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Abstract: A greater variety of technologies are being applied in sports and health with the advance-
ment of technology, but most optoelectronic systems have strict environmental restrictions and are
usually costly. To visualize and perform quantitative analysis on the football kick, we introduce a
3D motion analysis system based on a six-axis inertial measurement unit (IMU) to reconstruct the
motion trajectory, in the meantime analyzing the velocity and the highest point of the foot during
the backswing. We build a signal processing system in MATLAB and standardize the experimental
process, allowing users to reconstruct the foot trajectory and obtain information about the motion
within a short time. This paper presents a system that directly analyzes the instep kicking motion
rather than recognizing different motions or obtaining biomechanical parameters. For the instep
kicking motion of path length around 3.63 m, the root mean square error (RMSE) is about 0.07 m.
The RMSE of the foot velocity is 0.034 m/s, which is around 0.45% of the maximum velocity. For
the maximum velocity of the foot and the highest point of the backswing, the error is approximately
4% and 2.8%, respectively. With less complex hardware, our experimental results achieve excellent
velocity accuracy.

Keywords: sports technology; football; motion analysis; IMU; trajectory reconstruction

1. Introduction

For any sports, repeated practice is required to improve performance and techniques.
In addition to the amount of training, it is more important to use the correct method to
enhance the quality of training. Practicing with improper methods is not only ineffective
but also more likely to cause sports injuries. While performing a shot, players maximize
speed and power, trying to make the shot more effective. However, for amateurs, exerting
excessive force can easily lead to stiffness of the kicking leg. This results in insufficient knee
bending which leads to momentum reduction during the foot swing before contacting with
the ball. This problem is difficult to realize by athletes themselves. One way to analyze
the motion is by applying multiple high-speed cameras combined with image analysis
software to reconstruct the human body model and the state of motion. However, such
equipment is relatively expensive and has environmental restrictions since image-related
equipment needs to be set in a specific space or venue. On the other hand, IMU sensors
have features such as light weight, low power, low cost and small size. An IMU can consist
of a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer. With
proper filtering and data fusion, the information can be used for attitude and position
estimation. Applications of IMU include military, automobile and sports.

1.1. Related Work
1.1.1. IMU in Sports

Wearable sensors with IMUs have been utilized in pedestrian dead-reckoning systems
by detecting the stationary stance phase and applying zero-velocity updates (ZUPTs) for
position tracking [1]. Inertial sensors were placed on the side of the shoe in [2] to obtain
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information about foot clearance and mean step velocity, which helps assess foot kinematics
in steady-state running. Another study [3] developed a system for field-based performance
analysis based on IMUs which are attached to both ankles. The system detects stance
duration, providing users with real-time feedback. In [4], the study used eight IMU sensors
with velocity-based localization to capture the human spatial behavior and velocity during
motions such as walking, jumping and running. The system was reduced to three IMU
sensors and utilized the velocity-based localization with acceleration fine tuning [5].

To help prevent shoulder injuries, ref. [6] presented a classification approach by
tracking and discriminating shoulder motions using an IMU. The wearable motion capture
platform proposed in [7] provides physical quantities during the high-speed motion of
baseball pitchers. With an array of inertial and magnetic sensors, the method allows for
the analysis of various biomechanical parameters. A wearable device was developed by
incorporating IMU sensors with flow sensors. The device in [8] measures human limbs
velocity, acceleration and attitude angles. Experiments include boxing motion capture with
the device on the forearm and kicking motion capture with the device on the shank. Ref. [9]
presented a wearable sensing system consisting of multiple IMU sensors for basketball
activity recognition. The system is able to identify walking, jogging, running, sprinting and
shooting. Another basketball-related study built a wrist-worn sensor consisting of an IMU,
five environmental sensors, a processor and a microcontroller. The activity recognition part
was conducted by machine learning [10]. The algorithm proposed in [11] detects four key
temporal events and three temporal phases in skateboarding. It can provide quantitative
assessment for injury prevention.

