
Mini-Review 

Motile Kinetochores and Polar Ejection Forces Dictate Chromosome 

Position on the Vertebrate Mitotic Spindle 

Conly L. Rieder,*~ll and E. D. Salmon§ll 

*Wadsworth Center for Laboratories and Research, Empire State Plaza, Albany, New York 12201-0509; *Department of 
Biomedical Sciences, State University of New York, Albany, New York 12222; § Department of Biology, University of North 
Carolina, Chapel Hill, North Carolina 27599-3280; and II Marine Biology Laboratory, Woods Hole, Massachusetts 02543 

T 
hE view still found in most cell biology textbooks for 
how chromosomes move to the equator of the forming 
mitotic spindle (i.e., congress), and then to the poles 

in anaphase, is based on a "traction fiber" model initially de- 
veloped by Ostergren (reviewed in reference 54). In this 
model chromosomes are pulled towards opposite poles by 
the motions of their sister kinetochore fibers. To explain con- 
gression, the strength of the pulling force on a kinetochore 
was proposed to increase with kinetochore fiber length. Un- 
der this condition congression results from a "tug-of-war" 
between sister kinetochore fibers pulling towards opposite 
poles. Movement to the spindle equator occurs spontane- 
ously because that is the position where the lengths of the 
kinetochore fibers, and thus the antagonistic pulling forces, 
are equal. When chromosome disjunction occurs at the onset 
of anaphase, the separated chromosomes are pulled pole- 
ward (anaphase A) by the same kinetochore fiber-based forces 
that produced congression. 

Over the years a number of mechanisms have been pro- 
posed to explain the force-versus-kinetochore fiber length 
relationship central to Ostergren's model. These include the 
concepts, e.g., that kinetochore microtubules disassemble 
along their length (30); that kinetochore fibers contain a 
stretched elastic "collar" component (55); that contractile 
forces are produced along the fiber by actin and myosin (19); 
that kinetochore microtubules move poleward by treadmill- 
ing while disassembling at the poles (38); or that kinetochore 
microtubules are studded along their length with pole- 
directed microtubule motor molecules that act against the 
spindle matrix (64) or non-kinetochore fiber spindle 
microtubules (25, 41). Because kinetochore fiber microtu- 
bules are more stable than other spindle microtubules, the 
latter concept requires only that the cargo carrying tail end 
of a microtubule minus-end-directed motor (e.g., cytoplas- 
mic dynein) binds more slowly to microtubules than the mo- 
tor end (41). 

Although such a "traction fiber" model for chromosome 
positioning is supported by some experimental evidence 
(e.g., 21, 24, 25, 52), new information over the past several 
years has shown that it is not accurate for mitosis in ver- 
tebrate cells. Here we review this new evidence and discuss 
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its ramifications for understanding chromosome congression 
and segregation during vertebrate mitosis. This evidence 
strongly favors the view that chromosome movements are 
generated by the motility of kinetochores along relatively 
stationary kinetochore microtubules and by pushing forces 
associated with the polar spindle microtubule arrays. 

For brevity we have not addressed the mechanisms which 
establish and maintain the separation of spindle poles (for re- 
view see reference 74), or attempted to compare congression 
in vertebrates with non-vertebrate systems (where, with the 
exception of insect spermatocytes, there is little detailed in- 
formation). Space limitations also precluded us from citing 
many of the primary references on which this review is 
based. Related information beyond the scope of this com- 
mentary can be found in recent papers on the mechanism of 
microtubule dynamic instability (e.g., 17); spindle microtu- 
bule dynamics (e.g., 61); potential roles of microtubule 
motors in spindle assembly and function (e.g., 41, 63); ki- 
netochore (e.g., 13, 39)and centrosome (e.g., 32, 72)repro- 
duction, structure and composition; non-microtubule com- 
ponents of the spindle (e.g., 34, 40); and cell cycle control 
of mitotic progression and chromosome disjunction (e.g., 
16, 26, 68). 

Spindle Structure and Chromosome Behavior during 
Vertebrate Mitosis 

The primary structural components of the vertebrate spindle 
(reviewed in 57, 61) include two poles (i.e., centrosomes), 
the chromosomes with replicated "sister" kinetochores (one 
per chromatid), microtubules, and a large number of addi- 
tional poorly characterized proteins. The spindle pole is 
defined by a radial (astral) array of dynamically unstable 
microtubules that are nucleated by the centrosome and grow 
and shorten by tubulin subunit addition and removal at their 
"plus" ends distal to the centrosome (Fig. 1). The kineto- 
chore is defined as a multi-protein, plate-shaped complex, 
intimately associated with the centromeric DNA, that at- 
taches the chromosome to spindle microtubules (e.g., 13, 
39, 56). Spindle formation is initiated at the onset of 
prometaphase when nuclear envelope breakdown allows the 
kinetochores to interact with, and attach to, polar microtu- 
bules (reviewed in 58). 

As a rule, chromosomes centrally located between the two 
poles at nuclear envelope breakdown usually become bi- 
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Figure 1. Schematic illustrating spindle microtubule polarity and 
chromosome behavior during mitosis in a vertebrate cell. The bipo- 
lar spindle is formed from two overlapping polar microtubule ar- 
rays each oriented with their microtubule "plus" (+) ends distal to 
the pole. Shown in the diagram are: (I) an attaching chromosome 
in which one kinetochore is exhibiting rapid poleward movement 
(gliding) along the surface of a polar microtubule; (2) a monoori- 
ented chromosome oscillating between poleward and away from the 
pole phases of motion; (3) a bioriented chromosome, near one pole 
which is initiating congression; (4) a fully congressed metaphase 
chromosome that is oscillating around the spindle equator; and (5) 
anaphase chromosomes that are undergoing poleward motion. The 
bundles of microtubules which tether kinetochores to the spindle 
poles are represented by the thick black lines. 

oriented very rapidly, i.e., the chromosome acquires a bipo- 
lar attachment in which the sister kinetochores become at- 
tached to microtubules from opposing spindle poles (Fig. 1). 
In contrast, chromosomes closer to one pole at nuclear enve- 
lope breakdown usually become monooriented and move to- 
wards that pole as one kinetochore becomes attached to 
microtubules from the pole, while the other kinetochore re- 
mains unattached (e.g., reviewed in 56, 58, 60; Fig. 1). Dur- 
ing the initial stages of attachment the kinetochore may move 

• rapidly poleward, along the wall of a single microtubule, at 
velocities (25-50 #m/min) typical of cytoplasmic vesicles 
driven along microtubules by cytoplasmic dynein (reviewed 

in reference 1). 

