
MOTION AND TEXTURE RATE-ALLOCATION FOR PREDICTION-BASED

SCALABLE MOTION-VECTOR CODING

Joeri Barbarien
1
, Adrian Munteanu, Fabio Verdicchio, Yiannis Andreopoulos, Jan Cornelis and Peter

Schelkens

Vrije Universiteit Brussel (VUB) – Interdisciplinary Institute for Broadband Technology (IBBT)

Department of Electronics and Information Processing (ETRO)

Pleinlaan 2, B-1050 Brussels, Belgium

ABSTRACT

Modern video coding applications require data transmission over variable-bandwidth wired and wireless

network channels to a variety of terminals, possibly having different screen resolutions and available

computing power. Scalable video coding technology is needed to optimally support these applications.

Recently proposed wavelet-based video codecs employing spatial-domain motion-compensated temporal

filtering (SDMCTF) provide quality, resolution and frame-rate scalability while delivering compression

performance comparable to that of H.264, the state-of-the-art in single-layer video coding. These codecs

require quality-scalable coding of the motion vectors to support a large range of bit-rates with optimal

compression efficiency. In this paper, the practical use of prediction-based scalable motion-vector coding in

the context of scalable SDMCTF-based video coding is investigated. Extensive experimental results

demonstrate that, irrespective of the employed motion model, our prediction-based scalable motion-vector

codec (MVC) systematically outperforms state-of-the-art wavelet-based solutions for both lossy and lossless

compression. A new rate-distortion optimized rate-allocation strategy is proposed, capable of optimally

distributing the available bit-budget between the different frames and between the texture and motion

information, making the integration of the scalable MVC into a scalable video codec possible. This rate-

allocation scheme systematically outperforms heuristic approaches previously employed in the literature.

Experiments confirm that by using a scalable MVC, lower bit-rates can be attained without sacrificing

motion-estimation efficiency and that the overall coding performance at low rates is significantly improved

by a better distribution of the available rate between texture and motion information. The only downside of

scalable motion vector coding is a slight performance loss incurred at high bit-rates.

1
 Corresponding author: Joeri Barbarien, Vrije Universiteit Brussel (VUB) – Interdisciplinary Institute for Broadband

Technology (IBBT), Department of Electronics and Information Processing, Pleinlaan 2, B-1050 Brussels, Belgium. E-

mail: jbarbari@etro.vub.ac.be Tel.: ++32 2 629 29 80, Fax: ++32 2 629 2883.

I. INTRODUCTION

The increasing demand for multimedia over networks and the heterogeneous profile of today’s networks and

playback devices (from low-resolution portable devices to HDTV platforms) impose the need for scalable

video coding. Scalable video codecs based on existing standards using a hybrid coding architecture (e.g.

MPEG-4 Fine Grain Scalability-FGS framework) were proposed in the past [1, 2]. These solutions however

fail to provide competitive rate-distortion performance compared to single-layer coding schemes (i.e.

MPEG-4, H.264), preventing their global acceptance by industry. Recently proposed open-loop wavelet-

based video coding architectures using spatial domain motion compensated temporal filtering (SDMCTF) [3-

10] form an alternative solution to the demand for scalable video coding. These codecs employ motion-

compensated temporal filtering (MCTF), which is equivalent to performing a wavelet transform along the

trajectory of the motion, followed by spatial decomposition of the resulting temporally-filtered frames using

a classical two-dimensional discrete wavelet transform (DWT). The coefficients obtained using this spatio-

temporal decomposition are encoded using an embedded coder, ensuring support for quality, resolution and

temporal scalability. The most advanced among these codecs yield compression performance on par with

that of the state-of-the-art non-scalable H.264-codec [11]. Their promising performance results, combined

with their ability to support a broad range of scalability, motivate the extensive research into this type of

video coding schemes.

