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Abstract. We construct explicit solutions to the discrete motion of discrete plane curves

that has been introduced by one of the authors recently. Explicit formulas in terms of the τ

function are presented. Transformation theory of the motions of both smooth and discrete

curves is developed simultaneously.

1. Introduction

Differential geometry has a close relationship with the theory of integrable systems. In

fact, many integrable differential or difference equations arise as compatibility conditions

of some geometric objects. For instance, it is well known that the compatibility condition

of pseudospherical surfaces gives rise to the sine-Gordon equation under the Chebyshev net

parametrization. For more information on such connections we refer to a monograph [37] by

Rogers and Schief.

The above connection between the differential geometry of surfaces and integrable

systems has been known since the nineteenth century (although the theory of integrable

systems was not yet established). However, it is curious that the link between the differential

geometry of curves and integrable systems has only been noticed rather recently. Actually

Lamb [28] and Goldstein and Petrich [14] discovered an interesting connection between

integrable systems and the differential geometry of plane curves. Namely, they found that

the modified Korteweg–de Vries equation (mKdV equation) appears as the compatibility

condition of a certain motion of plane curves. Here a motion of curves means an isoperimetric

time evolution of arc-length parametrized plane curves. More precisely, the compatibility

condition implies that the curvature function of a motion should satisfy the mKdV equation.

As a result, the angle function of the motion satisfies the potential modified Korteweg–

de Vries equation (potential mKdV equation).

On the other hand, in the theory of integrable systems, much attention has been paid to

discretization of integrable differential equations preserving integrability, after the pioneering

work of Ablowitz and Ladik [1] and Hirota [16–20]. Later, Date, Jimbo and Miwa developed

a unified algebraic approach from the viewpoint of the so-called KP theory [5–9, 27, 32].

For other approaches to discrete integrable systems, see, for example, [38, 33]. Thus one

can expect the existence of discretized differential geometric objects governed by discrete
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integrable systems. This idea has been realized by the works of Bobenko and Pinkall [3] and

Doliwa [10] where the discrete analogue of classical surface theory has been proposed, and

it is now actively studied under the name of discrete differential geometry [4].

In the case of the discrete analogue of curves, Doliwa and Santini studied continuous

motion of discrete curves in the 3-sphere, and obtained the Ablowitz–Ladik hierarchy in [11],

where a semi-discrete (discrete in space variable and continuous in time variable) analogue

of the mKdV equation is derived as the simplest case. Their formulation includes the plane

curves as a limiting case. Hisakado et al proposed a discretization of arc-length parametrized

plane curves [23], and obtained another semi-discretization of the mKdV equation. Hoffmann

and Kutz [25, 26] considered discretization of the curvature function. By using their discrete

curvature function and Möbius geometry, they obtained a semi-discrete mKdV equation that

is the same as the one in [11].

The discretization of the time variable of discrete curve motion in the 3-sphere

was studied in [12, 13], where the evolution corresponded to the discrete sine-Gordon

equation [18]. As is well known, binormal motion of space curves induces the nonlinear

Schrödinger equation via Hasimoto transformation [15, 28]. Discretization of this curve

motion has been formulated in [24, 36].

Recently one of the authors of the present paper formulated a full discretization of the

motion of plane discrete curves [31] in a purely Euclidean geometric manner, where the

discrete potential mKdV equation proposed by Hirota [21] is deduced as the compatibility

condition. It admits a natural continuous limit to the potential mKdV equation describing

continuous motion of smooth plane curves.

In the smooth curve theory, the potential function coincides with the angle function of

a curve, a primitive function of the curvature. However, in the discrete case, the potential

function and the angle function become different objects. In this framework, the primal

geometric object is the potential function rather than the curvature (see [12, 31] and Section 2

of the present paper). Natural and systematic construction of the discrete motion of the curves

is expected by using the theory of discrete integrable systems.

The purpose of this paper is to construct explicit solutions to discrete motion of

discrete plane curves by using the theory of τ functions. This paper is organized as follows.

In Section 2, we prepare fundamental ingredients of plane curve geometry and motions

(isoperimetric time evolutions) of plane curves described by the potential mKdV equation.

Next we give a brief review of the discrete motion of discrete curves [31]. In Section 3,

we shall give a construction of motions for both smooth and discrete curves by the theory

of τ functions. More precisely we introduce a system of bilinear equations of Hirota type,

which can be obtained by a certain reduction of the discrete two-dimensional Toda lattice

hierarchy [27, 39, 40]. We shall give a representation formula for curve motions in terms of

the τ function.

One of the central topics in classical differential geometry is the transformation theory

of curves and surfaces. The best known example might be the Bäcklund transformations of

pseudospherical surfaces. The original Bäcklund transformation was defined as a tangential

line congruence satisfying the constant distance property and constant normal angle property

(see [37]). In plane curve geometry, Bäcklund transformations on arc-length parametrized

plane curves can be defined as arc-length preserving transformations satisfying the constant

distance property. Such transformations can be extended to transformations on smooth curve
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motions via the transformation of solutions to the potential mKdV equation. Motivated by

this fact, we shall introduce Bäcklund transformations for discrete motion of discrete curves

in Section 4 (compare with [25]). In particular we shall give another type of Bäcklund

transformation on motions of both smooth and discrete curves, which is related to the discrete

sine-Gordon equation. In Section 5, we shall construct and exhibit some explicit solutions of

curve motions, namely, the multi-soliton and multi-breather solutions. We also present some

pictures of discrete motions of discrete curves. We finally give some explicit formulas for the

Bäcklund transformations of both smooth and discrete curve motions via the τ functions.

2. Motion of plane curves

Let γ (x) be an arc-length parametrized curve in the Euclidean plane R2. Then the Frenet

equation of γ is

γ ′′ =
[

0 −κ

κ 0

]
γ ′. (2.1)

Here ′ denotes the differentiation with respect to x, and the function κ is the curvature of γ .

Let us consider the following motion in time t , i.e., isoperimetric time evolution:

∂

∂t
γ ′ =

⎡
⎢⎣

0 κ ′′ + κ3

2

−κ ′′ − κ3

2
0

⎤
⎥⎦ γ ′. (2.2)

Then the potential function θ(x, t) defined by κ = θ ′ satisfies the potential mKdV

equation [14, 28]:

θt + 1
2
(θx)

3 + θxxx = 0. (2.3)

The function θ is called the angle function of γ in differential geometry. Note that γ ′ can be

expressed as

γ ′ =
[

cos θ

sin θ

]
. (2.4)

For any non-zero constant λ, the set of equations

∂

∂x

(
θ̃ + θ

2

)
= 2λ sin

θ̃ − θ

2
, (2.5)

∂

∂t

(
θ̃ + θ

2

)
= −λ{(θx)

2 + 8λ2} sin
θ̃ − θ

2
+ 2λθxx cos

θ̃ − θ

2
+ 4λ2θx, (2.6)

defines a solution θ̃ to the potential mKdV equation [41]. The solution θ̃ is called a Bäcklund

transform of θ .