1.1.2. Football-Related Motion Analysis

Lower extremity and pelvis kinematics such as linear velocities and angular velocities
were measured by an off-the-shelf product of 17 inertial sensors during kicking. The
measurements were then compared with those obtained from an optoelectronic motion
analysis system [12]. The hip joint motion of football players during practice was recorded
directly on a sports field by a three IMU system [13]. The motion was characterized by
hip acceleration and orientation. To quantify movement intensity and improve training
load estimation, the system in [14] obtained knee and hip joint kinematics for football-
specific movements performed at different intensities. A pressure-sensitive material was
placed on the kicking foot in [15]. The device measured the force and center of pressure
during the impact phase for players to further improve their technique. Biomechanical
differences were observed during kicking with the preferred and the non-preferred leg [16].
Both kinetics and kinematics were derived from the filmed movements. By the full-body
modeling and three-dimensional motion capture system, quantitative evaluations of kick
quality were provided [17]. Using a single IMU and the acceleration data, the system
in [18] distinguished between running and dribbling, passing and shooting. The study
also compared three sensor locations (inside ankle, lower back and upper back) for better
accuracy. Detection and segmentation of a soccer kick were performed by a system of
wearable sensors and video cameras for sports motion analysis [19].

From the above paragraphs, most IMU-related motion analysis research focuses on
activity classification or motion recognition during training or in a match. With the en-
vironmental limitations possessed by camera-based optoelectronic systems, the size and
weight of IMU has a clear advantage. It is a popular choice when performing motion
analysis. Although some research studies look at the motion itself, most of them dive into
the information related to training load or biomechanical parameters on a specific joint
or body part. In particular, no previous research reconstructed and analyzed the instep
kicking motion with a single IMU. This paper aims to present a motion analysis system
with increased accessibility, providing football players of all levels with instant feedback
and an auxiliary training method to improve the instep kicking technique.

The field application of this study is expected to help players or general football lovers
to adjust their movement posture before actual kicking. Preliminarily changing the posture
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in the empty kick stage will make the players develop good kicking habits more effectively,
resulting in a better performance when actually kicking the ball. Therefore, this paper is
mainly focusing on dealing with the trajectory of the foot during the kicking motion. The
sensors are calibrated and the threshold setting is tailored for the kicking motion to avoid
some tiny impact.

To validate the reliability of the system, we utilize the high-speed cameras to obtain
the golden pattern for the trajectory. According to the systematic review study [20], one of
the most commonly used measures of agreement is the Bland–Altman plot. It is a scatter
plot which shows the relationship between two methods. The metric is used in this study
to evaluate the accuracy of the trajectory reconstructed from the IMU data.

The system architecture is shown in Figure 1. We collect acceleration and angular
velocity data during movement through the accelerometer and gyroscope in the six-axis
inertial measurement unit (IMU). After the steps of deviation calibration, attitude estimation
with quaternions, the transformation of coordinates, and gravity compensation, we analyze
the maximum velocity and highest point of the foot before contacting with the ball while
reconstructing the 2D and 3D trajectory of the kicking motion.
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Figure 1. An illustration of the proposed system. The three colored small axes on the trajectory
represent the coordinates of the sensor.

This paper aims to present a 3D motion analysis system which allows users to observe
the kicking motion and acquire significant motion information, with only a single IMU
sensor attached to the kicking foot, avoiding complex accessories which might affect
training and eluding the hassle of setting up optoelectronic devices. The main contributions
of this study are: (1) the synthesis of a simple motion trajectory reconstruction system
for the data collected by a single six-axis IMU during an instep kicking motion, which
employs the quaternion representation of orientation to describe the attitude change;
(2) the customized adjustments to various parameters for the football kicking action during
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the signal processing, and the elimination of various possible noises to ensure that the
accumulation of integral errors is minimized; (3) the extraction of specific motion data from
the reconstructed trajectory to provide motion parameters that affect the quality of the kick
during the process from backswing to kicking.

2. Methodology

The proposed sensing system includes data collection and several data processing
procedures. More detailed steps will be given later in this chapter.