MCTF-based video codecs typically employ a lossless, non-scalable motion-vector coding technique. This

implies that the minimum bit-rate that can be attained by the video codec is bound by the rate needed to

losslessly code the motion information. As a consequence, the motion estimation (ME) process must often be

forced to generate less complex (but less accurate) motion fields in order to limit the motion-vector coding

cost when low bit-rates need to be supported. However, sacrificing motion-field accuracy in this way

significantly affects the overall performance of the scalable video codec at all rates. This problem can be

solved by employing a quality-scalable motion vector codec (MVC) [12-16]. An additional benefit of using a

quality-scalable MVC is the capability to optimally distribute the available bit-rate between motion and

texture data. In comparison to a video codec using a non-scalable MVC, this yields a systematically better

rate-distortion performance [13-15], especially at low bit-rates.

Quality-scalable motion-vector coding techniques based on performing an integer wavelet transform of the

motion vector components followed by embedded coding of the resulting wavelet coefficients were proposed

in [12, 13]. While these techniques are quality scalable, they have several disadvantages. First of all, their

lossless compression performance is significantly lower than that of traditional prediction-based MVCs [12].

1

Secondly, it is not straightforward to adapt this approach to motion-vector fields generated by more complex

motion estimation algorithms, such as block-based motion estimation using variable block-sizes. The

wavelet transform would have to be performed on an irregular sampling grid to be able to efficiently

compress this kind of data. Alternatively, a regular sampling grid constructed based on the smallest block

size can be utilized, but this results into very poor compression performance, as we will illustrate in section

IV.1.

Other quality-scalable motion-vector coding techniques were later published in [14-16]. These algorithms

were all designed to encode motion information generated by multi-hypothesis block-based motion

estimation using variable block-sizes [6, 17]. Although these MVCs were developed independently from

each other, they exploit similar ideas to support quality-scalability of the motion information. Basically, they

all generate a bit-stream consisting of a base layer and an enhancement layer to achieve quality scalability.

The MVC of [15] generates the base layer by replacing the motion vectors belonging to blocks with sizes

smaller than 16x16 pixels with the motion vector(s) of their encompassing block of 16x16 pixels and coding

the resulting motion field using a prediction-based MVC. The difference between the motion field encoded

in the base layer and the original motion field is thereafter coded as an enhancement layer. The scalable

MVC supports only coarse-grain quality scalability (the enhancement layer can either be transmitted or

discarded). In the MVC of [16], the base layer is generated by rounding the original motion vectors, having

1/4-pel or 1/8-pel accuracy, to 1/2-pel accuracy, and coding the rounded motion vectors using a prediction-

based MVC. The rounding errors are coded using the CABAC-coder [11], producing the enhancement layer.

In contrast to these approaches, the MVC we introduced in [14] constructs the base layer by quantizing the

original motion vectors and coding the resulting quantized motion-vectors using a prediction-based MVC.

The quantization errors are thereafter coded using an embedded bit-plane coding technique, producing a fine-

grain quality-scalable enhancement layer. Experimental results show that this MVC outperforms wavelet-

based scalable MVCs for both lossless and lossy compression, as we will illustrate in section IV.1.

It is important to note that, in order to make the integration of a quality-scalable MVC into a scalable video

codec possible, the problem of appropriately distributing the rate between motion and texture data for any

given target bit-rate needs to be addressed. In [16] this problem is not tackled, whereas heuristic rate

allocation techniques are employed in [15] and in our previous publications on quality-scalable motion

vector coding [14, 18, 19].

The focus of this paper is to demonstrate the practical use of the scalable MVC we introduced in [14] in the

context of scalable MCTF-based video coding. Additionally, a new rate-allocation strategy, capable of

2

optimally distributing the available bit-budget between the different frames and between the texture and

motion information is proposed.

The paper is structured as follows: our prediction-based scalable MVC is described in section II. Section III

discusses the rate allocation approach. The conducted experiments and their results are presented in section

IV. Finally, the conclusions of the paper are formulated in section V.

II. QUALITY AND RESOLUTION SCALABLE PREDICTION-BASED MOTION

VECTOR CODING

II.1 Structure of the motion information

SDMCTF-based scalable video codecs have to employ advanced motion models to be able to reach the

performance level of H.264. The majority of existing SDMCTF-based codecs that perform on par with

H.264 [6, 7, 9] use multi-hypothesis block-based motion estimation with variable block-sizes and multiple

reference-frames [17]. The considered prediction-based scalable motion-vector codec [14] is designed to

code motion information produced by this type of motion-estimation algorithms. For each macro-block, the

motion information that needs to be encoded consists of:

1. Splitting information: If and how the macro-block is split into sub-blocks.

2. For each separately predicted block:

a. The hypothesis information, indicating the way the block is predicted (i.e. intra prediction,

by a single block in one of the reference frames, or by the average of several blocks each

lying in one of the reference frames).

b. Depending on the hypothesis, zero (intra), one or more motion vectors.

c. For each motion vector, the associated reference frame index.

