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ABSTRACT

We present a new method for estimating heart motion from
two-dimensional (2D) echocardiographic sequences. It is
inspired by the Lucas-Kanade algorithm for optical flow
which estimates motion parameters over a sliding window.
However, instead of assuming that the motion is constant
within the analysis window, we consider a model that is lo-
cally affine and can account for typical heart motions such
as dilation/contraction and shear. Another refinement is spa-
tial adaptivity which is achieved by estimating displacement
vectors at multiple scales and selecting the most promising
fit. The affine parameters are estimated in the least squares
sense using a separable spatial (resp., spatio-temporal) B-
spline window. This particular choice is motivated by the
fact that the B-splines are nearly isotropic (Gaussian-like)
and that they satisfy a two-scale equation. We use this lat-
ter property to derive a wavelet-like algorithm that leads to
a fast computation of B-spline-weighted inner products and
moments at dyadic scales, which speeds up our method con-
siderably.
We test the algorithm on synthetic and real ultrasound se-
quences and show that it compares favorably with other
methods, such as Lucas-Kanade and Horn-Schunk.

1. INTRODUCTION

Echocardiography is an effective imaging modality that en-
ables clinicians to study the shape, size, and dynamics of
the heart. The features that have made it so commonly used
are its noninvasiveness and ease of use. The analysis of
ventricular motion, in particular, provides an efficient mean
to evaluate the degree of ischemia and infarction [1], [2].
Several methods have been proposed to quantify heart mo-
tion from 2D echocardiograms among which optical flow
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methods have led to promising results [3]. For example,
Mailloux et al. [4] extended the optical flow algorithm of
Horn and Schunk [5]. A very popular optical flow algorithm
is the Lucas-Kanade method [6], which estimates the mo-
tion locally, assuming that motion is constant within a win-
dow. This method was applied successfully to ultrasound
by Chunke et al. [7].

In this paper, we introduce a variant of the Lucas-Kanade
method that is better adapted to our situation. The refine-
ments that we propose are four-fold:

� Instead of assuming that the motion is locally con-
stant, we use a local-affine-in-space model for the dis-
placement field, which is better suited to the descrip-
tion of typical heart motion such as dilation/contract-
ion and shear. The local affine parameters are poten-
tially very interesting for diagnostic purposes because
they may offer a way to distinguish between passive
and active tissue.

� Instead of working at a fixed scale, we consider es-
timation windows of increasing sizes and develop a
multiresolution strategy to improve the estimation of
large motions and to reduce the sensitivity to noise.

� We introduce a B-spline weighting scheme that has
important computational advantages for multi-scale
processing. In particular, we develop a wavelet-like
multiresolution implementation.

� We also consider the option of adding a temporal affine
component to our motion model. This leads to a more
robust motion estimation which combines the infor-
mation from multiple frames. It also yields an addi-
tional acceleration parameter—a useful indicator of
heart dynamics.

The paper is organized as follows. We describe our method
in some detail in Section 2. We then validate the algorithm
in Section 3 by applying it to synthetic data that simulates
the characteristics of a beating heart, and by comparing it
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with alternative approaches. In particular, we test its ro-
bustness by adding various amounts of noise. Finally, we
present some results with real echocardiographic data.

2. LOCAL-AFFINE, MULTI-SCALE MOTION
ESTIMATION

Let ���� �� �� denote the intensity of pixels at location � �
��� �� and time � in an image sequence. Gradient-based op-
tical flow estimation relies on the assumption that the in-
tensity of a particular point in a moving pattern does not
change with time. The constant intensity assumption can be
expressed as [5]

����� ������ �� � ����� �� ���� �� � ����� �� � �� (2)

where ��, �� and �� denote the spatial and temporal deriva-
tives of the image intensity. The velocities � and � are, re-
spectively, the �- and �-components of the optical flow we
wish to estimate. Since (2) is a single equation in two un-
known components � and �, it cannot be solved uniquely
without introducing additional constraints.

