motifs that are less numerous and less diverse. A
large functional repertoire facilitates flexible and dynamic
processing, while a small structural repertoire promotes
efficient encoding and assembly.

We investigate this hypothesis first by performing an
analysis of structural and functional motifs in various brain
networks. We compare the motif properties of real brain
networks with random networks and with networks that
follow specific connection rules such as neighborhood
connectivity (lattice networks). We identify some motif classes
that occur more frequently in real brain networks, as
compared to random or lattice topologies. Second, by
rewiring random networks and imposing a cost function that
maximizes functional motif number, network topologies are
generated that resemble real brain networks across a broad
spectrum of structural measures, including small-world
attributes. The results of our analyses are consistent with
the hypothesis that complex brain networks maximize func-
tional motif number and diversity while maintaining rela-
tively low structural motif number and diversity.

Results

Motif Frequency Analysis
We obtained complete structural motif frequency spectra

for large-scale connection matrices of macaque visual cortex,
macaque cortex, and cat cortex, for motifs sizes of M = 2, 3,
4, and 5 (estimations). In addition, we obtained motif
frequency spectra for the matrix of interneuronal connec-
tions (‘‘chemical synapses’’) of C. elegans, for motif sizesM= 2,
3, and 4 (estimations). For each neural connectivity matrix we
generated equivalent (N, K) random and lattice matrices,
preserving degree distributions (n = 100; see Materials and
Methods), and we obtained their structural motif frequency
spectra for comparison. Thus, statistical significance of a
motif can only be reached if it occurs in significantly
increased proportions with respect to both random and
lattice reference cases.
Table 1 summarizes the data for structural and functional

motif number. Large-scale connection matrices exhibit a
consistent statistical trend. Their structural motif number is
relatively low, and their functional motif number is relatively
high, with both measures approaching the corresponding
values of lattice networks. All of these brain networks contain

Figure 1. Definition of Structural and

Functional Motifs, and Motif Detection

(A) From a network, we select a subset of
three vertices and their interconnec-
tions, representing a candidate structur-
al motif.
(B) The candidate motif is matched to
the 13 motif classes for motif size M = 3.
Numbers refer to the ID. The candidate
motif is detected as a motif with ID= 13.
In detecting structural motifs, only exact
matches of candidate motif and motif
class are counted.
(C) A single instance of a structural motif
contains many instances of functional
motifs. Here, a structural motif (M = 3,
ID = 13) is shown to contain, for
example, two distinct instances of the
functional motif ID = 9, one motif ID =
2, and one motif ID = 7. Many other
distinct instances of functional motifs
are present that are not shown in the
figure. Note that, in order to be counted

as a functional motif of size M = 3, all three vertices of the original structural motif must participate. For a very similar distinction between
structural and functional motifs (‘‘interlaced circuits’’) and an illustration see Ashby (1960), p. 53.
DOI: 10.1371/journal.pbio.0020369.g001
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a very high proportion of connected motifs (e.g., 53.2% for M
= 3 in macaque visual cortex versus 24.6% in corresponding
random networks). All neuronal networks (all cortical net-
works and C. elegans) showed maximal functional motif
diversity for all motif sizes examined (values of 2, 13, 199,
and 9,364 for M = 2 to 5). Their structural motif diversity
tended to be submaximal. For example, the structural motif
diversity of macaque cortex was significantly reduced in
comparison to random matrices (168, compared to 198 6 1
for random networks at M = 4). This tendency was especially
pronounced for higher values of M (e.g., 3,697 for macaque
visual cortex, compared to 8,887 6 112 for random networks
at M = 5).