In this paper, it is assumed that the motion-vector components are integer values lying in the range

 where [,]pel searchrange pel searchrange− ⋅ ⋅ −1 pel indicates the employed motion-estimation accuracy

(pel x= corresponds to 1 x –pel accuracy) and searchrange denotes the motion-estimation search range.

The next subsections will describe how this motion information is encoded by our prediction-based scalable

MVC.

II.2 General setup of the prediction-based scalable motion-vector codec

The architecture of the considered prediction-based motion vector codec [14] is shown in Figure 1.

3

Motion Vectors

Quantized motion
vectors

Quantization errors

Quantization

-
+

Motion
vector

prediction C
o

n
te

x
t-

b
as

ed

ad
ap

ti
v

e
ar

it
h

m
et

ic
 c

o
d

in
g

Base layer

Enhancement
layer

Context-base adaptive
arithmetic coding

Bit-plane coding

Hypothesis
information

Prediction
errors

Splitting
information

Reference frame
indices

Non-scalable

prediction-based

motion vector coder
Motion Vectors

Quantized motion
vectors

Quantization errors

Quantization

-
+

Motion
vector

prediction C
o

n
te

x
t-

b
as

ed

ad
ap

ti
v

e
ar

it
h

m
et

ic
 c

o
d

in
g

Base layer

Enhancement
layer

Context-base adaptive
arithmetic coding

Bit-plane coding

Hypothesis
information

Prediction
errors

Splitting
information

Reference frame
indices

Non-scalable

prediction-based

motion vector coder

Figure 1: General architecture of the prediction-based scalable MVC [14].

The motion information to be coded consists of two parts, the actual motion vectors and the side information,

including the reference frame indices, the hypothesis information and the macro-block splitting information.

The motion vectors are first quantized by discarding the information on the lowest bit-plane(s). For a given

quantization step size Q of the form 2kQ = , the quantized motion vector (),x yQMV QMV and the

quantization error (), corresponding to a motion vector (),x yMV MV are calculated as follows: xQE QEy

()

()
{ }

sgn
2

sgn() 2

,

i

i i k

k

i i i i

MV
QMV MV

QE MV QMV QMV

i x y

⎢ ⎥
= ⋅ ⎢ ⎥

⎣ ⎦

= − ⋅ ⋅

=

 (1)

In equation (1), ()sgn is the sign operator and x⎢ ⎥⎣ ⎦ is the integer part of x .

The quantized motion-vectors are thereafter coded together with the side information using a non-scalable,

prediction-based motion-vector coding technique, producing the base layer of the bit-stream (see Figure 1).

This base layer must always be decoded losslessly to avoid drift [14]. While any non-scalable prediction-

based motion vector codec can be used to encode the quantized motion vectors and side information, we

employ our own codec which is described in subsections II.3.1-II.3.4. The quantization errors are coded

using an embedded bit-plane coding technique. The resulting compressed data forms the quality scalable

enhancement layer of the final bit-stream. The embedded bit-plane codec used to produce the enhancement

layer is described in subsection II.3.5.

By appropriately truncating the enhancement layer, the total motion vector bit-rate can be chosen to lie

anywhere between the bit-rate needed to losslessly code the base layer and the bit-rate needed for a

complete, lossless reconstruction of the motion information. At the decoder side, the base layer is then

combined with the selected part of the enhancement layer to reconstruct the motion vectors employed in the

inverse MCTF. The base layer bit-rate can be controlled in the encoder by changing the motion-vector

4

quantization step-size Q . Opting for a smaller base-layer size increases the range of supported bit-rates but

in most cases decreases the overall compression performance of the MVC [14, 18].