2.1. Data Collection and Deviation Calibration

The sensor selected in this research is ICM-20649 [21]. It is a wide-range six-axis motion
tracking device which contains a three-axis accelerometer and a three-axis gyroscope,
each with a 16-bit ADC, and the sampling frequency is set to 100 Hz. In the previous
measurement, we found that the upper limit of the kicking motion is about 12 g, so we
set the full signal range to ±30 g and ±4000 ◦/s for the application in this research. The
precision measured from this range is acceptable because there are subsequent mechanisms
for threshold and stationary judgement to distinguish the state of motion.

This experiment uses Bluetooth to transmit real-time data. After pairing the sensor
with the Bluetooth receiver, the acceleration data and angular velocity data will be trans-
ferred to the computer and stored as text files. After the data are converted to decimal, it is
necessary to perform the two’s complement to obtain the negative number.

A modified sphere model is applied in the calibration process for sensor deviation.
First, we assume the calibration equation to be G = L(g + b), G is the acceleration before
calibration, g is the real acceleration, L is the linear proportional deviation of the sensor
itself and b is the deviation of the center value of the sensor. In an ideal static state, the sum
of the squares of the three-axis acceleration should be equal to one, so the gravitational
acceleration values at various angles will form a sphere with a radius of one. When
calculating, one must first assume that the linear proportional deviation is one, and one
must use the least square method to obtain the center of the three axes. The same method
can be used to find the linear proportional deviation, but the actual test found that the
three-axis acceleration square sum will be less than one when the sensor is stationary.
Therefore, normalization is performed in the end to complete the accelerometer calibration.

2.2. Attitude Estimation with Quaternion

In the common state of motion, rotation is bound to participate, and the acceleration
received by the three axes of the sensor is actually the acceleration of the sensor’s coordi-
nates, not the acceleration of the earth coordinates. Data can only be applied and analyzed
through attitude processing. The six-axis sensor chosen for this research only includes an
accelerometer and a gyroscope. Without a magnetometer, we can only obtain the sensor
attitude by obtaining the respective angle changes of the sensor and comparing them with
that of the initial coordinates.

Quaternion representation of rotation is derived from the characteristics of inner and
outer products between vectors. It can be considered to be the extension of two-dimensional
real and imaginary numbers to four-dimensional to show the rotation in three-dimensional
space. Similar to complex numbers, quaternions are composed of real numbers and three
elements i, j and k. Each quaternion q can be represented by a linear combination of them,
generally expressed as q = a + bi + cj + dk, and they follow the following relationship:

i2 = j2 = k2 = ijk = −1 (1)
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The attitude quaternion (q) is a column vector of four parameters to describe a rotation
along a specific axis, which can be written as:

q =


q0

qx
qy
qz

 ,


cos
(

θ
2

)
Ex sin

(
θ
2

)
Ey sin

(
θ
2

)
Ez sin

(
θ
2

)

 (2)

However, in a general movement, it is difficult to know the rotation axis of each sam-
pling point, and the angle information is of the sensor axes instead of the axis with which
the sensor rotates along. Since the angle information is obtained through the gyroscope, we
decide to directly update the quaternion by using the angular velocity data. The vector Sω

which contains the angular velocities is defined as:

Sω =
[
0 ωx ωy ωz

]
(3)

Then, we consider the quaternion derivative that describes the rate of change in orientation:

dQk
dt

=
1
2
·Q̂k−1

⊗
Sω (4)

The first parameter, dQk
dt , is the derivative at time step k expressed in quaternion, Q̂k−1

is the estimated orientation at time step k, and ⊗ is the quaternion product operator. By
integrating the quaternion derivative, it would be possible to estimate the orientation
over time:

Q̂k = Q̂k−1 +
dQk
dt
· ∆t (5)

Finally, we can use the following equation to complete the quaternion update:

Qk+ = 0.5×Qk−1 × angVel× dt (6)

In addition, after each update of the quaternion, the quaternion must be normalized
to obtain the true quaternion, so as to avoid the phenomenon of scaling while the vector is
rotating. When a new quaternion is obtained, the acceleration data of the sensor can be
converted into the acceleration data of the initial coordinates through the following formula:

accltransformed = Q× accl×Qconj (7)

where accltransformed is the acceleration data in initial coordinates, accl is the acceleration
data before attitude processing, Q and Qconj represent the quaternion and the conjugate
quaternion, respectively.