Figure 2 shows motif frequency spectra for structural
motifs (M = 3, M = 4) found within the network of the
macaque visual cortex and C. elegans and their corresponding
reference cases. Spectra of macaque and C. elegans networks
are both less similar to random networks than to lattice
networks. For M = 3, in the case of the macaque visual
cortex, some motif counts appear decreased over random
networks (e.g., motif identity number [ID] = 1,. . .,6) while
other motif counts appear increased (e.g., ID = 9) over both
random and lattice networks. Table 2 and Figure 3A
summarize structural motifs whose motif counts were
significantly increased in brain networks as compared to
both random networks and lattice networks of identical
degree distributions, for sizes M = 2, 3, and 4. Given motif
frequencies from samples of n = 100 random or lattice
networks, we calculated z-scores for the corresponding motifs
in neuronal networks. Only structural motifs that were
significantly increased (z . 5.0, p , 0.0001) in real networks
as compared to both random and lattice networks are
tabulated. Despite variations in size, areal composition,
species, and collating authors, specific motif classes consis-
tently emerged across several different cortical networks.
Figure 3 displays those structural motifs that were consis-

tently encountered in all three cortical connection matrices.
Particularly noteworthy is the consistent appearance of motif
ID = 9 (M= 3) in all cortical matrices examined in this study.
The appearance of this motif cannot be explained by a higher
proportion of reciprocal (mutual) edges (a motif of size M =
2): While random networks contain fewer such edges, lattice
networks contain an equally high proportion of such edges
(for example, macaque visual cortex has 69 single edges and
121 double edges, while a sample of 100 comparison lattice
networks contains 70.6 6 4.71 single edges and 120.2 6 2.36
double edges). No motif of size M = 2 was significantly
increased in frequency for any of the connection matrices in
this study (Table 2). Furthermore, other motifs containing
double edges (e.g., ID = 6, 12, etc.) were not increased. A
different set of significantly increased structural motifs was
found for C. elegans. Motif ID = 9 was not significantly
increased in frequency, while two other non-connected
motifs (ID = 4 and 6) occurred more frequently than
expected.
Each vertex (brain area) participates in a subset of the

structural motifs that compose the entire network. We asked
whether individual brain areas participate in similar or
different sets of motifs and whether motif participation
might reveal functional relationships. We define the motif
fingerprint of a brain area as the number of distinct
structural motifs of size M that the area participates in. Motif
fingerprints characterize brain areas, as do other structural
and functional features (Passingham et al. 2002), and they are
directly related to other connectional metastructures form-
ing various kinds of network participation indices (Kötter
and Stephan, 2003).
Figure 4 shows polar plots of motif fingerprints (M= 3) for

several visual areas of macaque visual cortex. Motif ID = 9
was the only motif found to be significantly increased over
both random and lattice networks, but it was increased for
only five visual areas (V1, V3, V4, MSTd, and DP). All of these

Table 1. Structural and Functional Motif Number for Cortical Connection Matrices and Corresponding Random and Lattice Matrices

Brain Network M Structural Motifs Functional Motifs

Real Random Lattice Real Random Lattice

Macaque Visual 2 190 243 (4) 191 (2) 432 380 (4) 431 (2)

Cortex 3 1,486 2,353 (51) 1,344 (40) 19,769 14,358 (325) 21,120 (308)
4 10,487 18,076 (391) 8,688 (414) 1,843,308 1,013,131 (55,187) 2,259,970 (90,404)
5 62,940 105,926 (2,059) 50,278 (2,863) 334,279,477 121,572,738 (13,874,054) 513,004,042 (50,992,845)

Macaque Cortex 2 438 654 (7) 471 (7) 1,054 838 (7) 1,021 (7)
3 4,584 10,786 (227) 4,439 (143) 53,601 30,449 (648) 56,043 (871)
4 51,129 173,235 (4,635) 39,345 (2,346) 5,306,188 1,850,355 (87,743) 6,617,493 (272,110)

Cat Cortex 2 519 656 (7) 510 (5) 1,054 838 (7) 1,021 (7)
3 6,986 10,898 (160) 6,021 (122) 53,601 30,449 (648) 56,043 (871)
4 87,673 149,791 (2,250) 65,527 (2,150) 5,306,188 1,850,355 (87,743) 6,617,493 (272,110)

C. elegans 2 1,718 1,922 (6) 1,700 (40) 2,230 2,026 (6) 2,248 (40)
3 31,070 41,707 (279) 23,376 (1,494) 70,911 55,054 (363) 84,245 (4,200)
4 674,125 1,081,682 (11,105) 316,228 (36,200) 3,430,885 2,160,611 (34,800) 5,326,201 (578,900)

Numbers are actual values (for real matrices) and mean and standard deviation (in parentheses, for random and lattice matrices, n = 100).
DOI: 10.1371/journal.pbio.0020369.t001
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areas showed highly similar motif fingerprints characterized
by a specific ratio of motif classes 9, 12, and 13 (Figure 4A and
4C). Other areas, such as V2, V4t, and PITv show very
different motif fingerprints (Figure 4A), and cluster analysis
reveals them as members of clusters of visual areas
participating in a different set of motifs. For example, most
inferotemporal areas as well as visually related prefrontal
areas 46 and FEF belong to a separate cluster with motif
fingerprints that differ significantly from those of all other
cortical areas (Figure 4B).