As the chromosome moves poleward, the kinetochore cap- 
tures the plus ends of polar microtubules and motion slows 
to velocities typical of congression and segregation (1-3 
#m/min), The outer kinetochore plate ultimately becomes 
saturated with polar microtubule plus ends (reviewed in 58; 
Fig. 1). Neighboring polar microtubules cluster around 
kinetochore microtubules to form the kinetochore fiber, and 
the microtubules within the kinetochore fiber are more sta- 
ble than other spindle microtubules to treatments that disrupt 
microtubules (reviewed in references 56, 61). The enhanced 
stability of kinetochore fiber microtubules depends directly 
on the kinetochore since they rapidly disassemble or dis- 
perse if the kinetochore is pulled off the end of its associated 
microtubules (51), or if the kinetochore fiber is severed in 

the middle (69). 
The kinetochore fiber and polar microtubules associated 

with a spindle pole define a half-spindle in which the great 
majority of microtubules possess the same growth polarity 
(plus ends distal to the centrosome; Fig. 1). Strong argu- 

ments can be made that the bipolar animal cell spindle is sim- 
ply two opposing half-spindles, tethered to one another by 
interactions between the opposing astral microtubule arrays 
and by the kinetochore fibers associated with bioriented 
chromosomes (reviewed in reference 11). 

Congression is initiated for each chromosome after it at- 
taches to the spindle, and its completion may require the en- 
tire period of spindle formation. Chromosome biorientation 
is considered to be a prerequisite for congression. Therefore, 
in order for a monooriented chromosome to congress, it 
must first acquire a bipolar connection. This likely occurs 
by the same mechanism that produces monoorientation, i.e., 
the unattached kinetochore encounters a microtubule grow- 
ing from the opposite pole (Fig. 1). Once all of the chromo- 
somes have congressed, the cell is considered to be at 
metaphase. In somatic cells metaphase is usually brief and 
is terminated when the sister chromatids separate and move 
towards opposite spindle poles during anaphase (Fig. 1). 
There is some evidence that tissue cells temporarily delay 
the onset of anaphase until all of the chromosomes have bi- 
oriented and fully congressed to form a "metaphase plate:' 
As a result, congression is considered to be monitored by a 
cell cycle checkpoint control as discussed in detail elsewhere 
(e.g., see references 16, 68). 

A Kinetochore Can Undergo Motion away from 
Its Associated Pole in the Absence of a Poleward 
Force Acting on Its Sister: Kinetochores Exhibit 
Directional Instability 

Most models of congression, including traction fiber mod- 
els, assume that the force responsible for moving a kineto- 
chore away from its attached pole is generated entirely by the 
pulling force on the other kinetochore towards the opposite 
pole (reviewed in 37, 43, 55, 61). However, it is now clearly 
established for vertebrates that a kinetochore frequently 
moves away from the pole to which it is attached even when 
its sister kinetochore is unattached (or absent as in ana- 
phase). Indeed, monooriented chromosomes in most, if not 
all, vertebrates (e.g., chick [36]; rat kangaroo [60]; sala- 
manders [65]; chimpanzee [Rieder, C. L., unpublished re- 
suits]) oscillate conspicuously, moving both towards and 
away from the pole to which they are attached (Fig. 2, A and 
B). These oscillations can cover substantial distances, per- 
sist throughout all stages of mitosis including anaphase (re- 
viewed in 67; Fig. 2 C), and continue on monooriented chro- 
mosomes when the distal sister kinetochore is destroyed by 
laser microsurgery (59). 

The motion of a kinetochore away from its associate pole, 
in the absence of an antagonistic poleward pulling force on 
its sister, is not confined to monooriented chromosomes in 
mitosis. In many organisms the initial attachment of a meio- 
sis I bivalent to the forming spindle results in rapid and 
forceful motion of the opposing kinetochores towards oppo- 
site poles, stretching the chromosome apart. In some cases, 
e.g., mantids and phasmids, this stretch may cover 2/3 or 
more of the spindle length (27). With respect to the mecha- 
nism of congression, it is significant that each kinetochore 
region on a stretched bivalent exhibits oscillatory movements 
towards and away from its respective pole, as it moves pro- 
gressively closer to the forming metaphase plate. These 
kinetochore oscillations often occur independently of one 
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Figure 2. Video-enhanced 
DIC images of chromosome 
oscillations and kinetochore 
directional instability on a 
newt lung cell monopolar 
spindle. (A) Low-magnifica- 
tion view of a monopolar 
spindle. Some of the mono- 
oriented chromosomes are 
positioned many micrometers 
from the single spindle pole 
while others are closer. (B) 
Sequential high-magnification 
views of centromere deforma- 
tion on chromosome 2 pro- 
duced by the pulling and push- 
ing forces associated with 
kinetochore directional insta- 
bility. The narrow arrowheads 
mark the positions of the 
proximal and distal kineto- 
chore regions, while the thick 
arrowhead marks the position 
of the pole. The box rep~ 
resents the size of the 8 X 
8 pixel cursor used for track- 
ing the motion of the centro- 
some and kinetoch0re re- 
gions. Time in sec in lower 
right hand corner (from' Cas- 
simeris et al. [I 1]). (C) Veloc- 
ity versus duration Plot of the 
movements a single kineto- 
chore may exhibit throughout 
mitosis. Note that the history 
plot was generated by con- 
catenating several files of ac- 
tual kinetochore movements 
onto one time axis and align- 
ing the resultant plots to rep- 
resent the stages of movement 
one kinetochore could make 
throughout mitosis. G, glid- 
ing; M, monooriented; C, con- 
gression of a bioriented chro- 
mosome towards the equator; 
B, bioriented near the equa- 
tor; and A, poleward motion 
during anaphase A (from Skib- 
bens et al. [67]). Bars, 10 #m. 

another (20, 65), i.e., the "antagonistic fibers of a bivalent 
can operate in or out of phase" (20). 