Definition 2.1. A map γ : Z → R2; n �→ γn is said to be a discrete curve of segment length

an if ∣∣∣∣
γn+1 − γn

an

∣∣∣∣ = 1. (2.7)
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We introduce the angle function �n of a discrete curve γ by

γn+1 − γn

an

=
[

cos �n

sin �n

]
. (2.8)

A discrete curve γ satisfies

γn+1 − γn

an

= R(Kn)
γn − γn−1

an−1
, (2.9)

for Kn = �n − �n−1, where R(Kn) denotes the rotation matrix given by

R(Kn) =
(

cos Kn −sin Kn

sin Kn cos Kn

)
. (2.10)

Now let us recall the following discrete motion of discrete curve γ m
n : Z2 → R2

introduced by Matsuura [31]:

∣∣∣∣
γ m
n+1 − γ m

n

an

∣∣∣∣ = 1, (2.11)

γ m
n+1 − γ m

n

an

= R(Km
n )

γ m
n − γ m

n−1

an−1
, (2.12)

γ m+1
n − γ m

n

bm

= R(Wm
n )

γ m
n+1 − γ m

n

an

, (2.13)

where an and bm are arbitrary functions of n and m, respectively. Compatibility of the system

(2.11)–(2.13) implies the existence of the potential function 	m
n defined by

Wm
n =

	m+1
n − 	m

n+1

2
, Km

n =
	m

n+1 − 	m
n−1

2
, (2.14)

and it follows that 	m
n satisfies the discrete potential mKdV equation [21]:

tan

(
	m+1

n+1 − 	m
n

4

)
= bm + an

bm − an

tan

(
	m+1

n − 	m
n+1

4

)
. (2.15)

Note that the angle function �m
n can be expressed as

�m
n =

	m
n+1 + 	m

n

2
. (2.16)

Remark 2.2. The potential discrete mKdV equation (2.15) has also been known as the

superposition formula for the modified KdV equation (2.3) [41] and the sine-Gordon

equation [2, 37].

3. The τ function representation of plane curves

In this section, we give a representation formula for curve motions in terms of τ functions.

Let τm
n = τm

n (x, t; y) be a complex-valued function dependent on two discrete variables

m and n, and three continuous variables x, t and y, which satisfies the following system of
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bilinear equations:

1
2
DxDyτm

n · τm
n = −(τ ∗m

n )2, (3.1)

D2
xτm

n · τ ∗m
n = 0, (3.2)

(D3
x + Dt ) τm

n · τ ∗m
n = 0, (3.3)

Dyτm
n+1 · τm

n = −anτ
∗m
n+1τ

∗m
n , (3.4)

Dyτm+1
n · τm

n = −bmτ ∗m
n+1τ

∗m
n , (3.5)

bmτ ∗m+1
n τm

n+1 − anτ
∗m
n+1τ

m+1
n + (an − bm)τ ∗m+1

n+1 τm
n = 0. (3.6)

Here, ∗ denotes the complex conjugate, and Dx , Dy and Dt are Hirota’s bilinear differential

operators (D-operators) defined by

Di
xD

j
yDk

t f · g = (∂x − ∂x ′)i(∂y − ∂y ′)j (∂t − ∂t ′)
kf (x, y, t)g(x ′, y ′, t ′)|x=x ′,y=y ′,t=t ′ .

(3.7)

For the calculus of the D-operators, we refer to [22]. In general, the functions satisfying the

bilinear equations of Hirota type are called τ functions.

THEOREM 3.1. Let τm
n be a solution to equations (3.1)–(3.6). Define a real function

	m
n (x, t; y) and an R

2-valued function γ m
n (x, t; y) by

	m
n (x, t; y) := 2√

−1
log

τm
n

τ ∗m
n

, (3.8)

γ m
n (x, t; y) :=

⎡
⎢⎢⎢⎣

−1

2
(log τm

n τ ∗m
n )y

1

2
√

−1

(
log

τm
n

τ ∗m
n

)

y

⎤
⎥⎥⎥⎦ . (3.9)

(1) For any m, n ∈ Z and y ∈ R, the functions θ(x, t) = 	m
n (x, t; y) and γ (x, t) =

γ m
n (x, t; y) satisfy equations (2.1)–(2.3).

(2) For any x, t, y ∈ R, the functions 	m
n = 	m

n (x, t; y) and γ m
n = γ m

n (x, t; y) satisfy

equations (2.11)–(2.15).

Proof. (1) Express γ m
n = t (Xm

n , Ym
n ). Then by using equation (3.1) together with its complex

conjugate, we have

(Xm
n )′ = −1

2
log(τ ∗m

n τm
n )xy = −1

2

[ 1
2
DxDy τ ∗m

n · τ ∗m
n

(τ ∗m
n )2

+
1
2
DxDy τm

n · τm
n

(τm
n )2

]

= 1

2

[(
τm
n

τ ∗m
n

)2

+
(

τ ∗m
n

τm
n

)2]
= cos 	m

n .

Similarly we obtain (Ym
n )′ = sin 	m

n . Differentiating (γ m
n )′ = t(cos 	m

n , sin 	m
n ) by x and

noticing that κ = 	′, we obtain equation (2.1):

(γ m
n )′′ = (	m

n )′
(−sin 	m

n

cos 	m
n

)
=

(
0 −κ

κ 0

)
(γ m

n )′.
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On the other hand, differentiating (γ m
n )′ by t , we have

(γ m
n )′t = (	m

n )t

(−sin 	m
n

cos 	m
n

)
= (	m

n )t

(
0 −1

1 0

)
(γ m

n )′.