Optimization of Motif Number
We hypothesized that high functional motif number and

diversity represent important ingredients in the global
organization of cortical networks, and that a selective
advantage for these two properties might contribute to the
generation of other significant structural properties. To test
this hypothesis we applied an evolutionary algorithm (Sporns
et al. 2000) that selects for networks with high functional
motif number, while rewiring their connectivity. All simu-
lations were carried out with networks of size N = 30, K =

311 (matching macaque visual cortex), in generations of 10
individuals, with a low rewiring rate of one connection per
generation and a survivor rate of one network per gener-
ation, over 2,000 generations. Convergence was robust and
consistent structural features of optimized connection
matrices were observed.
Figure 3B, Figure 5, Table 3, and Table 4 summarize results

obtained from the optimizations. When maximizing func-
tional motif number (Figure 5A), we obtained networks that
closely resembled real brain networks with respect to their
structural and functional motif number, motif diversity
(unpublished data), structural motif frequency spectrum,
and the specific structural motifs that occurred with
significantly increased frequency (Tables 3 and 4). Optimizing
functional motif number invariably resulted in a significant
decline in the number of structural motifs. Figure 3B
illustrates the set of structural motifs that appeared in
significantly increased numbers after optimizing functional
motif number. Note the appearance of motifs that are
identical or highly similar to those obtained from an analysis
of large-scale cortical matrices. These structural similarities
are observed for the motif size at which the networks were
optimized (M = 3) as well as at lower and higher motif sizes
(Table 4). In contrast, when maximizing structural motif
number, we obtained networks with strikingly different
structural attributes (Figure 5B) that bore no resemblance
to real brain networks. We found no overlap with real
networks of significantly enhanced motifs at any of the motif
sizes we examined.
To further characterize these networks, we calculated their

clustering coefficient and their path length to determine if
they exhibited small-world properties (Figure 5). We found
that networks that maximized functional motif number also
had clustering coefficients that were much higher than those
of random networks (c = 0.5288 6 0.0201 for optimized
networks; c = 0.4323 6 0.0073 for random networks), while
their path lengths remained relatively short (k = 1.7891 6

0.0275 for optimized networks; k = 1.9300 for a nearest-
neighbor lattice network). Both measures closely approxi-
mated those of macaque visual cortex (c = 0.5313, k =
1.7256). In contrast, networks that maximized structural
motif number had clustering coefficients that were indistin-
guishable from those of random networks (c = 0.4273 6

0.0029), and were significantly lower than that of macaque
visual cortex.

Discussion

The importance of a large repertoire of functional circuits
for flexible and efficient neural processing has long been
recognized (Walter 1953; Ashby 1960) and has recently
received renewed theoretical and experimental attention
(Tononi et al. 1999; Tononi and Sporns 2003). In this paper
we investigate the building blocks of brain networks and how
their composition and topological patterning enables flexible
neural function. Our hypotheses and analysis rest upon a
fundamental distinction between structural and functional
motifs. In this work, functional motifs refer to the different
patterns or combinations of nodes and connections that
could occur within the constraints of a given structural motif.
We do not assume anything about their function, or which
functional motif is actually selected by physiological mech-