Recently Skibbens et al. (67) used high-resolution video 
microscopy and computer-assisted tracking techniques to 
measure the motion of individual kinetochores in living newt 
lung ceils. They found that attached kinetochores switched 
abruptly (within periods of 6 s or less) between persistent 
phases of constant velocity poleward and away from the pole 
motion (on average 1.7 tzm/min; Fig. 2, B and C). During 
poleward motion the centromere was typically stretched 
poleward, while during motion away from the pole it became 
flattened or indented. For bioriented chromosomes, the 

centromere became maximally stretched when both sister 
kinetochores were moving poleward, and maximally com- 
pressed when both were moving towards the spindle equator. 
Using deformation to infer the state of force applied to the 
centromere, Skibbens et al. (67) concluded for both mono- 

and bioriented chromosomes that the abrupt change from 
poleward to away from the pole motion involved a switch be- 
tween a state in which the kinetochore pulled the chromo- 
some poleward and a state in which the kinetochore was ei- 
ther actively pushing or at the very least moving away from 
its pole as fast or faster than the centromere region. This 

characteristic tendency of a kinetochore to autonomously 

Rieder and Salmon Chromosome Motion in Vertebrates 225 



and abruptly switch between persistent phases of poleward 
and away from the pole movement was termed "directional 
instability: Significant displacement of the centromere on 
the spindle, as occurs during congression, was seen only 
when one kinetoehore was in poleward motion pulling the 
centromere toward the equator while the other kinetochore 
was in away from the pole motion, pushing or not resisting 
centromere motion toward the equator. 

Pulling and Pushing Forces That Act on the 
Kinetochore Are Generated Primarily at the 
Kinetochore: The Motion of  Kinetochore 
Fiber Microtubules Makes Only a 
Minor Contribution 

There are two extreme models for the site at which the force 
is produced for chromosome motion: it is produced along the 
length of the kinetochore fiber or at the poles (traction fiber 
models) or at the kinetochore (kinetochore motor models; 
reviewed in references 43, 58, 62). If the magnitude of the 
poleward force on a kinetochore is related to kinetochore 
fiber length, one would expect that severing a metaphase 
kinetochore fiber should shift the chromosome a predictable 
distance towards the pole facing the undamaged kinetochore 
fiber. This experiment has been conducted on various cell 
types (insect spermatocytes, vertebrate somatic cells, plant 
cells), using various cutting methods (UV light and micro- 
needles), with similar outcomes-the chromosome either 
does not shift (18, 49) or shifts only slightly towards the at- 
tached pole (15, 31, 69). The fact that only a short segment 
of the kinetochore fiber is needed to maintain the position 
of a metaphase chromosome near the spindle equator clearly 
reveals that the poleward force on a kinetochore is not 
proportional to kinetochore fiber length. The results of these 
cutting experiments are also inconsistent with the proposal 
that congression is mediated by an elastic material that be- 
comes stretched between the pole and kinetochore as the 
chromosome attaches (e.g., 55; and reviewed in reference 
43). Two of these studies (49, 69) also found that kinetochore 
poleward motion during anaphase does not stop when the 
kinetochore fiber is severed. The mechanism by which such 
a shortened kinetochore fiber supports the position and con- 
tinued motion of the chromosome is unknown, but it likely 
involves interactions between the kinetochore-associated 
kinetochore fiber remnant and other spindle microtubules or 
spindle matrix components (reviewed in references 34, 40). 

Kinetochore microtubule marking studies have also shown 
that kinetochores move at the plus ends of relatively station- 
ary kinetochore microtubules during poleward and away 
from the pole motion. When a bioriented chromosome 
moves toward one pole, the kinetochore microtubules as- 
sociated with that pole must shorten, while those microtu- 
bules on the sister kinetochore moving away from its pole 
must elongate. After labeled tubulin is injected into meta- 
phase (e.g., 46) or early anaphase (66) cells, it incorporates 
into elongating kinetochore microtubules only at the kineto- 
chore. When kinetochores move poleward during metaphase 
and anaphase, photobleached (10, 12, 23) or photoactivated 
fluorescent (44, 45) marks on the lattice of kinetochore mi- 
crotubules remain relatively stationary with respect to the 
pole-showing that the kinetochore is also the primary site 
of kinetochore microtubule disassembly. However, the pho- 

toactivation studies do reveal that kinetochore micmtubules 
continuously move or "flux" poleward, but not away from the 
pole, at about 0.5/~trdmin in metaphase PtK and newt cells. 
This flux rate is only 1/3 the rate (0.5 versus 1.7/~nffmin) of 
the poleward motion exhibited by an oscillating kinetochore 
and does not contribute to away from the pole motion. There 
is also evidence that the motion of kinetochores along kinet- 
ochore microtubule ends stops in late anaphase, after which 
the chromosomes are slowly pulled poleward solely by the 
flux (45). Nevertheless, it can be concluded from these stud- 
ies that during metaphase and early anaphase, 60-70% ofki- 
netochore poleward motion, and all motion away from the 
pole, results from the motion of kinetochores at the plus ends 
of their kinetochore microtubules, i.e., kinetochore direc- 
tional instability is a property of kinetochore motility at the 
kinetochore microtubule plus ends. 

There is now solid behavioral evidence that the forces for 
kinetochore poleward and away from the pole motion, during 
prometaphase (reviewed in references 11, 58, 67) and 
anaphase (49, 67), are produced at the kinetochore. Indeed, 
both plus- and minus-end-directed microtubule motor mole- 
cules have been localized to the kinetochore by functional 
(e.g., 28, 29) and immunologic approaches (e.g., 75, 76). It 
is highly likely that these motors are involved in the produc- 
tion of kinetochore poleward motion and, in combination 
with the polar ejection forces (discussed below), kinetochore 
motion away from its associated pole. There is also evidence 
that kinetochore microtubule growth itself can contribute a 
pushing force (e.g., 7, 66) and that depolymerization of 
kinetochore microtubules at their plus ends can pull on the 
kinetochore (e.g., 14, 33). 