2.1. Local Affine Velocity in Space-Time

Let �� � ���� ��� ��� denote the center of a small spatio-
temporal image region �. A very popular optical flow al-
gorithm is the Lucas-Kanade method [6], which estimates
the motion locally, assuming that motion is constant within
a spatial window. In order to account for typical heart mo-
tions, such as expansion, contraction, and shear, we extend
this approach to a local, spatial-affine model for the motion.
Additionally, we also use a linear model for the velocity
along the time direction. This allows to capture local accel-
erations in time much better than a locally constant model.
Another advantage is that we can base our estimation on
multiple frames around a given time point which is much
more robust than using only two frames as many classical
optical flow methods do. This spatio-temporal-affine model

is defined as

���� �� �� � �� � ����� ��� � ���� � ��� � ����� ����

���� �� �� � �� � ����� ��� � ���� � ��� � ����� ����

(3)

The parameters �� and �� correspond to the motion at the
center point �� and ��, ��, ��, ��, ��, and �� are the first
order spatial and temporal derivatives of � and �, respec-
tively.
We estimate the local motion components by minimizing
the least-squares criterion

�

�

	��� �� ��
�
�� �� �� � � ��

��

� 
� 
�� (4)

The symmetric window function 	 gives more weight to
constraints at the center of the local spatio-temporal region
than to those at the periphery. A very well suited window
function is 	��� �� �� � ���������������, where �� is
the symmetrical B-spline of degree � � � [8]. B-splines
rapidly converge to Gaussians when their degree increases
which ensures isotropy of the window in multiple dimen-
sions. Additionally, B-splines satisfy a two-scale equation
which allows for an efficient computation of B-spline-weight-
ed inner products at dyadic scales by using a wavelet-like
algorithm (cf. Section 2.2).

By differentiating (4) with respect to each of the eight
unknown parameters, we obtain a symmetric linear system
�� � � in terms of local moments of the spatial and tem-
poral derivatives of � , as defined in (1). More generally, the
local moments at a given position �� are given by


��������� ��� ��� �

�

�

	��� ��� � � ��� �� ���� (5)
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where � � � � � � � � � and � represents the functions
��� � �

�
� � ����� ����� ������.
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2.2. Coarse-To-Fine Multi-Scale Strategy

It is obviously difficult to estimate large motions at fine
scales. A way around this problem is to apply a coarse-
to-fine strategy. At each spatial scale � we use dilated and
shifted versions of the window function:

������� ��� � � ��� �� ��� � (6)

�

�
�� ����

��
�
� � ����

��
� �� ��

�
�

Note that the window functions at scale � are spaced at a
distance of �� pixels in the corresponding dimension. Com-
puting inner products with large windows is computation-
ally very expensive; however, B-spline functions satisfy a
two-scale equation so that the local moments (5) can be
computed recursively in a multiresolution approach using
a Mallat-like algorithm [9]:

������
����� ���� ��� ��� � (7)
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The one-dimensional two-scale filters 	��� depend on the de-
gree of the chosen B-spline window and are applied sepa-
rately in the x- and y-directions. A more detailed descrip-
tion of this algorithm will be given elsewhere.

The motion vectors are cascaded through each resolu-
tion level as initial estimates and are then refined if they do
not already exceed a scale-dependent size. For each local
estimate, we compute a confidence measure which is based
on the magnitude of the residual in (4). A local estimate
is refined only if its confidence measure is larger than the
corresponding one at the next coarser scale. Furthermore, a
solution of a local linear system is regarded as not admis-
sible if the linear system is either ill-conditioned or if the
length of the estimated central motion vector exceeds some
scale-dependent limit. Finally, a motion estimate is set to
zero if the local mean of the time derivative at the given
location is below a pre-defined noise level.

3. NUMERICAL RESULTS

For validation purposes, the algorithm was applied to syn-
thetic and real sequences and compared to other methods.
In order to obtain accurate numerical derivative estimates,
we used cubic spline interpolation [8] in space and time.