Figure 2. Comparison of Structural Motif Frequency Spectra for Macaque

Visual Cortex and C. elegans

(A) Spectra for structural motifs of size M = 3.
(B) Spectra for structural motifs of size M = 4.
DOI: 10.1371/journal.pbio.0020369.g002
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anisms. We only assume that a particular structural motif is
necessary to support a repertoire of functional motifs that
may, or may not, be called upon for neuronal computations.
Our hypothesis is that the connection patterns of real brain
networks maximize functional motif number and diversity,
thus ensuring a large repertoire of functional or effective
circuits, while they minimize the number and diversity of
structural motifs, thus promoting efficient assembly and
encoding. We observe that the functional motif number of a
variety of real brain networks is very high compared to
equivalent random networks, while their structural motif
number is comparably low. We then demonstrate that
optimization of functional motif number can yield networks
that resemble real brain networks in several structural
characteristics, including their motif frequency spectra,
motifs that occur in significantly increased numbers, and
small-world measures.
The functional implications of some network structures—

such as reciprocal, convergent, and divergent connections or

Table 2. Structural Motifs That Are Significantly Increased in Brain Networks

Brain Network M ID Real Random Lattice

Macaque Visual Cortex 2 – – – –
3 9 410 121.55 (21.03) z = 13.79 229.36 (27.10) z = 6.70
4 46 552 170.50 (36.02) z = 10.64 250.23 (56.05) z = 5.41
4 75 300 46.86 (17.86) z = 14.25 106.87 (36.20) z = 5.36
4 95 735 46.54 (18.82) z = 36.76 288.58 (83.26) z = 5.39
4 148 129 42.80 (17.27) z = 5.02 9.06 (8.48) z = 14.21
4 178 52 4.06 (3.29) z = 14.63 1.83 (3.59) z = 14.02

Macaque Cortex 2 – – – –
3 9 1833 223.66 (34.99) z = 46.22 904.42 (81.12) z = 11.51
4 42 3178 1347.30 (207.52) z = 8.87 1157.50 (201.50) z = 10.08
4 46 2977 1394.42 (221.11) z = 7.19 1209.94 (226.51) z = 7.84
4 75 3343 165.25 (52.19) z = 61.20 1296.12 (217.21) z = 9.47
4 95 7539 202.57 (57.39) z = 128.49 1136.13 (334.22) z = 19.25
4 148 430 109.51 (30.94) z = 10.41 23.44 (12.11) z = 33.73
4 159 4614 63.06 (25.09) z = 182.30 1920.57 (300.28) z = 9.02
4 168 149 61.11 (13.49) z = 6.55 48.48 (15.18) z = 6.66
4 178 293 6.22 (3.79) z = 76.02 2.95 (3.77) z = 77.39
4 190 160 16.95 (7.63) z = 18.85 18.81 (10.00) z = 14.19

Cat Cortex 2 – – – –
3 9 1217 472.33 (52.85) z = 14.16 950.74 (67.64) z = 3.96*
4 46 3538 1556.01 (203.49) z = 9.79 1668.06 (270.20) z = 6.95
4 95 3096 323.38 (75.91) z = 36.71 1236.05 (348.93) z = 5.36
4 148 599 276.95 (63.38) z = 5.11 39.78 (19.84) z = 28.32
4 178 141 25.65 (11.80) z = 9.82 3.99 (5.12) z = 26.89
4 190 300 127.14 (28.89) z = 6.01 31.64 (18.08) z = 14.92

C. elegans 2 – – – –
3 4 2999 1067.03 (121.52) z = 15.98 1775.14 (187.27) z = 6.57
3 6 3415 1164.31 (134.71) z = 16.79 1940.16 (206.48) z = 7.18
4 ID = 9, 11, 12, 13, 14, 15, 23, 26, 27, 28, 32, 42, 45, 46, 53, 93, 96, 102, 148

(counts and z-scores not shown, all z-scores . 5.0)

See Figure 3 for displays of the significant motifs (shown with their ID). Note that no significant differences are found for any of the networks at M = 2. Numbers are giving
actual values (for real matrices) and mean and standard deviation (in brackets, for random and lattice matrices, n = 100). All z-scores . 5.0, with a single exception noted by
asterisk (cat, M = 3, lattice).
DOI: 10.1371/journal.pbio.0020369.t002