In contrast to severing the kinetochore fiber, destroying 
one kinetochore on a bioriented chromosome always results 
in substantial chromosome motion towards the pole to which 
the undamaged kinetochore is attached (24, 31, 42), while 
destroying the kinetochore on an anaphase chromosome in- 
hibits further poleward motion (5). If force production for 
poleward motion occurs primarily at the kinetochore, then 
the poleward force-producing potential of each sister kineto- 
chore should be nearly the same (58). Thus, trivalents would 
be expected to acquire a final congression position closer to 
the pole to which two of the three kinetochores are attached 
but not, as interpreted by Ostergren (52) and Hays et al. (25), 
because poleward force is proportional to kinetochore fiber 
length. Rather, it would be because poleward force produc- 
tion on the side of the chromosome containing two kineto- 
chores is twice that produced on the other side. Similarly, 
partial (24) or complete (e.g., 42) destruction of a metaphase 
kinetochore would be expected to produce motion towards 
the pole to which the non-irradiated kinetochore is attached 
because the progressive destruction of force producers on 
one side of the chromosome creates an imbalance in forces. 
In all of these cases the length of the kinetochore fiber would 
be an outcome of congression and not its cause. 

Chromosome Position Is Influenced by Half-Spindle 
Microtubule Arrays That Exert an Away from the Pole 
Ejection Force on the Chromosome 

Monooriented chromosomes on monopolar and bipolar 
spindles can acquire an average distance relative to the spin- 
dle pole that approaches one-half the distance exhibited by 
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Figure 3. The behavior of laser-generated chromosome fragments and kinetochore regions (A), and the relationship between chromosome 
position and microtubule distribution (B), during prometaphase. (A) Three frames, from a phase-contrast time-lapse video series, depicting 
the behavior of a monooriented chromosome after its arms are severed from its centromere region by a laser microbeam. In the first frame 
the centrosome is noted by an arrowhead while the experimental chromosome, and the plane of the impending laser cut, is noted by the 
arrow. In the second frame the two acentric fragments generated by the cut (arrowheads) are being ejected away from the spindle pole 
as the centromere region moves closer to the centrosome. In the final frame the acentric fragments (/arge arrowheads) are fully ejected 
and reside at the spindle periphery, while the centromere region (arrow) has acquired a new average position closer to the pole (small 
arrowhead). Time in min/sec in lower right hand comer of each micrograph. (B) Phase-contrast (left), anti-tubulin immunofluorescent 
(right), and simultaneous phase-contrast/immunofluorescent (middle) micrographs of the same prometaphase newt spindle. The arrowheads 
in the phase micrograph mark the two spindle poles while the arrows note some of the chromosomes that are monooriented to the lower 
pole (cf. A). Note that these chromosomes are positioned well distal to the pole and that they reside at the peripheral regions of high microtu- 
bule density. Bar, 25 #m. 

a metaphase chromosome on a bipolar spindle (e.g., 3, 4, 
11, 35, 59; Figs. 2 A and 3). The observation that a kineto- 
chore exhibits frequent motions away from its associate pole 
in the absence of an antagonistic poleward pulling force 
(e.g., Fig. 2 B), and that monooriented chromosomes can 
become positioned many micrometers from their associated 
pole (e.g., Figs. 2 A and 3) are both fully consistent with the 
hypothesis that prometaphase chromosomes are influenced 
by two classes of forces: those associated with the kineto- 
chores that exert poleward and away from the pole forces on 
the centromere, and those produced by half-spindle microtu- 
bule arrays that exert an away from the pole push on the chro- 
mosome as a whole. 

There is considerable descriptive evidence suggesting that 
chromosomes experience forces that move them away from 
the pole independent of kinetochore function (e.g., reviewed 
in references 6, 47, 58). Rieder et al. (59) directly demon- 
strated, by severing chromosomes in living prometaphase 
cells with a laser microbeam, that chromosome fragments 
lacking kinetochores are actively transported away from the 
closest spindle pole at velocities approaching 2 #m/min (Fig. 
3 A). Because they lack kinetochores, the motion of these 

fragments away from the pole cannot be due to forces pro- 
duced by kinetochore fibers. Using the same laser-cutting 
approach it was further shown that when one or both arms 
were severed close to the kinetochore region of a monoori- 
ented chromosome, the kinetochore-containing fragment 
underwent persistent poleward motion until it achieved a new 
position closer to the pole (4; Fig. 3 A). In general, as the 
cross-sectional area perpendicular to the kinetochore fiber 
axis is reduced, the closer to the pole the fragment moves. 
Thus the position of a monooriented chromosome relative to 
its spindle pole is at least partly influenced by the size of the 
chromosomal surface area facing the pole. 

It can be concluded from these observations that the polar 
arrays of aster and half-spindle microtubules generate ejec- 
tion forces that both resist chromosome poleward movement 
and push chromosomes away from the poles, and that these 
polar ejection forces are partly responsible for positioning 
prometaphase chromosomes on the spindle (2, 4, 11, 59, 
62). That microtubules are involved in producing these polar 
ejection forces is evident from several observations. First, 
unattached chromosomes and chromosome fragments do not 
experience displacements away from the poles when in an 
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environment devoid of microtubules, e.g., after colcemid 
treatment, when positioned outside of the spindle, or within 
the interzone of an anaphase-like prometaphase cell (e.g., 
reference 1). Second, a positive correlation exists between 
the number of astral or half-spindle polar microtubules within 
the vicinity of a monooriented chromosome and the kineto- 
chore-to-pole distance (2, 11; Fig. 3 B). Finally, when cells 
containing monopolar spindles are treated with drugs (e.g., 
nocodazole or taxol) or temperature shifts that affect micro- 
tubule turnover, chromosome oscillations quickly cease and 
the chromosomes assume a new position relative to the pole 
characteristic of the drug treatment (4, 11). When chromo- 
some arms in nocodazole-or taxol-treated monopolar spin- 
dles are severed from the kinetochore region by a laser, they 
do not move further from the pole (4). These findings dem- 
onstrate that the polar ejection forces generated in associa- 
tion with each aster and half-spindle are mediated by micro- 
tubules, and they further suggest that this force is dependent 
on the dynamically unstable nature of microtubule growth. 