By using the bilinear equations (3.2) and (3.3), (	m
n )t can be rewritten as

(	m
n )t = 2√

−1

Dt τm
n · τ ∗m

n

τm
n τ ∗m

n

= − 2√
−1

D3
xτm

n · τ ∗m
n

τm
n τ ∗m

n

= − 2√
−1

[(
log

τm
n

τ ∗m
n

)

xxx

+ 3

(
log

τm
n

τ ∗m
n

)

x

(log τm
n τ ∗m

n )xx +
{(

log
τm
n

τ ∗m
n

)

x

}3]

= − 2√
−1

[(
log

τm
n

τ ∗m
n

)

xxx

− 2

{(
log

τm
n

τ ∗m
n

)

x

}3]
= −κxx − κ3

2
, (3.10)

which yields equation (2.2). Here we have used the relation

0 = D2
x τm

n · τ ∗m
n

τm
n τ ∗m

n

= (log τm
n τ ∗m

n )xx +
(

log
τm
n

τ ∗m
n

)2

x

,

which is a consequence of equation (3.2). The potential mKdV equation (2.3) follows

immediately from equation (3.10) by noticing that κ = 	′.
(2) From equation (3.4) and its complex conjugate we have

(
log

τm
n+1

τm
n

)

y

= −an

τ ∗m
n+1τ

∗m
n

τm
n+1τ

m
n

,

(
log

τ ∗m
n+1

τ ∗m
n

)

y

= −an

τm
n+1τ

m
n

τ ∗m
n+1τ

∗m
n

. (3.11)

Adding these two equations we obtain

(log τm
n+1τ

∗m
n+1)y − (log τm

n τ ∗m
n )y = −an

(
τ ∗m

n+1τ
∗m
n

τm
n+1τ

m
n

+
τm
n+1τ

m
n

τ ∗m
n+1τ

∗m
n

)
, (3.12)

which yields

Xm
n+1 − Xm

n

an

= cos �m
n , �m

n = 1√
−1

log

(
τm
n+1τ

m
n

τ ∗m
n+1τ

∗m
n

)
=

	m
n+1 + 	m

n

2
. (3.13)

Subtracting the second equation from the first equation in (3.11) we have

Ym
n+1 − Ym

n

an

= sin �m
n .

Therefore we obtain
γ m
n+1 − γ m

n

an

=
(

cos �m
n

sin �m
n

)
, (3.14)

which gives equation (2.11). Next, from equation (3.14) we see that

γ m
n+1 − γ m

n

an

= R(�m
n − �m

n−1)
γ m
n − γ m

n−1

an−1
, �m

n − �m
n−1 =

	m
n+1 − 	m

n−1

2
= Km

n ,

(3.15)
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which is nothing but equation (2.12). Similarly, starting from equation (3.5) and its complex

conjugate we obtain

γ m+1
n − γ m

n

bm

=
(

cos 
m
n

sin 
m
n

)
, 
m

n = 1√
−1

log

(
τm+1
n τm

n

τ ∗m+1
n τ ∗m

n

)
= 	m+1

n + 	m
n

2
, (3.16)

which yields

γ m+1
n − γ m

n

bm

= R(
m
n − �m

n )
γ m
n+1 − γ m

n

an

, 
m
n − �m

n =
	m+1

n − 	m
n+1

2
= Wm

n . (3.17)

This is equivalent to equation (2.13).

Finally let us derive the discrete potential mKdV equation (2.15). Dividing equation (3.6)

and its complex conjugate by τ ∗m
n+1τ

∗m+1
n we have

bm exp

(√
−1	m

n+1

2

)
− an exp

(√
−1	m+1

n

2

)
= −(an − bm)

τ ∗m+1
n+1 τm

n

τ ∗m+1
n τ ∗m

n+1

,

bm exp

(√
−1	m+1

n

2

)
− an exp

(√
−1	m

n+1

2

)
= −(an − bm)

τm+1
n+1 τ ∗m

n

τ ∗m+1
n τ ∗m

n+1

,

(3.18)

respectively. Dividing these two equations we obtain

bm exp(
√

−1	m
n+1/2) − an exp(

√
−1	m+1

n /2)

bm exp(
√

−1	m+1
n /2) − an exp(

√
−1	m

n+1/2)
= exp

[
−

√
−1(	m+1

n+1 − 	m
n )

2

]
, (3.19)

which is easily verified to be equivalent to equation (2.15). Thus we have completed the proof

of Theorem 3.1. ✷

COROLLARY 3.2. (Representation formula) The function γ m
n can be expressed in terms of

the potential function 	m
n as follows:

γ m
n (x, t; y) =

⎡
⎢⎣

∫ x

cos 	m
n (x ′, t; y) dx ′

∫ x

sin 	m
n (x ′, t; y) dx ′

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎣

n−1∑

n′
an′ cos

(
	m

n′(x, t; y) + 	m
n′+1

(x, t; y)

2

)

n−1∑

n′
an′ sin

(
	m

n′(x, t; y) + 	m
n′+1

(x, t; y)

2

)

⎤
⎥⎥⎥⎥⎦

. (3.20)

Proof. The first equation is a consequence of

∂

∂x
γ m
n (x, t; y) =

[
cos 	m

n (x, t; y)

sin 	m
n (x, t; y)

]
, (3.21)

and the second equation follows from equation (3.14). ✷
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It should be noted here that the bilinear equations (3.1)–(3.6) are derived from the

reduction of the equations

1
2
DxDyτm

n (s) · τm
n (s) = −τm

n (s + 1)τm
n (s − 1), (3.22)

(D2
x − Dz)τ

m
n (s + 1) · τm

n (s) = 0, (3.23)

(D3
x + Dt + 3DxDz)τ

m
n (s + 1) · τm

n (s) = 0, (3.24)

Dyτm
n+1(s) · τm

n (s) = −anτ
m
n+1(s + 1)τm

n (s − 1), (3.25)

Dyτm+1
n (s) · τm

n (s) = −bmτm
n+1(s + 1)τm

n (s − 1), (3.26)

bmτm+1
n (s + 1)τm

n+1(s) − anτ
m
n+1(s + 1)τm+1

n (s) + (an − bm)τm+1
n+1 (s + 1)τm

n (s) = 0,

(3.27)

for τm
n (s) = τm

n (x, z, t; y; s), which are included in the discrete two-dimensional Toda lattice

hierarchy [27, 39, 40]. In fact, imposing the conditions

∂

∂z
τm
n (s) = B τm

n (s), τm
n (s + 1) = C τ ∗m

n (s), B, C ∈ R, (3.28)

and denoting τm
n = τm

n (0), then equations (3.22)–(3.27) yield equations (3.1)–(3.6),

respectively.

4. Bäcklund transformations

We start with the following fundamental fact on plane curves.

PROPOSITION 4.1. Let γ (x) be an arc-length parametrized curve with angle function θ(x).