Figure 3. Structural Motifs that Occurred in Significantly Increased

Numbers at Motif Sizes M = 3 and M = 4

(A) Structural motifs found in all three large-scale cortical networks
analyzed in this study (see Table 2).
(B) Structural motifs found in networks optimized for functional
motif number (see Table 4). Numbers refer to the motif’s ID.
DOI: 10.1371/journal.pbio.0020369.g003
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cycles—have been discussed in the context of network
participation indices (Kötter and Stephan 2003) and network
complexity (Sporns et al. 2000). Various large-scale cortical
connection matrices examined in this study and collected by
different authors and from different species, exhibit striking
commonalities in their global patterning and motif compo-
sitions. Particularly interesting is the increased occurrence of
a single motif at M = 3 (ID = 9; see Figure 3) and its
expanded versions at M = 4 (ID = 46, 95, 148, 178). These
motifs essentially form of a chain of reciprocally connected
units, while pairs of connections linking the ends of the chain
are absent. In functional terms, units in these motifs are
highly integrated with their neighbors, while some pairs of
units remain more segregated from each other and do not
communicate directly. Thus, this motif type combines two
major principles of cortical functional organization, integra-

tion and segregation (Tononi et al. 1998; Friston 2002), and it
may be associated with a specific type of neural dynamics
(Zhigulin 2003). The occurrence of this motif type is not due
to an artifact of recording or collating connection pathways,
as it also appears in increased proportion in optimized and
rewired networks (see Table 4). In contrast to large-scale
cortical networks, the invertebrate network of C. elegans
exhibits very different patterns that are less indicative of high
integration and segregation. AtM= 3, motif ID = 9 does not
occur in higher-than-expected numbers, while other motifs
(ID = 4 and ID = 6) are increased. Our results suggest that
large-scale cortical connection matrices form a distinct
family (Milo et al. 2004) of networks that can be characterized
by their motif frequency spectra, while invertebrate neuronal
networks do not appear to belong to this family.
Optimizing functional motif number yields networks that

resemble real brain networks across a broad spectrum of
structural measures, including several that did not appear to
be linked in trivial ways to the optimized measure. Increasing
the functional motif number tends to lead to a concomitant
decrease in structural motif number, as individual connec-
tions become locally dense, thus increasing the abundance of
motifs with more local connections and thus greater func-
tional diversity. We note that maximal numbers of functional
motifs are not reached in ideal lattices (nearest-neighbor
connectivity); rather, optimized networks routinely exhibit
functional motif numbers that exceed those of ideal lattices,
and they belong to a general class of networks that maintain a
mixture of ‘‘local’’ and ‘‘long-range’’ connectivity. Impor-
tantly, even though structural and functional motifs are
directly related (each structural motif contains a fixed set and
spectrum of functional motifs), optimizing structural and
functional motif number yielded strikingly different con-
nection topologies.
Optimizing functional (but not structural) motif number

produced a tendency toward the emergence of small-world
attributes (high clustering coefficient and short path length),
a mode of connectivity that promotes functional coopera-
tion, recurrent processing, and efficient information ex-
change (Sporns et al. 2004). High clustering is due to ‘‘locally
dense’’ connectivity promoting fewer, denser, and function-
ally more potent motifs. An admixture of ‘‘long-range’’
connections, which is compatible with achieving very high
functional motif number, serves to maintain short minimal
paths throughout the network. Interestingly, networks opti-
mized for complexity (Tononi et al. 1994; Sporns et al. 2000)
also exhibit small-world attributes, conserve wiring length,
and produce motif frequency spectra similar to those of
networks optimized for functional motif number (including a
significantly increased abundance of motif ID = 9, M = 3;
unpublished data). In turn, networks optimized for functional
motif number have significantly higher complexity than
random networks, while those optimized for structural motif
number are much less complex. Thus, it appears that several
criteria for optimality (complexity, clustering coefficient,
wiring length, functional motif number) favor similar global
network architectures that are all characterized by two
coexisting organizational principles, functional segregation
and functional integration. The functional motif frequency
spectrum provides a sophisticated way of characterizing
subtypes of such networks geared at more specific functional
modes of information processing.