The nature of the ejection force remains to be determined, 
although we favor a mechanism based on the impact of grow- 
ing aster and half-spindle microtubule plus ends against the 
chromosomes (4, 11, 58, 61). It has also been proposed that 
microtubule plus end (kinesin-like) motor molecules are dis- 
tributed within the chromatin and interact with polar 
microtubules to provide the molecular basis for the ejection 
force (70, 77). 

What Controls Kinetochore Switching to 
Allow Chromosome Congression followed by 
Anaphase Motion 9. 

Skibbens et al. (67; see also references 47, 60) found that as 
a monooriented chromosome bioriented and congressed to 
the equator, the kinetochore attached to the closer pole per- 
sisted in motion away from that pole while the kinetochore 
facing the equator persisted at a similar velocity in poleward 
motion, until the centromere was near the equator (Fig. 2 
C). Once near the equator, each sister kinetochore began 
switching between poleward and away from the pole phases 
of motion at frequencies and velocities similar to those ex- 
hibited by monooriented chromosomes (Fig. 2 C). Although 
each sister kinetochore sometimes switched between pole- 
ward and away from the pole motion independently of one 
another, switching was usually cooperative: 70% of the time 
when one kinetochore was in a poleward phase the other was 
in an away from the pole phase. By contrast, after anaphase 
onset the separated sister kinetochores persisted in poleward 
motion, only occasionally switching to motion away from 
the pole of short duration. 

How is the cooperative switching of sister kinetochores on 
a congressing chromosome controlled so that one is pulled 
while the other is pushing (or at least passively following) 
the centromere towards the equator? A related question is 
how this control process is modified at anaphase onset so that 
each kinetochore moves progressively closer to the pole in- 
stead of simply achieving a new stable position, as do mono- 
oriented prometaphase chromosomes, which also have a sin- 
gle active kinetochore. 

The answer to these questions requires the elucidation of 
two sets of interrelated mechanisms: one that causes the 
kinetochore to switch between poleward and away from the 

pole motion, and another that senses whether a chromosome 
is mono- or bioriented and appropriately biases kinetochore 
switching as a function of distance from the poles. Since the 
growth and shortening of kinetochore microtubules in re- 
sponse to congression movements occurs primarily by sub- 
unit addition/deletion at the kinetochore, abrupt transitions 
between poleward and away from the pole motion must be 
accompanied by a cooperative switching between shortening 
and growth in all of the microtubule plus ends associated 
with the kinetochore. The switching of kinetochore microtu- 
bule ends is likely mediated by factors associated with the 
kinetochore that, e.g., control GTP hydrolysis in the termi- 
nal tubulin subunits. The observations that promoting ki- 
netochore microtubule assembly induces kinetochores to 
switch into motion away from the pole (7, 66), while block- 
ing assembly induces poleward motion (4, 10, 12), clearly 
reveals that the directional switching of kinetochores is 
somehow closely coupled to microtubule assembly/dis- 
assembly. 

The kinetochore-associated plus and minus end microtu- 
bule motors described in the previous section are likely 
responsible for keeping the kinetochore attached to the plus 
ends of its associated microtubules as they shorten and elon- 
gate during chromosome motion. Any directional change in 
kinetochore motion must involve a cooperative and bulk 
switching between these antagonistic motors. Vale et al's 
(71) observation that microtubules spontaneously oscillate 
back and forth on surfaces coated with both dynein and kine- 
sin raises the possibility that the directional instability of 
kinetochores somehow results from competing plus and mi- 
nus end-directed kinetochore-associated microtubule mo- 
tors. In this context, Hyman and Mitchison (28, 29) have 
shown that kinetochores on isolated chromosomes always 
move microtubules over their surface toward the microtubule 
minus end (poleward) when unphosphorylated, and toward 
the microtubule plus end (away from the pole) when phos- 
phorylated. 

Whether the directional instability of kinetochores is 
caused by abrupt changes in kinetochore microtubule assem- 
bly conditions and/or motor activity is not known. Regard- 
less, the kinetochore must be "smart" as initially suggested 
by Mitchison (43) in that either of these potential mecha- 
nisms must, in some way, sense information within the spin- 
dle about kinetochore position relative to its pole and the 
activity of its sister. In response to this information, the ki- 
netochore switches between its persistent states of poleward 
and away from the pole motion. How kinetochore directional 
instability is controlled within the Spindle is not yet well un- 
derstood, but it appears related to vectorial information pro- 
vided by the density of the polar microtubule arrays and ten- 
sion at the kinetochore microtubule attachment sites. 

A simple observation demonstrates that polar microtubule 
density is a major factor in controlling chromosome posi- 
tion. Monooriented chromosomes in both monopolar and 
bipolar spindles achieve positions much closer to the pole in 
regions of low microtubule density than similar chromo- 
somes in regions of higher microtubule density (4, 11, 59). 
Thus, models for controlling kinetochore motion based on 
microtubule-independent concentration gradients emanating 
from the spindle poles do not explain chromosome behavior 
within the spindle. 

Controlling factors whose concentration depends in some 
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way solely on microtubule density can potentially explain 
kinetochore directional instability on monopolar spindles, 
hut such gradient models still fail to explain congression. 
For example, consider a hypothesis for congression based on 
differential kinetochore phosphorylation where dephosphor- 
ylation induces poleward motion and phosphorylation in- 
duces motion away from the pole. For congression to sponta- 
neously occur, the kinetochore further from the equator 
must persist in motion away from the pole (phosphorylated) 
while the kinetochore closer to the equator must persist in 
poleward motion (unphosphorylated). It is not clear how to 
define kinase/phosphatase activity gradients that generate 
the required differential phosphorylation of sister kineto- 
chores, which are separated by only 1-2 #m, but situated 
anywhere from a few to 30/zm from the poles in newt lung 
cells. Remember, kinetochores on monooriented chromo- 
somes situated 5-10 /zm from the pole oscillate between 
poleward and away from the pole motions with similar dura- 
tions and velocities as kinetochores on bioriented chromo- 
somes at the spindle equator, 20-25 #m from the poles. 