Take a non-zero constant λ and a solution θ̃ (x) to

(
θ̃ + θ

2

)′
= 2λ sin

θ̃ − θ

2
. (4.1)

Then

γ̃ (x) = γ (x) + 1

λ
R

(
θ̃ (x) − θ(x)

2

)
γ ′(x) (4.2)

is an arc-length parametrized curve with angle function θ̃ (x). In other words, if γ (x) is a

solution to equation (2.1), then γ̃ (x) is another solution to equation (2.1) with κ̃(x) = θ̃ ′(x).

The curve γ̃ is called a Bäcklund transform of γ .

Proposition 4.1 can be verified easily by direct computation. We next extend the

Bäcklund transformation to those of the motion of a curve.

PROPOSITION 4.2. Let γ (x, t) be a motion of an arc-length parametrized curve determined

by equations (2.2) and (2.3). Take a Bäcklund transform θ̃ (x, t) defined by equations (2.5)

and (2.6) of θ(x, t). Then

γ̃ (x, t) = γ (x, t) + 1

λ
R

(
θ̃ (x, t) − θ(x, t)

2

)
γ ′(x, t) (4.3)

is a motion of an arc-length parametrized curve with the angle function θ̃ (x, t).
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Proof. By the preceding proposition, γ̃ satisfies the isoperimetric condition |γ̃ ′| = 1.

Computing the t-derivative of γ̃ by using (2.6), we can show that γ̃ satisfies equation (2.2)

with κ̃ = θ̃ ′. ✷

Now we introduce a Bäcklund transformation of a discrete curve.

PROPOSITION 4.3. Let γn be a discrete curve of segment length an. Let 	n be the potential

function defined by

γn+1 − γn

an

=
[

cos �n

sin �n

]
, �n = 	n+1 + 	n

2
. (4.4)

For a non-zero constant λ, take a solution 	̃n to the following equation:

tan

(
	̃n+1 − 	n

4

)
= 1/λ + an

1/λ − an

tan

(
	̃n − 	n+1

4

)
. (4.5)

Then

γ̃n = γn + 1

λ
R

(
	̃n − 	n+1

2

)
γn+1 − γn

an

(4.6)

is a discrete curve with the potential function 	̃n.

Proof. It suffices to show that

γ̃n+1 − γ̃n

an

=
[

cos �̃n

sin �̃n

]
, �̃n = 	̃n+1 + 	̃n

2
(4.7)

for γ̃n defined by equation (4.6). This follows from equations (4.4) and (4.5). ✷

We next extend the Bäcklund transformation to those of the motion of a discrete curve.

In order to do so, we first present the Bäcklund transformation to the discrete potential mKdV

equation.

LEMMA 4.4. Let 	m
n be a solution to the discrete potential mKdV equation (2.15). A function

	̃m
n satisfying the following system of equations

tan

(
	̃m

n+1 − 	m
n

4

)
= 1/λ + an

1/λ − an

tan

(
	̃m

n − 	m
n+1

4

)
, (4.8)

tan

(
	̃m+1

n − 	m
n

4

)
= 1/λ + bm

1/λ − bm

tan

(
	̃m

n − 	m+1
n

4

)
, (4.9)

gives another solution to equation (2.15). We call 	̃m
n a Bäcklund transform of 	m

n .

Proof. First note that equation (2.15) is equivalent to

eUm+1
n +Um

n − eUm+1
n+1 +Um

n+1 = an

bm

(eUm
n+1+Um

n − eUm+1
n+1 +Um+1

n ), (4.10)

where we put
√

−1	m
n /2 = Um

n for notational simplicity. Similarly, equations (4.8) and (4.9)

are rewritten as

eŨm
n +Um

n − eŨm
n+1+Um

n+1 = λan(e
Um

n+1+Um
n − eŨm

n+1+Ũm
n ), (4.11)

eŨm
n +Um

n − eŨm+1
n +Um+1

n = λbm(eUm+1
n +Um

n − eŨm+1
n +Ũm

n ), (4.12)
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respectively, where
√

−1 	̃m
n /2 = Ũm

n . Subtracting equation (4.12) from equation (4.11), we

have

eŨm+1
n +Um+1

n − eŨm
n+1+Um

n+1 = λ(ane
Um

n+1+Um
n − bmeUm+1

n +Um
n )

− λ(ane
Ũm

n+1+Ũm
n − bmeŨm+1

n +Ũm
n ). (4.13)

Similarly, subtracting equation (4.12)n→n+1 from equation (4.11)m→m+1, we get

eŨm+1
n +Um+1

n − eŨm
n+1+Um

n+1 = λ(ane
Um+1

n+1 +Um+1
n − bmeUm+1

n+1 +Um
n+1)

− λ(ane
Ũm+1

n+1 +Ũm+1
n − bmeŨm+1

n+1 +Ũm
n+1). (4.14)

Subtracting equation (4.14) from equation (4.13) yields

an(e
Ũm

n+1+Ũm
n − eŨm+1

n+1 +Ũm+1
n ) − bm(eŨm+1

n +Ũm
n − eŨm+1

n+1 +Ũm
n+1)

= an(e
Um

n+1+Um
n − eUm+1

n+1 +Um+1
n ) − bm(eUm+1

n +Um
n − eUm+1

n+1 +Um
n+1). (4.15)

Now we see that the right-hand side of equation (4.15) vanishes since it is equivalent to

equation (4.10). Then the left-hand side gives equation (2.15) for 	̃m
n . ✷

PROPOSITION 4.5. Let γ m
n be a discrete motion of a discrete curve. Take a Bäcklund

transform 	̃m
n of 	m

n defined in Lemma 4.4. Then

γ̃ m
n = γ m

n + 1

λ
R

(
	̃m

n − 	m
n+1

2

)
γ m
n+1 − γ m

n

an

(4.16)

is a discrete motion of a discrete curve with potential function 	̃m
n . We call γ̃ m

n a Bäcklund

transform of γ m
n .