Figure 4. Motif Fingerprints for Motif size M = 3 in Macaque Visual

Cortex

(A) Motif fingerprints for five areas with significantly increased motif
ID = 9 (V1, V3, V4, MSTd, DP, names in bold) as well as areas V2, V4t,
and PITv. Polar plots display the motif participation number for 13
motif classes with M = 3 (see Figure 1). Note that, despite differences
in the absolute motif participation numbers, areas V1, V3, V4, MSTd
and DP show highly similar motif fingerprints.
(B) Hierarchical cluster analysis of motif fingerprints. The Pearson
correlation coefficients between all pairs of motif fingerprints were
used in a consecutive linking procedure using Euclidean distances
based on the farthest members of each cluster (for details see Kötter
and Stephan [2003]). Areas with more similar motif fingerprints are
linked at smaller distances. The five areas with significantly increased
motif ID = 9 are indicated in bold typeface.
(C) Hierarchical cluster analysis of single area motif frequency
spectra using the same procedures on orthogonal data of (B). Motif
classes 9, 12, and 13 covary across the 30 visual areas and form a
distinct branch of the cluster tree.
DOI: 10.1371/journal.pbio.0020369.g004
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Materials and Methods

Formal definitions. All networks and network motifs in this paper
are described as graphs of units (called nodes or vertices) with
directed (i.e., nonsymmetrical) connections (called edges).

A ‘‘motif’’ is a connected graph or network consisting of M vertices

and a set of edges (maximally M2 – M, for directed graphs, minimally
M – 1 with connectedness ensured) forming a subgraph of a larger
network. For eachM there is a limited set of distinct motif classes. For
M = 2, 3, 4, and 5, the corresponding numbers of motif classes are 2,
13, 199, and 9,364 (Harary and Palmer 1973). See Figure 1B for an
illustration of the set of 13 motif classes for motifs of size M = 3.

A ‘‘structural motif’’ of size M is composed of a specific set of M
vertices that are linked by edges (Figure 1A). The resulting network of
sizeM is called a ‘‘structural motif’’ because a larger network could be
structurally assembled from a finite set of such motifs. Essentially,
structural motifs form the structural building blocks of larger
networks. Our definition of structural motifs is identical to the
definition of motifs introduced in Milo et al. (2002).

A structural motif provides the complete anatomical substrate for
possible functional interactions among its constituent vertices.
However, in real neuronal networks, not all structural connections
participate in functional interactions at all times. As different edges
or connections become functionally engaged, different ‘‘functional
motifs’’ emerge within a single structural motif. The former (func-
tional) refers to ‘‘processing modes’’ or ‘‘effective circuits,’’ while the
latter (structural) refers to ‘‘anatomical elements’’ or ‘‘building
blocks.’’ The existence of different functional motifs greatly enhances
the processing power of any neuronal architecture. We then
distinguish structural motifs from functional motifs that form a set
of subgraphs of the structural motif. All such functional motifs
consist of the original M vertices of the structural motif, but contain
only a subset of its edges (see Figure 1C for examples). Note that a

Figure 5. Properties of Networks (n = 10)

Optimized for Structural and Functional

Motif Number

(A) Maximization of functional motif
number (N = 30, K = 311). Each
maximization starts from different ran-
dom initial conditions, including a dif-
ferent set of 10 random networks. From
left to right, each graph shows plots of
functional motif number, structural mo-
tif number, motif frequency spectrum
(M = 3) of optimized networks, and
clustering coefficient.
(B) Maximization of structural motif
number (N = 30, K = 311). Graphs are
as in (A). Compare the motif frequency
spectrum in (A) with the corresponding
plot for the macaque visual cortex in
Figure 2A (first row, left bar graph).
Initially, random networks in generation
1 exhibited frequency spectra identical
to those for random networks in Figure
2A (first row, middle panel).
DOI: 10.1371/journal.pbio.0020369.g005

Table 3. Structural Motif Number and Networks Optimized for
Functional Motif Number

M Structural Motif Number Functional Motif Number

2 178.7 (0.82) 443.3 (0.82)
3 1,327.7 (14.35) 21,601.6 (225.07)
4 9,124.1 (208.85) 2,353,631 (86,888)
5 53,992.5 (1,912.90) 554,209,605 (48,466,519)

All networks were optimized for high functional motif number (M = 3, N = 30, K =
311, mean and standard deviation for n = 10 exemplars).
DOI: 10.1371/journal.pbio.0020369.t003