At this time it appears much more likely that kinetochores 
obtain vectorial (magnitude and direction) information 
directly from the spindle microtubule arrays, i.e., positional 
information is encoded by the density as well as the orienta- 
tion or growth direction of microtubules. The activity of sis- 
ter kinetochores must also feedback on each other so that 
bioriented chromosomes spontaneously congress to the 
equator (one kinetochore in a poleward phase of motion 
while the other in an away from the pole phase), while sepa- 
rated chromatids move poleward following disjunction at 
anaphase. Thus far, two different vectorial models have been 
proposed. Hyman and Mitchison (29) suggest that the type 
of motor activity exhibited by a kinetochore, and thus its 
direction of motion, depends on he number of microtubules 
associated with the kinetochore. Under conditions of low 
kinetochore microtubule numbers it remains largely un- 
phosphorylated and the poleward motor dominates, but as it 
acquires more kinetochore microtubules it becomes progres- 
sively phosphorylated favoring away from the pole motor ac- 
tivity. In their scheme the number of microtubules on a 
kinetochore is envisioned to depend on proximity to its as- 
sociated pole; a kinetochore that is closer to its pole pos- 
sesses more microtubules because it resides in a higher den- 
sity of recruitable polar microtubules than its sister which 
is further from its pole (and its source of kinetochore 
microtubules). Chromosomes move to the spindle equator 
because that is the position where the density of polar micro- 
tubules emanating from opposite poles is similar. There, sis- 
ter kinetochores would (and do, see reference 56) have simi- 
lar numbers of kinetochore microtubules. This is an 
interesting hypothesis that is supported by some in vitro ob- 
servations (28, 29, 71). Unfortunately, it is not consistent 
with chromosome behavior under experimental conditions. 
For example, instead of remaining stationary or moving away 
from the pole as predicted by the model, a metaphase 
kinetochore fully saturated with microtubules (and presum- 
ably phosphorylated) immediately initiates polo, yard motion 
when its sister is destroyed (e.g., 42). 

Nicldas (reviewed in reference 48) showed that pulling a 
chromosome away from the pole with a microneedle induces 
the centromere to move away from the pole at a velocity 
limited by the elongation rate of the stretched fiber. This re- 

veals that tension at the kinetochore/chromosome junction, 
caused by forces directed away from the pole, switches the 
stretched kinetochore into a phase in which its associated 
kinetochore fiber elongates allowing (or causing) the chro- 
mosome to shift away from the pole. Conversely, tension at 
the kinetochore of a monooriented or bioriented chromo- 
some, caused by polar ejection forces on the arms or the pull- 
ing of a sister kinetochore, can be relieved by respectively 
severing the bulk of the arms (59; Fig. 3 A) or ablating one 
sister kinetochore with a laser (e.g., reference 42). Under 
both conditions decreasing those forces on the chromosome 
that are directed away from the pole decreases tension on the 
attached kinetochore and induce the chromosome to un- 
dergo poleward motion until it achieves a new position closer 
to its pole (e.g., Fig. 3 A). Finally, kinetochores on adjacent 
monooriented chromosomes switch between poleward and 
away from the pole phases of motion independently of one 
another whereas the switching of sister kinetochores on bi- 
oriented chromosomes near the spindle equator is highly 
coordinated as discussed above. This reveals that force 
changes at one kinetochore are transmitted to and influence 
the behavior of its sister. In the next section we discuss a 
model of vertebrate cell mitosis in which tension at the 
kinetochore microtubule attachment sites, generated by po- 
lar ejection forces on the chromosome arms andthe activity 
of the sister kinetochore, provide the vectorial control of 
kinetochore directional instability necessary for chromo- 
some congression and segregation to the poles. 

A "Kinetochore Motor~Polar Ejection" Model for 
Congression and Anaphase A in Vertebrates 

The model (Fig. 4) discussed here is based on kinetochore 
directional instability (11, 67) and polar ejection forces on 
the chromosome arms (4, 59), with the following proposed 
properties. 

Kinetochore Directional Instability. (a) Poleward and 
away from the pole kinetochore motion is insensitive to 
changes in kinetochore tension, until switchin} occurs. 

(b) The stochastic durations of kinetochore poleward and 
away from the pole phases of motion depend differently on 
the magnitude of tension at the kinetochore: kinetochores 
persist in poleward motion until the tension at the kineto- 
chore makes the probability of switching to motion away 
from the pole likely. Kinetochores then persist in motion 
away from the pole until tension is sufficiently low or  com- 
pression is sufficiently high to promote switching back to 
poleward motion. These concepts of kinetochore directional 
instability and the kinetochore as a tensiometer are based on 
a one-dimensional-biased random walk where tension or 
compression at the kinetochore microtubule attachment site 
biases the probabilities of switching between poleward and 
away from the pole phases of motion. However, since the 
poleward and away from the pole kinetochore states are dis- 
tinctly different, they must have different probabilities of 
switching between directions of motion at any given kineto- 
chore tension level (hysteresis in response to changes in 
tension). 

(c) The switch in the kinetochore between poleward and 
away from the pole states may involve changes in l~ineto- 
chore phosphorylation or other types of chemical reactions 
that control either motor activity or kinetochore microtubule 
dynamic instability. However, in our model these are down- 

Rieder and Salmon Chromosome Motion in Vertebrates 229 



t i 

Prometaphase Metaphase Anaphase A 

Figure 4. The kinetochore 
motor, polar ejection model 
views the kinetochore as an 
"active" and "smart" organdie 
capable of autonomously 
switching between distinctly 
different states of poleward 
and away from the pole mo- 
tion along relatively station- 
ary kinetochore fiber microtu- 
bules (kinetochore directional 
instability). In the drawing, 
arrows at the centromere indi- 
cate the direction of ki- 
netochore motion and the 
strengths of kinetochore pull- 
ing or pushing forces on the 
centromere. For clarity, the 
bundles of kinetochore fiber 
microtubules are not drawn 
(see Fig. 1). This model also 
proposes that the polar arrays 
of spindle microtubules resist 
chromosome penetration to- 
wards the poles, and actively 
push the chromosomes away 

from the pole in the direction of microtubule growth with a strength that is proportional to microtubule density, which increases closer 
to the poles within the central spindle. These polar ejection forces (represented by arrows on the chromosome arms) are envisioned to 
provide vectorial information to bias the relative duration of kinetochore poleward and away from the pole motion and push the chromosome 
arms to the periphery of the spindle. During congression the sister kinetochore facing the equator persists in pulling the chromosome 
towards its associated pole while the kinetochore facing away pushes the chromosome towards the equator by actively moving away from 
its associated pole. The polar ejection forces on the chromosome from the closer pole biases the proximal kinetochore into away from 
the pole motion and the distal kinetochore into poleward motion. The chromosomes oscillate back and forth near the equator because 
that is the position where the polar ejection forces from opposite poles are balanced. When chromosome disjunction occurs at the onset 
of anaphase, the relative motions of sister kinetochores no longer influence one another and kinetochores exhibit primarily poleward phase 
motion pulling the sister chromatids poleward in anaphase A. 