Proof. It suffices to show that γ̃ m
n satisfies equations (2.11)–(2.13) with potential function

	̃m
n . But equations (2.11) and (2.12) follow from Proposition 4.3 immediately. Noticing the

symmetry in n and m, similar calculations to those in Proposition 4.3 yield

γ̃ m+1
n − γ̃ m

n

bm

=

⎡
⎢⎢⎢⎣

cos

(
	̃m+1

n + 	̃m
n

2

)

sin

(
	̃m+1

n + 	̃m
n

2

)

⎤
⎥⎥⎥⎦ (4.17)

by using equation (4.9). Comparing equations (4.7) and (4.17) we obtain

γ̃ m+1
n − γ̃ m

n

bm

= R

(
	̃m+1

n − 	̃m
n+1

2

)
γ̃ m
n+1 − γ̃ m

n

an

, (4.18)

which implies equation (2.13). ✷

It is possible to construct another type of Bäcklund transformation for motions of

both smooth and discrete curves by using the symmetry of the potential mKdV equation

(2.3) and discrete potential mKdV equation (2.15). In fact, if θ(x, t) is a solution to

equation (2.3), then −θ(x, t) satisfies the same equation. Combining this symmetry and

the Bäcklund transformation defined by equations (2.5) and (2.6), we have the following

Bäcklund transformation.
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LEMMA 4.6. Let θ(x, t) be a solution to the potential mKdV equation (2.3). For any non-

zero constant λ, a function θ(x, t) satisfying the following set of equations

∂

∂x

(
θ − θ

2

)
= 2λ sin

θ + θ

2
, (4.19)

∂

∂t

(
θ − θ

2

)
= −λ{(θx)

2 + 8λ2} sin
θ + θ

2
− 2λθxx cos

θ + θ

2
− 4λ2θx, (4.20)

gives another solution to equation (2.3).

Lemma 4.6 immediately yields the following Bäcklund transformation for γ (x, t).

PROPOSITION 4.7. Let γ (x, t) be a motion of an arc-length parametrized curve determined

by equations (2.2) and (2.3). Take a Bäcklund transform θ(x, t) of θ(x, t) defined in

Lemma 4.6. Then

γ (x, t) = S

[
γ (x, t) + 1

λ
R

(
−θ(x, t) + θ(x, t)

2

)
γ ′(x, t)

]
, S =

[
1 0

0 −1

]
, (4.21)

is a motion of an arc-length parametrized curve with angle function θ(x, t).

Note that equations (4.19) and (4.20) can be derived from equations (2.5) and (2.6) simply by

putting θ̃ (x, t) = −θ(x, t). Moreover, putting

γ̂ (x, t) := γ (x, t) + 1

λ
R

(
−θ(x, t) + θ(x, t)

2

)
γ ′(x, t),

and noticing equation (2.4) and Proposition 4.2, we have

γ̂ ′(x, t) =
[

cos(−θ(x, t))

sin(−θ(x, t))

]
=

[
cos θ(x, t)

−sin θ(x, t)

]
, (4.22)

which implies Proposition 4.7.

Similarly, if 	m
n is a solution to equation (2.15), then −	m

n satisfies the same equation.

Therefore Lemma 4.4 and Proposition 4.5 lead to the following Bäcklund transformations.

LEMMA 4.8. Let 	m
n be a solution to the discrete potential mKdV equation (2.15). A function

	m
n satisfying the following system of equations

tan

(
	m

n+1 + 	m
n

4

)
= 1/λ + an

1/λ − an

tan

(
	m

n + 	m
n+1

4

)
, (4.23)

tan

(
	m+1

n + 	m
n

4

)
= 1/λ + bm

1/λ − bm

tan

(
	m

n + 	m+1
n

4

)
, (4.24)

gives another solution to equation (2.15).

PROPOSITION 4.9. Let γ m
n be a discrete motion of a discrete curve. Take a Bäcklund

transform 	m
n of 	m

n defined in Lemma 4.8. Then

γ m
n = S

[
γ m
n + 1

λ
R

(
−

	m
n + 	m

n+1

2

)
γ m
n+1 − γ m

n

an

]
, S =

[
1 0

0 −1

]
, (4.25)

is a discrete motion of a discrete curve with potential function 	m
n .
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Remark 4.10.

(1) It may be interesting to point out that equation (4.23) and equation (4.24) can be

rewritten as

sin

(
	m

n+1 − 	m
n+1 − 	m

n + 	m
n

4

)
= λan sin

(
	m

n+1 + 	m
n+1 + 	m

n + 	m
n

4

)
,

(4.26)

sin

(
	m+1

n − 	m+1
n − 	m

n + 	m
n

4

)
= λbm sin

(
	m+1

n + 	m+1
n + 	m

n + 	m
n

4

)
,

(4.27)

respectively, which are essentially equivalent to the discrete sine-Gordon equation [18].

(2) The Bäcklund transformations described in Propositions 4.2 and 4.5 satisfy

the ‘constant distance property’, i.e., |γ̃ − γ | ≡ 1/λ or |γ̃ m
n − γ m

n | ≡ 1/λ. These

transformations may be regarded as the one-dimensional analogue of the original

Bäcklund transformations of the pseudospherical surface [37]. On the other hand, the

Bäcklund transformations proposed in Propositions 4.7 and 4.9 are characterized by the

property |γ − Sγ | = 1/λ.

5. Explicit solutions

5.1. Solitons and breathers

For N ∈ Z≥0 we define a function τm
n (s) = τm

n (x, t; y, z; s) by

τm
n (s) = exp

[
−

(
x +

n−1∑

n′
an′ +

m−1∑

m′
bm′

)
y

]
det(f

(i)
s+j−1)i,j=1,...,N , (5.1)

for (x, t; y, z) ∈ R4 and (m, n, s) ∈ Z3. Here f
(i)
s = f

(i)
s (x, t; y, z; m, n) (i = 1, . . . , N)

satisfies the following linear equations:

∂f
(i)
s

∂x
= f

(i)
s+1,

∂f
(i)
s

∂z
= f

(i)
s+2,

∂f
(i)
s

∂t
= −4f

(i)
s+3,

∂f
(i)
s

∂y
= f

(i)
s−1, (5.2)

f
(i)
s (m, n) − f

(i)
s (m, n − 1)

an−1
= f

(i)
s+1(m, n),

f
(i)
s (m, n) − f

(i)
s (m − 1, n)

bm−1
= f

(i)
s+1(m, n).