Not only quality scalability but also resolution scalability and temporal scalability of the motion information

can be supported by this coding architecture. Temporal scalability is automatically supported since the

motion information associated to each H-frame is coded independently of the motion information associated

to other H-frames. To support resolution scalability, the quantization step-size Q must be selected so that the

number of bit-planes in the enhancement layer is larger than or equal to the number of lower resolutions that

need to be supported by the video codec. When decoding to a lower resolution, the decoder scales down the

original motion field to match this resolution, causing the lowest bit-planes of the motion vector components

to become irrelevant. If the quantization step-size is chosen as described earlier, the potentially irrelevant bit-

planes are part of the enhancement layer and can therefore be discarded before transmitting the motion

information to the decoder. Note that, although our prediction-based MVC can support resolution scalability,

we did not experiment with this feature since the focus of our paper is mainly on quality-scalability of the

motion information. It is possible that other techniques to support resolution scalability of the motion vector

field, such as the one employed in the Microsoft SVC codec [9, 10] may yield better coding performance.

II.3 Detailed description of the prediction-based scalable MVC

macro-blockmacro-blockmacro-block

HYP = 0
(intra)

HYP = 1
(single block)

MV = (0,1)
RFI = 0

HYP = 1
(single block)

MV = (0,-1)
RFI = 1

HYP = 1
(single block)

MV = (3,1)
RFI = 0

HYP = 0
(intra)

HYP = 0
(intra)

HYP = 1
(single block)

MV = (0,-1)
RFI = 1

HYP = 1
(single block)

MV = (3,1)
RFI = 0

HYP = 0
(intra)

HYP = 2
(average of two blocks)

MV1 = (0,1)
RFI1 = 0

MV2 = (-1,1)
RFI2 = 1

X

Y

macro-block

HYP = 0
(intra)

HYP = 0
(intra)

HYP = 1
(single block)

MV = (0,1)
RFI = 0

HYP = 1
(single block)

MV = (0,1)
RFI = 0

HYP = 1
(single block)

MV = (0,-1)
RFI = 1

HYP = 1
(single block)

MV = (0,-1)
RFI = 1

HYP = 1
(single block)

MV = (3,1)
RFI = 0

HYP = 1
(single block)

MV = (3,1)
RFI = 0

HYP = 0
(intra)

HYP = 0
(intra)

HYP = 0
(intra)

HYP = 0
(intra)

HYP = 1
(single block)

MV = (0,-1)
RFI = 1

HYP = 1
(single block)

MV = (0,-1)
RFI = 1

HYP = 1
(single block)

MV = (3,1)
RFI = 0

HYP = 1
(single block)

MV = (3,1)
RFI = 0

HYP = 0
(intra)

HYP = 0
(intra)

HYP = 2
(average of two blocks)

MV1 = (0,1)
RFI1 = 0

MV2 = (-1,1)
RFI2 = 1

HYP = 2
(average of two blocks)

MV1 = (0,1)
RFI1 = 0

MV2 = (-1,1)
RFI2 = 1

X

Y

macro-block

(a) (b)

Figure 2: (a) Hierarchical decomposition of macro-blocks into sub-blocks by block-based ME using variable block-sizes. (b)

Scanning order illustrated by arrows and coordinate system used in the coding process.

When using block-based motion estimation with variable block-sizes, each macro-block can be recursively

split into smaller sub-blocks that are predicted separately (Figure 2 (a)). While more elaborate splitting

modes are used by H.264 [11], for a simplified description, we consider in the following that each block

(macro-block or sub-block) can only be split into four equally sized sub-blocks, as depicted in Figure 2(a).

This simplification is consistent with our instantiation of multi-hypothesis block-based motion estimation, as

5

described in [20]. This motion model is employed in the SDMCTF codec of [6], which is used in our

experiments.

During the motion vector coding process, the same scanning order is employed in the encoding of the side

information (splitting information, hypothesis (HYP) information, and reference-frame indices (RFIs)), and

in the encoding of the quantized motion-vectors and quantization errors. In each of these coding steps, the

macro-blocks are visited in raster order and, in case a macro-block is split, its sub-blocks are scanned in

depth-first quadtree scanning order. An example of this scanning order is shown in Figure 2(b).