stream biochemical events modulated by tension at the kinet- 
ochore. 

Polar Ejection Forces. (a) Each of the two polar spindle 
microtubule arrays produce away from the pole ejection 
forces on the chromosome whose magnitude and direction 
depend, respectively, on the local density and orientation of 
polar microtubules. These polar ejection forces produce ten- 
sion on attached kinetochores. 

(b) There are two components that contribute to polar 
ejection forces. One is a "steric" resistance to chromosome 
penetration into regions of high microtubule density. The 
other is an away from the pole force (the '~olar winds") 
which push a chromosome away from the pole at a velocity 
which depends on kinetochore pulling/pushing forces and 
drag force on the chromosome. 

(c) The polar ejection forces on the chromosome arms 
from opposite spindle poles are independent and antagonize 
each other. 

In this model (Fig. 4) a kinetochore undergoes poleward 
motion when it first acquires kinetochore microtubules be- 
cause it is initially under no or low tension. Under this condi- 
tion the attaching kinetochore of a monoorienting chromo- 
some persists in poleward motion, pulling the chromosome 
poleward against the polar ejection force within that half- 
spindle. Poleward motion continues until the chromosome 
moves into a region of microtubule density where the polar 
ejection force is high enough to raise the tension at the 

kinetochore (seen by the extent of centromere stretching) to 
a level which makes the probability of switching to away 
from the pole motion likely. After switching to an away from 
the pole state, the kinetochore moves away from the pole at 
constant velocity. If this velocity is faster than the away from 
the pole chromosome velocity produced by the polar ejection 
forces, then the extent of centromere stretching decreases. 
When tension becomes low or the centromere is sufficiently 
compressed, the probability of switching back to poleward 
motion becomes likely. The non-periodic oscillatory motion 
of a monooriented chromosome is thus ascribed to both the 
stochastic nature of kinetochore directional instability and to 
fluctuations in the distance dependence of the ejection force 
magnitude within that region of the aster or half-spindle con- 
taining the chromosome. Since a monooriented chromo- 
some on a bipolar spindle resides closer to its attached pole, 
than to the opposing distal pole, its position is influenced al- 

most exclusively by the directional instability of one kineto- 
chore and one polar ejection force. 

Congression to the spindle equator involves interactions 
between sister kinetochore directional instabilities and ejec- 
tion forces from opposite poles. The unattached kinetochore 
on a monooriented chromosome will exhibit a poleward 
phase motion when it first attaches to microtubules from the 
distal pole because it is initially under no tension. As it 
moves toward the equator, its motion will stretch the centro- 
mere, increasing the tension on the proximal kinetochore 
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and eventually inducing the proximal kinetochore to switch 
into or persist in motion away from its associated pole. The 
net polar ejection force on the chromosome is away from the 
proximal pole because it is the closest spindle pole. As a re- 
sult, tension at the proximal kinetochore will be higher than 
at the distal kinetochore, biasing the distal kinetochore into 
poleward motion and the proximal kinetochore into motion 
away from the pole. This bias results in persistent chromo- 
some motion towards the equator. 

Bioriented chromosomes move to and oscillate about the 
equatorial plane because this is the position between the 
poles where the effects of opposing polar ejection forces on 
the directional instability of sister kinetochores are, on aver- 
age, equal. At the equator sister kinetochores try to autono- 
mously switch between poleward and away from the pole 
motion, but autonomous switching is biased by the tension 
produced at each kinetochore by the antagonistic activity of 
its sister's motion and the effects of unequal polar ejection 
forces when the centromere moves off the spindle equator. 

When chromosomes disjoin at anaphase the linkage be- 
tween sister kinetochores is broken. This abolishes the 
mutually antagonistic effects that sister kinetochores have on 
one another and, in effect, creates two monooriented chro- 
mosomes. On a bipolar spindle the distance between the 
equator and the poles is typically two or three times the aver- 
age distance from the poles achieved by monooriented chro- 
mosomes (11; Figs. 2 A and 3 A). Thus, the magnitudes of 
the polar ejection forces at the equator are likely much lower 
than that required to induce the kinetochore on a monoori- 
ented chromosome to switch between poleward and away 
from the pole motion. As a result the kinetochore persists 
in poleward motion until the polar microtubule density in- 
creases the strength of the polar ejection force sufficiently to 
induce away from the pole motion and oscillations about po- 
sitions near the pole. Transient switches to away from the 
pole motion may also be induced by various conditions that 
cause a transient elevation of kinetochore tension, e.g., by 
bridges between separating chromatid arms or obstructions 
within the cell. 