2.3. Gravity Compensation

This subsection will introduce the method of compensating the gravity components
and the transformation of coordinates. Since the sensor data during the entire motion have
been converted into the initial sensor coordinates, we can subtract the average acceleration
of the first 500 sampling points obtained in the static state offset_accl from the raw accelera-
tion data. Through this process, we can obtain the movement data of the sensor without
the influence of gravity.

After gravity compensation, the misalignment between the initial coordinates and
the earth coordinate still needs to be dealt with. If this problem remains unsolved, the 2D
and 3D motion trajectory will be tilted. Different from the previous processing of attitude
changes, since the initial coordinates are those at rest and cannot be processed with angular
velocity information, we implement the rotation matrix of the initial coordinates to the
earth coordinates to calculate the inclination of the gravity component.
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First, we divide the rotation into three parts: roll, pitch and yaw. The tilt of a three-
dimensional space can be achieved with two axial rotations.

roll = arctan
(

offsety

offsetz

)
, pitch = −arctan

(
offsetx

offsetz

)
, yaw = 0 (8)

After obtaining the rotation angles around each axis, we find the rotation matrix, and
combine the three with matrix multiplication to obtain the complete rotation matrix, written
as the following matrices:

Rx =

1 0 0
0 cos(roll) − sin(roll)
0 sin(roll) cos(roll)



Ry =

 cos(pitch) 0 sin(pitch)
0 1 0

− sin(pitch) 0 cos(pitch)


Rz =

cos(yaw) − sin(yaw) 0
sin(yaw) cos(yaw) 0

0 0 1


Trotate = Rz ×Ry ×Rx

(9)

Lastly, we multiply it by the three-axis acceleration after compensating the gravity to
complete the transformation of the coordinates, written as:

acclcorrected = Trotate × acclcorrected (10)

2.4. Quadratic Integration and Threshold Setting

After completing the transformation of the coordinates and the gravity compensation,
we proceed to the trajectory construction part. The velocity can be obtained by integrating
the acceleration once, and the displacement can be obtained after the second integration.
The displacement between every two sampling points can be used to reconstruct the
trajectory of the sensor movement.

In this research, we slightly modified the integration method by averaging the acceler-
ation value between two sampling points to calculate the acceleration value belonging to
the time interval. The formula can be written as:

vi = vi−1 +
ai + ai−1

2
∆t (11)

The result calculated by this integration method is more accurate than that calculated
by the original formula vi = vi−1 + ai∆t. The velocity change, which is the area calculated
by this method, is shown by the area a′∆t in Figure 2, and a′ is the average acceleration of
a1 and the acceleration from the previous sampling point. It can be found that the purple
area on the left can be roughly compensated to the original missing area, so the integral
error will be smaller than the original formula. We perform the integration separately on
the three-axis data collected by the sensor to obtain the velocity of each axis, and then we
use a similar integration technique to obtain the displacement.

Threshold setting is a crucial aspect when integrating. During the experiment, the
sensor will inevitably be affected by some external factors, such as vibration, wind and
incomplete compensation of gravity components. The slight fluctuation of acceleration has
a considerable influence on the error of the integration. Therefore, after repeating several
experiments, we found that the acceleration of the target motion is mostly above 3.92 m/s2.
We set 0.392 m/s2 as the acceleration threshold to filter the acceleration value of the target
movement before integration.
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Figure 2. Illustration of integration error cancellation. The average acceleration of two adjacent
sampling points is taken for calculation.