In the following sub-sections, the side-information and motion-vector coding algorithms are described in

detail.

II.3.1 Splitting information

Context-based adaptive arithmetic coding is used to encode the splitting information for each visited macro-

block. The following notations are introduced:

• andmbN mbM : The number of columns and rows of macro-blocks in the predicted frame.

• (),MB n m : The macro-block located at the -th row and -th column in the predicted frame, with

 and .

m n

0 mbn N≤ < 0 mbm M≤ <

• cMB : The currently visited macro-block (),c c cMB MB n m= , with 0 c mn N b≤ < and 0 . c mm M≤ < b

The splitting state of a macro-block is defined as a binary value that indicates whether the macro-block is

split into sub-blocks or not. The splitting state operator ()split is defined as:

 . (2) ()
0

1

if the macro block MB is not split
split MB

otherwise

−⎧
= ⎨
⎩

The coding process for the currently visited macro-block cMB starts by coding its splitting state

()csplit MB . Adaptive arithmetic coding is performed using one of three different probability models. The

probability model is selected based on ()()1,c csplit MB n m− and ()(), 1c csplit MB n m − , i.e. the splitting

states of the macro-blocks above and to the left of (),c c cMB MB n m= . If () 1csplit MB = , the exact splitting

configuration of the macro-block must also be coded. This is done using depth-first quadtree coding [21]

combined with binary arithmetic coding.

II.3.2 Hypothesis information

The hypothesis information describes the way each block (macro-block or sub-block, in case the macro-

block is split) is predicted. For each separately predicted block, the hypothesis number must be

encoded. A block can be predicted as intra (

HYP

0HYP =), by a block of the same dimensions in one of the

reference frames () or by the average of equally-sized blocks, each located in one of the 1HYP = , 1k k >

6

reference frames (). The hypothesis numbers are coded using context-based adaptive arithmetic

coding. The following symbols are defined:

HYP k=

• cB : The currently visited block. If cMB is not split, c cMB B= , otherwise cB is one of the sub-blocks of

cMB . The size of cB is pixels. The top-left pixel of block cS S× c cB has coordinates (),c cx y .

• : The hypothesis used to predict cHYP cB . This corresponds to the number of different motion vectors

generated in the ME process to predict cB .

• (),HYP x y : The hypothesis used for the prediction of the block containing the pixel at position (),x y . The

coordinate system depicted in Figure 2(b) is used.

The following operator is defined:

 ()
2

3 2

HYP if HYP
HYP

if HYP

≤⎧
= ⎨ >⎩

H . (3)

cHYP is encoded by first calculating and encoding ()cHYPH . ()cHYPH is coded by employing adaptive

arithmetic coding using one of five different probability models. The selection of the appropriate probability

model is based upon ()()1,c cHYP x y−H and ()(), 1c cHYP x y −H , where and

 respectively correspond to the hypothesis numbers of the blocks to the left and above the

currently visited block

()1,cHYP x y− c

)(, 1c cHYP x y −

cB . Notice that this manner of referencing motion information in neighboring blocks

is also used in the H.264 standard [11]. If , an additional offset value must also be coded. This

offset value is defined as:

2cHYP >

 () 3c cHYP HYP= −E , (4)

and is encoded using a single probability model in the adaptive arithmetic entropy coder.

At the decoder end, is reconstructed from cHYP ()cHYPH and ()cHYPE as:

() ()
() () ()

2

3

c c

c

c c c

HYP if HYP
HYP

HYP HYP if HYP

⎧ ≤⎪= ⎨
+ =⎪⎩

H H

H E H
. (5)

II.3.3 Reference frame indices

Consider a block B (which can be a macro-block or a sub-block) that is predicted by one or more equally-

sized blocks each lying in one of the possible reference frames. For each of the blocks used in the prediction

of B , a motion vector and a reference-frame index (RFI) must be encoded. The reference-frame index points

to the reference frame the block is located in, while the motion vector indicates the position of this block in

the reference frame, relative to the position of the predicted block in the predicted frame. Let us denote by

pf the frame number of the currently predicted frame, assuming that the frames in the video sequence are

numbered linearly starting from 0. The reference frame index RFI of a frame with frame number rf is then

calculated as:

7

()
()

2 1 1

2 1

r p r

p r r

p

p

f f if f
RFI

f

f f if f

⎧ ⋅ − − + >⎪= ⎨
⋅ − − <⎪⎩ f

. (6)

From (6), it is clear that frames lying temporally closer to pf are assigned smaller reference frame indices.