(5.3)

For N = 0, we set det(f
(i)
s+j−1)i,j=1,...,N = 1. A typical example for f

(i)
s is given by

f (i)
s = eηi + eµi , (5.4)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eηi = αip
s
i

n−1∏

n′
(1 − an′pi)

−1
m−1∏

m′
(1 − bm′pi)

−1epix+p2
i z−4p3

i t+(1/pi)y,

eµj = βiq
s
i

n−1∏

n′
(1 − an′qi)

−1
m−1∏

m′
(1 − bm′qi)

−1eqix+q2
i z−4q3

i t+(1/qi)y,

(5.5)

where pi , qi , αi and βi are arbitrary complex constants.
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We note that τm
n and f

(i)
s are functions of continuous variables x, y, z, t and discrete

variables m, n, s, but we will indicate only the relevant variables according to the context, for

notational simplicity. Then it is well known that τm
n (s) satisfies the bilinear equations (3.22)–

(3.27) [22, 27, 29, 30, 34, 35, 40]. Actually by using the linear relations (5.2) and (5.3),

equations (3.22)–(3.27) are reduced to the Plücker relations, which are quadratic identities of

determinants.

It is possible to construct the solutions to the bilinear equations (3.1)–(3.6) by imposing

the reduction condition (3.28) on τm
n (s) in equation (5.1). Those conditions are realized by

putting restrictions on the parameters of the solutions. As an example, we present the multi-

soliton and multi-breather solutions.

PROPOSITION 5.1. Consider the τ function

τm
n = exp

[
−

(
x +

n−1∑

n′
an′ +

m−1∑

m′
bm′

)
y

]
det(f

(i)
j−1)i,j=1,...,N , (5.6)

f (i)
s = eηi + eµi , (5.7)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eηi = αip
s
i

n−1∏

n′
(1 − an′pi)

−1
m−1∏

m′
(1 − bm′pi)

−1epix−4p3
i t+(1/pi)y,

eµj = βi(−pi)
s

n−1∏

n′
(1 + an′pi)

−1
m−1∏

m′
(1 + bm′pi)

−1e−pix+4p3
i t−(1/pi)y .

(5.8)

(1) Choosing the parameters as

pi, αi ∈ R, βi ∈
√

−1R (i = 1, . . . , N), (5.9)

then τm
n satisfies the bilinear equations (3.1)–(3.6). This gives the N-soliton solution to

equations (2.3) and (2.15).

(2) Taking N = 2M , and choosing the parameters as

pi , αi , βi ∈ C (i = 1, . . . , 2M), p2k = p∗
2k−1 (k = 1, . . . , M),

α2k = α∗
2k−1, β2k = −β∗

2k−1 (k = 1, . . . , M),
(5.10)

then τm
n satisfies the bilinear equations (3.1)–(3.6). This gives the M-breather solution

to equations (2.3) and (2.15).

Proof. It is sufficient to show that the conditions in equation (3.28) are satisfied. We first

impose the two-periodicity in s, i.e., τm
n (s + 2) = const. × τm

n (s). For τm
n (s) in equation (5.1)

with entries given by equations (5.4) and (5.5), putting

qi = −pi , (5.11)

we have

f
(i)
s+2 = p2

i f
(i)
s , (5.12)

which implies that

τm
n (s + 2) = AN τm

n (s), AN =
N∏

i=1

p2
i . (5.13)
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4

40–4

FIGURE 1. Parameters in equations (5.6), (5.7) and (5.8): N = 1, x = 0, y = 0, α1 = −1, β1 =
√

−1,
p1 = 0.3, an = 1, bm = 0.5.

4

0–4 4

m = −46

4

0–4 4

m = −20
4

0– 4 4

m = −1

4

0–4 4

m = 30

FIGURE 2. Parameters in equations (5.6), (5.7) and (5.8): N = 2, x = 0, y = 0, α1 = −1, α2 = 1,

β1 = −β2 =
√

−1, p1 = 0.3, p2 = 0.9, an = 1, bm = 0.5.

Note that the condition

∂τm
n (s)

∂z
= BN τm

n (s), BN =
N∑

i=1

p2
i , (5.14)

is also satisfied simultaneously. Now we consider cases (1) and (2) separately.

Case (1). We see from equations (5.7) and (5.8) together with equation (5.9) that

f
(i)
1 = pi f

(i)
0

∗ (5.15)

and so

τm
n (1) = CNτ ∗m

n (0), CN =
N∏

i=1

pi ∈ R. (5.16)

Case (2). We see from equations (5.7) and (5.8) together with equation (5.10) that

f
(2k)
1 = p∗

2k−1f
(2k−1)
0

∗, f
(2k−1)
1 = p∗

2kf
(2k)
0

∗, (5.17)
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FIGURE 3. Parameters in equations (5.6), (5.7) and (5.8): N = 2, x = 0, y = 0, α1 = α∗
2

= 1, β1 =
−β∗

2
= 1, p1 = p∗

2
= 0.2 − 0.2

√
−1, an = 1, bm = 1.5.

–5

5

–5–5 –10–10

m = −18
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–5 5 10–10

m = −7
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–5
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FIGURE 4. Parameters in equations (5.6), (5.7) and (5.8): N = 4, x = 0, y = 0, α1 = α∗
2

= 1, α3 =
α∗

4
=

√
−1, β1 = −β∗

2
= 1, β3 = −β∗

4
=

√
−1, p1 = p∗

2
= 0.2 − 0.2

√
−1, p3 = p∗

4
= 0.8 + 0.8

√
−1,

an = 1, bm = 1.5.



318 J. Inoguchi et al

and so

τm
n (1) = CNτ ∗m

n (0), CN = (−1)M
M∏

i=1

|p2i |2 ∈ R. (5.18)

Therefore we have verified that the conditions in equation (3.28) are satisfied for both cases.

Then putting τm
n = τm

n (0), we obtain the desired result. ✷

We present some pictures of the motions of the discrete curves. Figure 1 shows the

simplest example of a curve, which corresponds to the 1-soliton solution (loop soliton). The

next example illustrated in Figure 2 describes the interaction of two loops, which corresponds

to the 2-soliton solution. Figures 3 and 4 show the motions which correspond to the 1-breather

and 2-breather solutions, respectively.

5.2. Solutions via Bäcklund transformations

In the theory of integrable systems, the Bäcklund transformations are obtained from the

shift of a certain discrete independent variable, which also applies to our geometric

transformations. We first introduce discrete variables k, l, and regard the determinant size

N as an additional discrete variable. We then extend the τ function as τm
n (k, l, N) =

τm
n (x, t; y; k, l, N) in the following way:

τm
n (k, l, N) = exp

[
−

(
x +

n−1∑

n′
an′ +

m−1∑

m′
bm′ +

k−1∑

k′
ck′ +

l−1∑

l′

1

dl′

)
y

]
det(f

(i)
j−1)i,j=1,...,N ,

(5.19)

f (i)
s = eηi + eµi , (5.20)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eηi = αip
s
i

n−1∏

n′
(1 − an′pi)

−1
m−1∏

m′
(1 − bm′pi)

−1
k−1∏

k′
(1 − ck′pi)

−1
l−1∏

l′

(
1 − dl′

pi

)−1

× epix−4p3
i t+(1/pi)y,

eµj = βi(−pi)
s

n−1∏

n′
(1 + an′pi)

−1
m−1∏

m′
(1 + bm′pi)

−1
k−1∏

k′
(1 + ck′pi)

−1
l−1∏

l′

(
1 + dl′

pi

)−1

× e−pix+4p3
i t−(1/pi)y .