Table 4. Significantly Increased Structural Motifs of Optimized Networks

Significant Structural Motifs (N =30, K=311)

M ID Optimized Random Lattice

2 – – – –
3 9 450.5 121.55 (21.03) z = 15.72 229.36 (27.10) z = 8.20
4 95 939.9 46.54 (18.83) z = 47.69 288.58 (83.26) z = 7.86
4 159 1078.4 56.25 (19.78) z = 51.90 443.87 (89.36) z = 7.14
4 178 55.8 4.06 (3.29) z = 15.79 1.83 (3.60) z = 15.08
4 194 498.6 20.41 (9.48) z = 50.71 175.36 (36.34) z = 8.94

Compare motif ID with those shown in Figure 3 and Table 2. As in Table 3, all networks were optimized for high functional motif number (M = 3, N = 30, K = 311, mean and
standard deviation for n = 10 exemplars). Optimizations and comparisons of macaque and cat matrices produce similar results (unpublished data).
DOI: 10.1371/journal.pbio.0020369.t004
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fully connected structural motif such as ID = 13 for M = 3 contains
the maximal number of functional motifs. For each exemplar of a
structural motif of a specific motif class, there is a fixed complement
of constituent potential functional motifs (essentially forming a look-
up table of potential functional circuits). Thus, the functional motif
frequency spectrum is easily obtained from the structural motif
frequency spectrum, without the need for additional motif detection.

This definition implies that functional motifs are more naturally
applied to networks with vertices that contain multiple neurons or
neuronal populations. In the present study, our main focus is on
motifs of large-scale connection matrices; data for the single neuron
network of C. elegans are provided in Table 1 for statistical
comparison only.

A ‘‘connected motif’’ is a structural motif that forms a strongly
connected graph. In a connected motif, all constituent vertices can
be reached from all other constituent vertices. Such a motif, in
principle, allows all vertices to exert causal effects on each other.
For M = 3, motifs with ID = 7, 9, 10, 12, and 13 are connected
motifs.

A ‘‘motif frequency spectrum’’ records the number of occur-
rences of each motif of a given class for a size M. The motif
frequency spectrum for structural motifs is obtained by motif
detection. The motif frequency spectrum for functional motifs can
be obtained from the structural spectrum by simple multiplication
with the characteristic number of functional motifs for the
respective structural motif.

‘‘Motif number’’ is the total number of all motifs of all classes (for a
given size M) encountered in a network. The motif number is
obtained as the sum over the motif frequency spectrum, either
structural or functional.

‘‘Motif diversity’’ is the total number of all motif classes (for a given
size M) encountered in a network. The motif diversity is obtained as
the number of all motif classes for which the frequency spectrum is
greater than zero.

‘‘Motif participation number’’ is the number of instances of a given
motif class that a particular vertex participates in. For example, if a
vertex participates in 12 distinct motifs with M = 3, ID = 13, it has a
motif participation number of 12 for this particular motif.

The ‘‘motif fingerprint’’ is the spectrum of motif participation
numbers for all motifs of a given size M that a particular vertex
participates in. The motif fingerprint is equivalent to a motif
frequency spectrum for a single vertex of the network.

Neurobiological data sets. All datasets used in this study are
available in Matlab format at http://www.indiana.edu/;cortex/
CCNL.html. Some of the matrices used in this study have been
modified to remove areas with few known connections, or areas that
are not part of the cerebral cortex. We note, however, that the nature
of the data reported in this paper does not critically depend on these
small changes, which usually affected only very small subset of the
areas and connections. The connection matrix of the macaque visual
cortex is based on Felleman et al. (1991), and was modified as follows.
The connections of areas fPITd, PIT, PITvg, fCITd, CIT, CITvg, and
fSTPp, STP, STPag were consolidated by eliminating PIT, CIT, and
STP and assigning their connections to fPITd, PITvg, fCITd, CITvg,
and fSTPp, STPag, respectively. Areas MIP and MDP were eliminated
due to lack of connectional information. The modified matrix has N
= 30 and K = 311. The connection matrix of the macaque cortex is
based on Young (1993). Two areas, HIPP (the hippocampus) and
AMYG (the amygdala) were deleted from the matrix, resulting in N =
71 and K = 746. The connection matrix of cat cortex was transcribed
from Scannell et al. (1999). For the large-scale analysis, density
information was discarded and all pathways were encoded as either
present or absent. For the analysis of intracortical pathways, we
discarded the hippocampus and all thalamocortical pathways. The
resulting matrix has N = 52 and K = 820. The connection matrix of
C. elegans (White et al. 1986) was retrieved from http://www.wormba-
se.org and is described at http://elegans.swmed.edu/parts/neuroda-
ta_readme.txt. It contains data for the nerve ring and very anterior
section of the ventral cord for two individual hermaphrodite worms
(JSH, N2U). We used data of all chemical synapses from both
individuals, discarding data on gap junctions (electrical synapses),
resulting in a matrix of N = 197 neurons and K = 1,974 directed
connections. Other studies used matrices with N = 282 (Watts and
Strogatz, 1998), N = 280 (Milo et al., 2004), or N = 252 (Milo et al.,
2002). Despite these variations, our results on motifs in C. elegans are
consistent with those of these earlier studies.