In addition, there will be a physical blind spot in the actual acceleration integration.
When the sensor is stationary after a motion, the acceleration integration area during
acceleration and deceleration cannot completely offset each other. Even if the sensor is at
rest and the acceleration has become exactly zero, the velocity remains at the same value
of the previous sampling point. In this case, when the velocity is integrated to obtain the
displacement, the sensor will seem to continue its motion at a constant velocity instead
of being in a static state. Therefore, a new judgment condition is added here. When the
acceleration of fifteen consecutive sampling points is zero, it is determined to be a static
state, and the velocity is returned to zero. A reasonable velocity threshold is also obtained
through multiple experiments, and is set to 0.196 m/s to ensure that the above-mentioned
accumulation of errors will not occur.

3. Results
3.1. Experimental Setup

Two high-speed cameras are used to capture the image from the front and side view to
provide golden patterns for the experiment; we use tripods to secure the camera to avoid
shaking, and place multiple scale bars within the capture range as a reference for depth
correction. After setting up the cameras, we tie the sensor (ICM-20649) on the top of the
athlete’s foot with a rubber band, and perform an instep kicking motion without hitting a
ball. The data received from the IMU will be collected and imported to MATLAB for data
processing, then we draw trajectory diagrams and analyze different motion data.

The theoretical value of the experiment is provided by the video of the cameras. We
import the video into Tracker for mapping and export the 2D data of each angle of view,
align the peaks through the front view and the side view, and then perform the depth
correction separately. The 3D data can be combined and the data can also be imported into
MATLAB as the theoretical values. The results will then be used to calculate the error of
each analysis.

3.2. Experimental Results
Motion Trajectory Analysis

After completing the data processing introduced in the previous chapter, the 3D
position information of each sampling point of the IMU will be obtained, and the 3D
trajectory diagram will be drawn with MATLAB. The average path length in several
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repeating experiments and the root mean square error (RMSE) with the theoretical value of
the entire path will be calculated to verify the accuracy of the system. The two trajectories
are aligned from the beginning of the motion, and then we utilize the relative sampling rate
according to the different sample rates of the IMU and the frame rate of the camera. We
calculate the distance between the corresponding sample points and calculate the RMSE of
the position and the velocity in the direction of the kick. Figure 3 is a 3D motion trajectory
diagram, the blue solid line in the figure is the theoretical trajectory obtained by Tracker, and
the line composed of the red dots is the trajectory obtained after IMU data are processed.
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around 3.63 m, the position RMSE and the velocity RMSE of the two trajectories are 0.07 m and
0.034 m/s, respectively.

3.3. Foot Velocity Analysis

On the football field, whether it is passing or shooting, the velocity of the ball is a
crucial factor. We hope to observe the maximum velocity of the athlete’s foot swing and
where the maximum value occurs so that we can help athletes transmit the most kinetic
energy to the ball. With the golden pattern obtained by Tracker, we can compare the velocity
of the sensor with the velocity from the video. Figure 4 is a 2D motion trajectory diagram,
the blue cross is the position where the maximum velocity appears in the theoretical
trajectory, and the red circle is the position where the maximum velocity appears in the
IMU motion trajectory.
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Figure 4. Two-dimensional trajectory diagram with maximum velocity position. The maximum
velocity occurs when the foot reaches the bottom of the motion trajectory. An average value of the
maximum instantaneous velocity in repeated experiments is around 7.4 m/s, and an error of 4%
is achieved.

3.4. Backswing Height Analysis

When shooting or hitting a long ball, if the knee of the kicking foot is not bent enough to
increase the height of the foot, the power of the ball will be significantly affected. Therefore,
we would like to observe the height of the highest point of the foot during the pull-back
motion on the reconstructed trajectory. With the golden patterns obtained by Tracker,
we can discuss the accuracy of the system by comparing the highest points during the
backswing. We can also use the 3D trajectory graph to obtain the position of the highest
point for visualization. Figure 5 is the 3D motion trajectory diagram and the highest point
of the backswing.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 4. Two-dimensional trajectory diagram with maximum velocity position. The maximum 
velocity occurs when the foot reaches the bottom of the motion trajectory. An average value of the 
maximum instantaneous velocity in repeated experiments is around 7.4 m/s, and an error of 4% is 
achieved. 