3.1. Application to Synthetic Data

A quantitative analysis of the performance of the algorithm
can only be done on synthetic sequences since the exact mo-
tion field is not known otherwise. In this study, the my-
ocardium is modelled by a spherical ring containing a pat-
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Fig. 1. One frame of the synthetic sequence and mean an-
gular errors of the estimated motion fields.

tern representing tissue. To the inner layer of the ring (en-
docardium), we applied a cosine modulated velocity field in
order to simulate expansion and contraction. The remain-
ing myocardium was moving such that its area remains con-
stant. This results in a radial velocity field with a magnitude
decreasing with the distance from the center. This kind of
motion reflects the wall-thinning and thickening of a beating
heart during diastole and systole. One frame of the sequence
together with its exact motion field is shown in Figure 1(a).
The proposed algorithm was compared with two adaptations
of the proposed approach. The first one only uses a local
affine motion model in space and no window in the time di-
mension. The second adaptation corresponds to the Lucas-
Kanade method, which assumes the motion to be locally
constant in space. The same spatial window and multires-
olution strategy were used for these adaptations. Further-
more, we compared results with the method of Horn and
Schunk. In particular, we used the regularization parameter

 � ���, as recommended in [3], and performed at most
��� steps of the Gauss-Seidel iteration.
To test the robustness of the algorithms, we added gaussian
white noise of different standard deviations to the original
sequence. As in the real case, the noisy sequences were then
prefiltered with a spatio-temporal Binomial filter of spatial
variance ��	 � ��� and temporal variance ��
 � ����.
The error of the estimated motion fields was computed using
the angular error measure as defined in [10]. The resulting
mean angular errors of the different methods are illustrated
in Figure 1(b). The worst method in the noise-free case
is the Lucas-Kanade method. This is due to the fact that
the diverging character of the motion field is not compati-
ble with the local constancy-assumption. It starts behaving
better as soon as the noise level increases, eventually even
outperforming the affine-in-space method, which is less ro-
bust for high levels of noise simply because it has more pa-
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(a) Spatio-Temporal-Affine
Method

(b) Horn-Schunk Method

Fig. 2. One frame of the ultrasound sequence and the
corresponding estimated motion fields. (Data curtesy of
M. Sühling)

rameters to fit. The method of Horn and Schunk is clearly
most sensitive to noise. Even by using a larger regulariza-
tion parameter � � ����, the error did not decrease signif-
icantly. The spatio-temporal-affine algorithm performs best
since the use of a time window provides increased robust-
ness against noise.

3.2. Application to Clinical Data

For a first in vivo validation, we acquired 2D echocardio-
graphic sequences by free-hand scanning using existing Hew-
lett-Packard hardware (HP Sonos 5500). Figure 2(a) shows
one frame of an apical two-chamber-view sequence of a
heart during systole (contraction). The corresponding esti-
mated motion field using the spatio-temporal-affine method
is superimposed in the form of a needle diagram. Figure
2(b) illustrates the corresponding motion field estimated by
the method of Horn and Schunk with a value of � adapted
for best subjective performance. Both motion fields clearly
reflect the contraction of the myocardium. However, the
results of the Horn-Schunk method suffer from two arti-
facts: 1) a less coherent motion field (e.g. more noise) in the
moving areas of the heart, and 2) a significant smoothing of
the local motion across the boundaries of the myocardium
which comes as the consequence of the use of a global reg-
ularization.

4. CONCLUSION

We proposed a new method to estimate heart motion from
echocardiographic sequences which uses a spatio-temporal-
affine model for the velocity within a local window. We
also introduced a nearly isotropic weighting scheme which
uses B-splines. A hierarchical refinement scheme using a

dyadic scale progression was applied to reduce the prob-
lems of estimating large motions and to reduce the sensi-
tivity to noise. Computational efficiency was achieved by
developing a Mallat-like algorithm for computing B-spline-
weighted inner products and moments at dyadic scales. Ac-
curacy and noise robustness of the proposed method was
demonstrated on synthetic and real ultrasound sequences.
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