(5.21)

Accordingly, we extend the relevant dependent variables such as 	 and γ in the same way.

PROPOSITION 5.2.

(1) For any k ∈ Z, γ̃ (x, t) = γ (x, t; k + 1) is a Bäcklund transform of γ (x, t) = γ (x, t; k)

related by equation (4.3) with λ = 1/ck.

(2) For any k ∈ Z, γ̃ m
n = γ m

n (k + 1) is a Bäcklund transform of γ m
n = γ m

n (k) related by

equation (4.16) with λ = 1/ck .

(3) For any N ∈ Z≥0, γ̃ (x, t) = γ (x, t; N + 1) is a Bäcklund transform of γ (x, t) =
γ (x, t; N) related by equation (4.3) with λ = −pN+1.

(4) For any N ∈ Z≥0, γ̃ m
n = γ m

n (N + 1) is a Bäcklund transform of γ m
n = γ m

n (N) related

by equation (4.16) with λ = −pN+1.
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(5) For any l ∈ Z, γ (x, t) = γ (x, t; l + 1) is a Bäcklund transform of γ (x, t) = γ (x, t; l)

related by equation (4.21) with λ = dl .

(6) For any l ∈ Z, γ m
n = γ m

n (l + 1) is a Bäcklund transform of γ m
n = γ m

n (l) related by

equation (4.25) with λ = dl .

Proof. We first prove (1) and (2). It follows from equation (3.4) that the τ function satisfies

the bilinear equation

Dyτm
n (k + 1) · τm

n (k) = −ckτ
∗m
n (k + 1)τ ∗m

n (k), (5.22)

because of the symmetry with respect to the discrete variables m, n and k in equations (5.19)–

(5.21). Then by an argument similar to that in the proof of Theorem 3.1, we see that

γ (k + 1) − γ (k)

ck

=

⎛
⎜⎜⎜⎝

cos

(
θ(k + 1) + θ(k)

2

)

sin

(
θ(k + 1) + θ(k)

2

)

⎞
⎟⎟⎟⎠ . (5.23)

From equation (2.4), we have equation (4.3) with γ̃ = γ (k + 1) and θ̃ = θ(k + 1):

γ (k + 1) − γ (k)

ck
= R

(
θ(k + 1) − θ(k)

2

)
γ ′(k). (5.24)

Similarly from equation (3.14), we obtain equation (4.16) with γ̃ m
n = γ m

n (k + 1) and 	̃m
n =

	m
n (k + 1):

γ m
n (k + 1) − γ m

n (k)

ck

= R

(
	m

n (k + 1) − 	m
n+1(k)

2

)
γ m
n+1(k) − γ m

n (k)

an

, (5.25)

which proves (1) and (2). The statements (3)–(4) and (5)–(6) can be proved in much the same

way as (1)–(2), by using the bilinear equations

Dyτm
n (N + 1) · τm

n (N) = 1

pN+1
τ ∗m

n (N)τ ∗m
n (N + 1), (5.26)

Dyτm
n (l + 1) · τ ∗m

n (l) = − 1

dl

τ ∗m
n (l + 1)τm

n (l), (5.27)

respectively. These bilinear equations will be proved in Appendix A. ✷

Remark 5.3. Here we give a physical interpretation of the Bäcklund transformations

described above. The Bäcklund transforms in (1)–(2) and (5)–(6) of Propositions 5.2

correspond to changing the phase of solitons (loops), in other words, the positions of solitons.

On the other hand, the Bäcklund transforms in (3)–(4) correspond to increasing the number

of solitons (loops).

Computing the potential functions of the Bäcklund transforms of the curves, one can verify

the following result.

COROLLARY 5.4.

(1) For any k ∈ Z, θ̃ (x, t) = θ(x, t; k + 1) is a Bäcklund transform of θ(x, t) = θ(x, t; k)

related by equations (2.5) and (2.6) with λ = 1/ck.
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(2) For any k ∈ Z, 	̃m
n = 	m

n (k + 1) is a Bäcklund transform of 	m
n = 	m

n (k) related by

equations (4.8) and (4.9) with λ = 1/ck.

(3) For any N ∈ Z≥0, θ̃ (x, t) = θ(x, t; N + 1) is a Bäcklund transform of θ(x, t) =
θ(x, t; N) related by equations (2.5) and (2.6) with λ = −pN+1.

(4) For any N ∈ Z≥0, 	̃m
n = 	m

n (N + 1) is a Bäcklund transform of 	m
n = 	m

n (N) related

by equations (4.8) and (4.9) with λ = −pN+1.

(5) For any l ∈ Z, θ(x, t) = θ(x, t; l + 1) is a Bäcklund transform of θ(x, t) = θ(x, t; l)

related by equations (4.19) and (4.20) with λ = dl .

(6) For any l ∈ Z, 	m
n = 	m

n (l + 1) is a Bäcklund transform of 	m
n = 	m

n (l) related by

equations (4.23) and (4.24) with λ = dl .
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Appendix A. Derivation of bilinear equations (5.26) and (5.27)

In this appendix, we show that the τ function given in equations (5.19)–(5.21) actually

satisfies the bilinear equations (5.26) and (5.27). For this purpose, we first introduce the

generic τ function τm
n (k, l, N; s) = τm

n (x, t; y, z; k, l, N; s) by

τm
n (k, l, N; s) = exp

[
−

(
x +

n−1∑

n′
an′

+
m−1∑

m′
bm′ +

k−1∑

k′
ck′ +

l−1∑

l′

1

dl′

)
y

]
det(f

(i)
s+j−1)i,j=1,...,N , (A.1)

for (x, t; y, z) ∈ R4, (m, n, k, l, s) ∈ Z5 and N ∈ Z≥0. We require f
(i)
s = f

(i)
s (x, t; y, z;

m, n; k, l, N) (i = 1, . . . , N) to satisfy the linear equations (5.2), (5.3) and

f
(i)
s (k, l) − f

(i)
s (k − 1, l)

ck−1
= f

(i)
s+1(k, l),

f
(i)
s (k, l) − f

(i)
s (k, l − 1)

dl−1
= f

(i)
s−1(k, l). (A.2)