The RFIs are coded using median-based prediction combined with context-based adaptive arithmetic coding.

In the coding process, all RFIs belonging to the same block are processed first before proceeding to the next

block. The notations introduced in previous subsections are reused; some new symbols are also defined:

• c

iRFI : The reference-frame index of the -th block involved in the prediction of the currently visited block i

cB , with 1 , for . ci HYP≤ ≤ 0cHYP >

• (),iRFI x y : The reference-frame index of the i -th block used to predict the smallest block containing the

pixel (),x y , ()1 ,i HYP x y≤ ≤ , for (), 0HYP x y > .

Each reference-frame index c

iRFI , belonging to 1 ci HYP≤ ≤ cB is first predicted based upon the RFIs of

neighboring blocks. Its prediction p

iRFI is calculated using median-based prediction as follows:

 () () ()()1, , , 1 , , 1p

i i c c i c c i c cRFI median RFI x y RFI x y RFI x S y= − − + c − (7)

If one of the three RFIs involved in the prediction is unknown or does not exist, it is replaced by 0 in the

calculation. In case two of these RFIs are unknown, p

iRFI is set equal to the remaining neighboring RFI.

When none of the neighboring RFIs is available, the predicted RFI is set to zero. After the prediction step,

the obtained prediction errors are coded using adaptive arithmetic coding. The interval of possible prediction

error values is divided into a number of sub-intervals : iS

{ }

() ()1 1

0 0

2 1 , 2 2 ,2 1 0
i i i i i

if i
S

if i
− −

=⎧⎪= ⎨⎡ ⎤ ⎡ ⎤− − − − >⎪ ⎣ ⎦⎣ ⎦⎩ ∪
 (8)

For each prediction error, an index representing the sub-interval it belongs to is coded first using a single

probability-model in the adaptive arithmetic-coder. Thereafter, the offset within the interval is coded using a

separate probability model for every sub-interval.

iS

II.3.4 Quantized motion vectors

The quantized motion-vectors are encoded by performing motion-vector prediction followed by lossless

coding of the resulting motion-vector prediction errors. The prediction is performed by taking the median of

a set of motion vectors , containing the motion vectors associated with the blocks located to the left, top

and top-left of the currently-visited block

pU

cB and any previously-predicted motion vectors belonging to cB .

Context-based adaptive arithmetic coding is used to encode the prediction errors. The horizontal and vertical

components of the prediction errors are coded separately. The interval of possible component values is split

into a number of sub-intervals , as given by (8). For each component value, a symbol representing the sub-iS

8

interval it belongs to is coded first. Thereafter, the offset of the prediction error component within the

sub-interval is coded. For a detailed description of the coding process for the quantized motion vectors, the

reader is referred to [14, 18, 19].

iS

II.3.5 Embedded coding of the motion-vector quantization errors

The horizontal and vertical components of the quantization errors are coded in a bit-plane by bit-plane

fashion. Each bit-plane is coded in two passes, a significance pass followed by a refinement pass. A

threshold is associated with each bit-plane . A quantization error component is said to be

significant for a threshold T if

2i
T = i ec

ec T≥ . All bit-planes are coded sequentially, starting with the most

significant bit-plane. In the significance pass, the significance of all previously non-significant components is

encoded. Multiple quantization-error vectors associated to the same block are visited sequentially before

proceeding to the next block. When a component becomes significant for the first time and its corresponding

quantized motion vector component is 0, its sign is also coded. In the refinement pass, already significant

components are refined by coding the binary value corresponding to the current bit-plane.

The significance, refinement and sign information is compressed using context-based adaptive arithmetic

coding. To facilitate the discussion of this coding process, the following notations are introduced:

• : the -th motion vector involved in the prediction of c

iv i cB , with 1 ci HYP≤ ≤ , for . 0cHYP >

• (),i x yv : the -th motion vector generated in the ME process to predict the smallest block containing the

pixel

i

(),x y , with ()1 ,i HYP x y≤ ≤ .