3.4. Backswing Height Analysis 
When shooting or hitting a long ball, if the knee of the kicking foot is not bent 

enough to increase the height of the foot, the power of the ball will be significantly af-
fected. Therefore, we would like to observe the height of the highest point of the foot 
during the pull-back motion on the reconstructed trajectory. With the golden patterns 
obtained by Tracker, we can discuss the accuracy of the system by comparing the highest 
points during the backswing. We can also use the 3D trajectory graph to obtain the posi-
tion of the highest point for visualization. Figure 5 is the 3D motion trajectory diagram 
and the highest point of the backswing. 

 
Figure 5. Three-dimensional trajectory diagram with backswing height illustrated. An error of 2.8% 
is achieved for an average backswing height of 0.756 m. The image on the right shows the highest 
point during the backswing. 

Y-axis Displacement (m)

Z-
ax

is
 D

is
pl

ac
em

en
t (

m
)

IMU integration
Golden pattern
Max velocity point (IMU)
Max velocity point (Golden)

Figure 5. Three-dimensional trajectory diagram with backswing height illustrated. An error of 2.8%
is achieved for an average backswing height of 0.756 m. The image on the right shows the highest
point during the backswing.
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Table 1 shows the quantified results generated from IMU data and also the results
from high-speed cameras. From the results below, we can observe that in the motion with
an average path of about 3.6 m, the entire trajectory obtained by IMU’s data processing
with the theoretical trajectory only has an absolute error of about 0.07 m. It is considered a
very accurate result when constructing a motion trajectory, thus it proves that our signal
processing system has a certain degree of credibility. As for the instantaneous velocity of
the foot and the backswing height, the error is approximately 4% and 2.8%, respectively.

Table 1. Comparison of reconstructed trajectory, instantaneous velocity and backswing height
generated by IMU data with high-speed cameras’ results.

Instep
Kicking
Test of
Sample
Size 10

Reconstructed Trajectory Foot Velocity Analysis
(Instantaneous Velocity) Backswing Height Analysis

Average
Length

(m)

Position
RMSE

(m)

Velocity
RMSE
(m/s)

IMU
(m/s)

Image
Analysis

(m/s)
Error IMU

(m)

Image
Analysis

(m)
Error

3.63 0.07 0.034 7.468 7.409 4.0% 0.741 0.756 2.8%

Figure 6 shows the validation of position (three axes) during the motion by comparing
the IMU algorithm results with high-speed camera results. From the Bland–Altman plot,
it can be seen that only 4.17% (10 out of 240) of the points are outside the 95% limits of
agreement, the extent of the difference is clinically acceptable, so the two methods can be
considered to be in good agreement, inferring that this IMU algorithm can be clinically
substituted for high-speed camera.
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Figure 6. Validation of position during the motion by comparing the IMU algorithm results with
high-speed camera results. The Bland–Altman plots for the three axes show that the data obtained by
these two methods have high similarity.

4. Discussion

While camera-based optoelectronic systems can provide high accuracy for motion
capturing, it has environmental restrictions and has limitations in capture rate. When
calculating derivatives greater than or equal to second order using the measurement data,
it has a high level of noise, often resulting in limited or no physical meaning unless the raw
data are filtered to 10–20 Hz [22]. When these optoelectronic systems are applied to targets
moving in high speed, although the position will be accurate, the velocity and acceleration
might not be of adequate accuracy. At the same time, the device settings of these image
analysis systems are cumbersome and can only be used in a specific environment. The
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IMU sensor is undoubtedly a perfect substitute in this case. It provides the information of
inertial data such as acceleration and angular velocity directly. The sensor can be easily
mounted on the person without interfering with their performance, and since the sensor is
light, players can easily adapt to the existence of the new device.

Focusing on the football kicking motion, we constructed a motion analysis system
based on an IMU sensor, trying to analyze the physical quantities related to improving the
football kicking performance. To preliminarily evaluate and assess a kicking motion, the
foot velocity and backswing phase are both key factors related to the quality of the kick.
In [23], the results showed that the foot velocity at the initial instant at the initial impact
phase affects the ball velocity more than any other factors. The quality of foot–ball contact
is crucial to the spin and speed of the ball. Higher foot velocity is related to more powerful
kicks [24].