Currently available datasets are likely to contain errors or missing
connections that have not been investigated and do not take into
account possible intersubject variability or rank-ordered or graded
connection densities or strengths. While these issues have not been
addressed systematically, some exploratory analyses suggest that the
results reported in this paper are invariant with respect to small
variations in connection patterns.

Reference cases: random and lattice networks. A statistical
evaluation of motif frequencies depends on a choice of reference
cases (‘‘null hypotheses’’). Milo et al. (2002) generated random
networks with identical structural motif frequencies at level M – 1
in order to perform statistical comparisons at level M. This corrected
for the ‘‘carrying over’’ of significant motif components from lower
to higher levels and allowed detection of the level of M at which
significant structures emerged. The choice of reference cases in this
paper reflects the specific question we ask about motifs in brain
networks: Independent of the level M, how do the motif number,
diversity, and composition of real brain networks compare to other
network topologies, specifically to both random and lattice networks?
We constrain the comparison by fixing the size of the networks (N
and K) and by imposing equal degree distributions on all comparison
networks (see also Milo et al. 2004). We note that the additional
reference case of the lattice network led to the exclusion of motifs
that occur in increased numbers simply because of local clustering of
connections (Artzy-Randrup et al. 2004; Milo et al. 2004a).

Random and lattice matrices that preserve the in-degree and out-
degree for each vertex are generated from the original anatomical
connection matrices by a Markov-chain algorithm (Maslov and
Sneppen 2002; Milo et al. 2002). For random matrices, a pair of
vertices (i1,j1) and (i2,j2) is selected for which ci1j1 = 1, ci2j2 = 1, ci1j2 =
0, and ci2j1 = 0. Then we set ci1j1 = 0, ci2j2 = 0, ci1j2 = 1, and ci2j1 = 1.
This is repeated until the connection topology of the original matrix
is randomized.

For lattice matrices, the same Markov procedure is employed but
swaps are only carried out if the resulting matrix has nonzero entries
that are located closer to the main diagonal (thus approximating a
lattice or ring topology). This algorithm is implemented as a
probabilistic optimization using a weighted cost function.

Numerical methods. All graph theory methods used in this
paper—including those for calculating clustering coefficients and
path lengths (Sporns 2002)—as well as motif detection algorithms are
available in Matlab format at http://www.indiana.edu/;cortex/
CCNL.html. In some cases, for large networks or high values of M,
we employed random sampling to estimate motif frequency spectra
and their associated values for motif number and diversity. We
selected different sample sizes to ensure convergence of these
estimates and performed up to ten separate runs to generate good
estimates. The evolutionary algorithms used in this study for
optimizing structural and functional motif numbers of networks
were similar to the algorithm described in Sporns et al. (2000). Briefly,
motif number was calculated for generations of ten individuals. The
single individual with the highest motif number was selected and
copied; all other individuals were deleted. The next generation was
composed of the single survivor and nine rewired copies (using a
rewiring rate of one connection). The first generation was composed
of ten random networks. The rewiring procedure typically proceeded
for 2,000 generations, changing only the connection pattern or
topology. N, K, and the original degree distribution were conserved.
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