Evaluating the Model 

Some data appear, at a cursory level, to be inconsistent with 
our model. Monooriented chromosomes can become posi- 
tioned very close to the pole to which they have attached 
(e.g., Figs. 2 and 3)-implying that the ejection force as- 
sociated with that pole is too weak to be involved in con- 
gression. However, spindle formation in vertebrates is ac- 
companied by rapid and dynamic rearrangements of astral 
microtubules which, in turn, lead to dramatic changes in the 
vectors along which the ejection forces are expected to work: 
the two prominent radial microtubule arrays are progres- 
sively converted into a compact, microtubule-rich, fusi- 
form-shaped structure with greatly reduced asters (reviewed 
in 57, 72). It is not unusual during this process for the sym- 
metry of each forming half-spindle to change so that it con- 
tains regions of high and low microtubule density, i.e., 
microtubule density changes not only with distance from the 
pole but also with azimuth and inclination from the pole-to- 
pole axis. When in a region of low microtubule density, 
which often arises where the spindle (or half-spindle) joins 
the aster (11, 59), monooriented chromosomes are able to 

approach very close to the centrosome. By contrast, in re- 
gions of higher microtubule density (e.g., Fig. 3 B) such 
chromosomes would be expected to adopt a position sub- 
stantially farther from the aster center. In this context it is 
noteworthy that monooriented chromosomes on vertebrate 
bipolar spindles do not reside within the microtubule-rich 
central spindle but are excluded by "transverse equilibria" 
forces (6, 50, 53) to the periphery of this region where 
microtubule density is lower (chromosomes 1 and 2 in Fig. 
1). Although poorly defined, the transverse equilibria forces 
likely arise from the ejection properties of the aster and half- 
spindle and from the tendency of inclusions to be excluded 
between adjacent microtubules as they form ordered arrays. 
When the unattached kinetochore of a monooriented chro- 
mosome attaches to the distal pole, the resultant centripetal 
force generated by the poleward motion of the attaching 
kinetochore pulls the centromeric region of the chromosome 
into the polarized mass of microtubules that forms the cen- 
tral (half) spindle (e.g., chromosome #3 in Fig. 1). Under 
this condition the kinetochore positioned near the closer 
pole would be expected to switch into an away from the pole 
phase of motion as it experiences a sudden increase in the 
magnitude of the ejection force associated with that pole. 

A similar concern involves an experiment where one 
kinetochore of a large metaphase chromosome is destroyed 
by laser irradiation (e.g., 31, 42). Under this condition the 
chromosome moves closer to the pole to which the non- 
irradiated kinetochore is attached-apparently in conflict 
with our tenet that the metaphase half-spindle exerts an away 
from the pole ejection force on the chromosome. However, 
as discussed above, the ejection force associated with a half- 
spindle can be substantially less at the spindle equator than 
the poleward pulling force at the kinetochore within that 
half-spindle. At the equator, the directional instability of 
sister kinetochores antagonize each other. Thus, when one 
kinetochore is destroyed the chromosome would be expected 
to initiate poleward motion in the half-spindle containing the 
undamaged kinetochore. Moreover, the now monooriented 
chromosome would also be expelled laterally from the mi- 
crotubule-rich central spindle into the region of much lower 
microtubule density at the spindle periphery by the trans- 
verse equilibria forces in bipolar spindles. Once within this 
peripheral region, where ejection force is low, chromosomes 
with only one functional kinetochore would be expected to 
move very close to the pole. 

Brinkley et al's (9) conclusion from fixed cells that ki- 
netochores achieve a metaphase alignment even after being 
separated by caffeine treatment from the bulk of their chro- 
matin, also appears inconsistent with our premise that away 
from the pole ejection forces are necessary for congression. 
However, most if not all of these kinetochores reside well 
within the central spindle where microtubule density, and 
thus the ejection forces, are expected to be the highest. 
Moreover, each has an appreciable surface area (79) over 
which the ejection forces can work. 

Our model predicts that chromosomes should congress 
closer to one pole of the spindle, if the spindle is formed 
from two half-spindles that differ significantly in microtu- 
bule density. Such spindles rarely occur in nature, so this 
prediction has yet to be tested rigorously. However, Fig. 11 
in Belar and Huth (8) depicts a late metaphase/early ana- 
phase spindle in a worm oocyte in which one half-spindle is 
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clearly weaker than the other. In this figure the chromosomes 
are not positioned midway between the poles, but are shifted 
significantly closer to the pole in the smaller half-spindle. 

Finally, anaphase chromosomes are monooriented yet 
they ultimately move much closer to their associated pole 
than many of the monooriented chromosomes on monopolar 
and bipolar prometaphase spindles. There are several possi- 
ble non-mutually exclusive explanations for this behavior. 
The magnitude of the polar ejection forces on an anaphase 
chromosome may be less than on a prometaphase chromo- 
some because former have a smaller cross-sectional area 
than the latter (62). Moreover, at anaphase onset dramatic 
changes could occur in the capacity of the cell to maintain 
the half-spindle ejection forces, e.g., changes that reduce 
microtubule assembly and/or turn off the away from the pole 
force producers. Indeed, at anaphase onset proteins in the 
spindle pole are dephosphorylated (72), the apparent-g tubu- 
lin content of this microtubule nucleating center decreases 
(78) and the cdc2/cdc28-cyclin B complex (MPF) is de- 
graded (e.g., 26)-events that appear to radically change the 
assembly properties and length of polar microtubules (e.g., 
73). As a result, the number and/or length of microtubules 
within the anaphase half-spindle progressively decrease with 
the greatest number of microtubule plus ends found just in 
front of the poleward moving chromosomes (e.g., 22). 

Summary 

We argue that hypotheses for how chromosomes achieve a 
metaphase alignment, that are based solely on a tug-of-war 
between poleward pulling forces produced along the length 
of opposing kinetochore fibers, are no longer tenable for ver- 
tebrates. Instead, kinetochores move themselves and their 
attached chromosomes, poleward and away from the pole, 
on the ends of relatively stationary but shortening/elongat- 
ing kinetochore fiber microtubules. Kinetochores are also 
"smart" (43) in that they switch between persistent constant- 
velocity phases of poleward and away from the pole motion, 
both autonomously and in response to information within 
the spindle. Several molecular mechanisms may contribute 
to this directional instability including kinetochore-associ- 
ated microtubule motors and kinetochore microtubule dy- 
namic instability. The control of kinetochore directional in- 
stability, to allow for congression and anaphase, is likely 
mediated by a vectorial mechanism Whose magnitude and 
orientation depend on the density and orientation or growth 
of polar microtubules. Polar microtubule arrays have been 
shown to resist chromosome poleward motion and to push 
chromosomes away from the pole. These "polar ejection 
forces" appear to play a key role in regulating kinetochore 
directional instability, and hence, positions achieved by 
chromosomes on the spindle. 
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