For the reconstructed trajectory, our system has achieved results with high accuracy
and low RMSE in both position and velocity. Since the types of target motions are different,
it sometimes cannot fully explain whether a method outplays another simply by comparing
the RMSE without considering the length of the motion and the dimensions evaluated.
For the gait analysis algorithm that Zhou et al. performed in [25] on the action of striding
forward, they achieved an RMSE of about 0.05 m in a stride of about 1.5 m. As for the
acceleration-based simultaneous localization and capture method (A-SLAC) proposed
in [5], the RMSE in the main walking direction is 0.038 m for a length of 3.6 m for each trial.
The RMSE is 0.032 m for the vertical direction and 0.057 m in the sideways direction, which
is about 2% of the trial length. While they focus on performing the error calculation on the
direction of the stride, we conduct the error calculation of the 3D motion. For an instep
kicking motion with the average path length of around 3.63 m, our system achieved the
position RMSE of 0.07 m.

For velocity, we extracted the maximum instantaneous velocity from the kick; the
results showed a 4% error compared to the image captured by the high-speed cameras.
Moreover, the RMSE of the foot velocity is about 0.034 m/s, which is around 0.45% of the
maximum velocity (7.47 m/s). For the velocity in the main walking direction in [5], the
RMSE is 0.051 m/s, which is around 3% of the maximum velocity (1.5 m/s). The results
indicate our system performs better in the accuracy of velocity. Table 2 shows the accuracy
evaluation results obtained for different types of motion using different IMU-based systems.

Table 2. Accuracy evaluation results obtained for different types of motion using different IMU-based
systems. For the position RMSE in the gait-related system and A-SLAC system, the error is calculated
according to the direction of movement, while our system performs it with the 3D trajectory.

Motion Type Motion
Length

Position
RMSE

Maximum
Velocity

Velocity
RMSE

Velocity
RMSE %

IMU
Used

Gait-related stride 1.5 m 0.05 m N/A N/A N/A 2
A-SLAC walking 3.6 m 0.038 m 1.5 m/s 0.051 m/s 3% 3

Our system instep kicking 3.63 m 0.07 m 7.47 m/s 0.034 m/s 0.45% 1

With the steady evolvement of wearable IMUs, inertial components are now com-
monly integrated onto a single die, allowing users to receive various motion-related data.
The development of high-resolution and wide-range devices would be ideal for measuring
motion poses in high-intensity motion. Moreover, the stretchable electronics would enable
devices with multiple sensors to be embedded into forms that are more suitable for mount-
ing on the body [26–28]. Multiple inertial sensor nodes would even provide better motion
tracking; since there are more data, we can use the gradient descent method to fuse data
and obtain a more accurate trajectory [29]. Moreover, by fusing the position and orientation
data from the optoelectronic systems with the inertial data obtained from the IMU, we
might be able to obtain the best set of kinematics data. By applying sensor fusion techniques
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based on a multiple-model linear Kalman filter for deflection estimation, the data can be
fused with low processing cost, compatible with real-time embedded applications [30].

5. Conclusions

For the motion analysis, we develop a data processing procedure to fuse data from
the accelerometer and gyroscope of the IMU. According to the experiment results, for the
instep kicking motion of trajectory length around 3.63 m, the root mean square error of the
position and the velocity compared with the golden patterns obtained from the high-speed
cameras and image analysis software is about 0.07 m and 0.034 m/s, respectively. For the
maximum velocity of the foot, the error is approximately 4%. This metric is related to the
contact point with the ball and the timing of acceleration. The error for the highest point of
the foot before hitting the ball is 2.8%.

This system can be applied to players of all ages and levels, whether it is to observe
movement changes by trajectory, or simply to measure the height or velocity of the feet. The
motion information provided in the quantified form allows players or coaches to have a
more specific and clear method to analyze the action. The experiment in this research does
not require a large amount of equipment, nor does it need to be carried out in a specific
place or room, hence the convenience of practical application is greatly improved.
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