• ()QE v : the quantization error produced by quantizing the motion vector v .

The significance information for the components of () ()()1 1 ,c

c cQE QE x y=v v is coded using three

probability-models per component. The choice of the model is based upon the significance of the

corresponding components of and ()()1 1,c cQE x y−v ()()1 , 1c cQE x y −v , i.e. the quantization errors

associated to the blocks to the left and above the currently visited block. A first model is used if both

components are significant or if one of the components is significant and the state of the other is unavailable

(if or or if one of the blocks referred to is coded in intra-mode). The second model is used if

both components are not significant or if one of the components is not significant and the state of the other is

unavailable. The third model is used in all other cases. Finally, two models for each component are used to

code the significance of the components of the remaining

0cx = 0cy =

()c

iQE v for all , 1 ci i HYP< ≤ . A first model is

used if the corresponding component of ()1
cQE v is significant, the second if it is not.

9

III. BASE-LAYER RATE-CONTROL AND GLOBAL RATE-ALLOCATION

Integration of a scalable motion-vector coding technique into an MCTF-based video codec requires a rate

allocation strategy, capable of distributing the available bit-rate between the different frames in the video

sequence and between motion and texture information. In our previous publications related to quality-

scalable motion vector coding [14, 18, 19], a heuristic rate allocation technique was employed. This

technique is described in detail in subsection III.2. In subsection III.3, a new R-D optimized rate-allocation

scheme based on Lagrangian rate-distortion optimization is proposed.

The bit-rate needed to compress the base-layer motion information must always be lower than the lowest

target bit-rate supported by the scalable video codec. A control mechanism for the bit-rate of the compressed

base-layer motion information is therefore needed. The technique to accomplish this is described next.

III.1 Base-layer rate-control

The size of the base-layer part of the compressed motion information can be influenced by adjusting the

quantization step of the motion vectors (see subsection II.2). Increasing lowers the base-layer size and

vice-versa. The employed rate–control mechanism enforces a constant bit-rate, meaning that for each frame,

the bit-rate of the base-layer motion information is kept below the given target bit-rate . The algorithm

to control the base-layer bit-rate for a given frame can be described as follows:

Q Q

maxb

1. Set (no enhancement layer) 1Q =
2. Compress motion vectors of the current frame using quantization step

size . Q

3. if compressed base-layer bit-rate > , maxb

{

2Q Q= ⋅

Goto 2

}

else

 compressed base-layer bit-rate is met.

Experimental results (see section IV.3) show that, in most cases, the overall compression performance of the

motion vector codec decreases when Q is increased. The proposed algorithm takes this into account by

ensuring that the minimal value of that satisfies the bit-rate constraint is selected. It may seem prohibitive

to repeatedly compress the motion information from a complexity viewpoint. However, the number of

iterations is typically small and the computational complexity of the proposed scalable MVC is several

orders of magnitude smaller than that of the motion-estimation step, making its impact on the global

complexity of the video codec negligible.

Q

10

III.2 Heuristic technique for global rate-allocation

Previous publications discussing quality-scalable motion-vector coding employ heuristic techniques to

allocate the available bit-rate between texture and motion information [14, 15]. In this section, our heuristic

rate-allocation approach used in [14, 18, 19] is presented in detail. To simplify the discussion, it is assumed

that only quality scalability must be supported by the video codec. To support frame-rate scalability, the

encoder only sends the motion information associated with the H-frames in the temporal subbands that are

effectively transmitted. Resolution scalability is supported by discarding the lowest bit-planes of the

motion-vector enhancement layer when the decoder requests a lower resolution

j

2 2j jW H× , with W and

 the original width and height of the frames. H

The rate allocation mechanism proposed in this subsection allocates the available bit-rate heuristically. For a

given target bit-rate, the motion vectors are first decoded at 6 different rates, evenly spread out between the

base-layer rate and the rate needed for the lossless reconstruction of the vectors (see Figure 3). The

remaining bit-rate is allocated to the texture information. The combination of motion and texture rates

delivering the best quality (PSNR) is retained.