A typical example for f
(i)
s is given by

f (i)
s = eηi + eµi , (A.3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eηi = αip
s
i

n−1∏

n′
(1 − an′pi)

−1
m−1∏

m′
(1 − bm′pi)

−1
k−1∏

k′
(1 − ck′pi)

−1
l−1∏

l′

(
1 − dl′

pi

)−1

×epix−4p3
i t+(1/pi)y,

eµj = βiq
s
i

n−1∏

n′
(1 − an′qi)

−1
m−1∏

m′
(1 − bm′qi)

−1
k−1∏

k′
(1 − ck′qi)

−1
l−1∏

l′

(
1 − dl′

qi

)−1

× eqix−4q3
i t+(1/qi)y,

(A.4)
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where pi , qi , αi and βi are arbitrary complex constants. We put

σm
n (y; k, l, N; s) = det(f

(i)
s+j−1)i,j=1,...,N . (A.5)

PROPOSITION A.1. The function σ satisfies the following bilinear equations:

Dyσm
n (N + 1; s) · σm

n (N; s) = σm
n (N; s + 1)σm

n (N + 1; s − 1), (A.6)
(

Dy − 1

dl

)
σm

n (l + 1; s) · σm
n (l; s + 1) = − 1

dl

σm
n (l + 1; s + 1)σm

n (l; s). (A.7)

We apply the determinantal technique in order to prove Proposition A.1. The bilinear

equations are reduced to the Plücker relations, which are quadratic identities of determinants

whose columns are appropriately shifted. To this end, we construct such formulas that express

the determinants in the Plücker relations in terms of the derivative or shift of a discrete

variable of σm
n (k, l, N; s) by using the linear relations of the entries. For the details of the

technique, we refer to [22, 29, 30, 34, 35].

We introduce the notation

σm
n (l, N; s) = |0l, 1l, . . . , N − 2l, N − 1l |, (A.8)

where ‘jl’ denotes the column vector

jl =

⎡
⎢⎢⎣

f
(1)
s+j (l)

...

f
(N)
s+j (l)

⎤
⎥⎥⎦ . (A.9)

LEMMA A.2. The following formulas hold:

∂yσm
n (l, N; s) = |−1, 1, . . . , N − 2, N − 1|, (A.10)

σm
n (l + 1, N; s) = |0l+1, 1, . . . , N − 2, N − 1|, (A.11)

dlσ
m
n (l + 1, N; s) = |1l+1, 1, . . . , N − 2, N − 1|, (A.12)

−(dl∂y − 1)σm
n (l + 1, N; s) = |0, 1l+1, 2, . . . , N − 2, N − 1|. (A.13)

Note that the subscripts of column vectors are shown only when l is shifted for notational

simplicity.

Proof. Equation (A.10) can be verified by direct calculation by using the fourth equation in

(5.2). We have

σm
n (l + 1, N; s) = |0l+1, 1l+1, . . . , N − 2l+1, N − 1l+1|. (A.14)

Adding the (N − 1)th column multiplied by dl to the N th column and using equation (A.2),

we have

σm
n (l + 1, N; s) = |0l+1, 1l+1, . . . , N − 2l+1, N − 1l |. (A.15)

Similarly, adding the (i − 1)th column multiplied by dl to the ith column and using equation

(A.2) for i = N − 1, . . . , 2, we obtain

σm
n (l + 1, N; s) = |0l+1, 1, . . . , N − 2, N − 1|, (A.16)
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which is equation (A.11). Multiplying dl to the first column of equation (A.11) and using

equation (A.2), we obtain equation (A.12). Finally, differentiating equation (A.12) with

respect to y yields

dl∂yσ
m
n (l + 1, N; s)

= |0l+1, 1, 2, . . . , N − 2, N − 1| + |1l+1, 0, 2, . . . , N − 2, N − 1|
= σm

n (l + 1, N; s) − |0, 1l+1, 2, . . . , N − 2, N − 1|, (A.17)

which is equivalent to equation (A.13). This completes the proof. ✷

Proof of Proposition A.1. Consider the Plücker relation (see, for example, [35]),

0 = |−1, 0, 1, . . . , N − 2| × |1, . . . , N − 2, N − 1, φ|
+ |0, 1, . . . , N − 2, N − 1| × |−1, 1, . . . , N − 2, φ|
− |0, 1, . . . , N − 2, φ| × |−1, 1, . . . , N − 2, N − 1|,

(A.18)

where φ is a column vector given by

φ =

⎡
⎢⎢⎢⎣

0
...

0

1

⎤
⎥⎥⎥⎦ . (A.19)

By using equations (A.8) and (A.10), expanding the determinant with respect to the column

φ, equation (A.18) can be rewritten as

0 = σm
n (N; s − 1)σm

n (N − 1; s + 1) + σm
n (N; s)∂yσm

n (N − 1; s)

− σm
n (N − 1; s)∂yσm

n (N; s), (A.20)

which implies equation (A.6). Similarly, applying Lemma A.2 on the Plücker relation

0 = |−1, 0, 1, . . . , N − 2| × |0l+1, 1, . . . , N − 2, N − 1|
− |0l+1, 0, 1, . . . , N − 2| × |−1, 1, . . . , N − 2, N − 1|
− |0, 1, . . . , N − 2, N − 1| × |−1, 0l+1, 1, . . . , N − 2|,

(A.21)

we obtain

0 = σm
n (l; s − 1) × σm

n (l + 1; s) − dlσ
m
n (l + 1; s − 1) × ∂yσ

m
n (l; s)

− σm
n (l; s) × [−(dl∂y − 1)σm

n (l + 1; s − 1)],
(A.22)

which is equivalent to equation (A.7). This completes the proof. ✷

From Proposition A.1 and equation (A.1), we see that τm
n (k, l, N; s) satisfies

Dyτm
n (N + 1; s) · τm

n (N; s) = τm
n (N; s + 1)τm

n (N + 1; s − 1), (A.23)

Dyτm
n (l + 1; s) · τm

n (l; s + 1) = − 1

dl
τm
n (l + 1; s + 1)τm

n (l; s). (A.24)
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We finally obtain equations (5.26) and (5.27) from equations (A.23) and (A.24), respectively,

by imposing the reduction condition (3.28).
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