…

Frame

Compressed
motion vector

size (bytes) Maximum
base-layer
size (given)

Base layer

Enhancement layer

5
5

5

555
4

44

444
3

33

3
3

3

2
22

2
2

2

1

1

1
1

1
1

1

1

6
6

6

6 6
6

…

Frame

Compressed
motion vector

size (bytes) Maximum
base-layer
size (given)

Base layer

Enhancement layer

Base layer

Enhancement layer

5
5

5

555
4

44

444
3

33

3
3

3

2
22

2
2

2

1

1

1
1

1
1

1

1

6
6

6

6 6
6

Figure 3: The motion information is decoded at 6 different rates.

The bit-rate available for coding the texture information is also allocated in a heuristic way. Notice that a

similar way of allocating the texture bit-rate was used in [6, 7]. In SDMCTF-based scalable video codecs the

texture information is typically coded using embedded bit-plane coding techniques such as EBCOT [22],

EZBC [7] or QT-L [21, 23]. These algorithms code each bit-plane in a number of coding passes. The rate-

allocation algorithm assumes that the temporal transform was made approximately unitary during encoding

[24]. To accomplish this, the wavelet coefficients in each temporally- and spatially-filtered frame are

multiplied by a scaling factor sf depending on the temporal subband the frame belongs to. Each temporal

subband is the result of a sequence of high-pass and low-pass filtering operations along the trajectory of the

motion. The scaling factors are calculated as ()2
lf

sf = , with equal to the number of low-pass filtering lf

11

operations involved in the generation of the corresponding temporal subbands. For example, when four

temporal levels of decomposition are applied, the coefficients in the low-pass frame of the fourth level are

multiplied by ()4

2 4sf = = .

To facilitate the description of the rate-allocation scheme, the following symbols are defined:

• (),
c

b pf k : The sub-stream (fragment of the final bit-stream) generated by the p -th coding pass of the b -th

bit-plane for the -th color channel of frame . Its size in bytes is denoted as c k ()(),
c

b ps f k . It must be noted

that (),
c

b pf k is empty if no information is generated in pass p or if the most significant bit-plane that must

be encoded for component of frame k is lower than b . c

• ts : The total number of bytes available for coding the texture information of the entire video sequence.

• pN : The number of coding passes used to code every bit-plane.

• fN : The number of frames in the video sequence.

• : The number of color components per frame. For YUV4:2:0 color sequences, , with cN 3cN = 0c =

corresponding to the Y component, to the U component and 1c = 2c = to the V component.

• : The most significant bit-plane to be coded in the entire temporally- and spatially- transformed

sequence.

maxbp

The rate-allocation procedure is given in the following:

0k = ; ; ; maxb bp= 0p = 0c =
0totalsize =

while (ttotalsize s<)

{

 Add (),
c

b pf k to the extracted bit-stream

 ()(),
c

b ptotalsize totalsize s f k= +

1c c= +

if() 1cc N> −
{

 0c =
 1k k= +

if() 1fk N> −
 {

 0k =
 1p p= +

 if() 1pp N> −
 {

 0p =

1b b= −

}

}

}

}

12

To summarize, the bit-rate available to code the texture information is allocated (1) by sorting the (),
c

b pf k

sub-streams according to their importance as given by their associated bit-plane, coding pass and color

component, and (2) by concatenating them until the target bit-rate is met.

III.3 Rate allocation using Lagrangian rate-distortion optimization

For a simplified presentation, it is again assumed that only quality scalability must be supported by the video

codec. The rate-allocation mechanism proposed in this subsection allocates the available bit-rate using

Lagrangian rate-distortion optimization. The bit-stream generated by coding a video sequence consists of

several contributions: the compressed texture information for the color components of the L-frames and H-

frames and the compressed motion information associated with each H-frame. Each of these contributions is

coded in an embedded way. The rate-allocation scheme must then decide where to cut the bit-stream

fragments associated to each of the contributions in order to obtain the best quality for a given bit-budget. To

facilitate the description, it is assumed that the number of temporal levels for each group of pictures (GOP) is

chosen so that each temporally-transformed GOP contains only one L-frame. The following notations are

introduced:

• gN : the number of GOPs in the sequence.

• : the number of H-frames in GOP i , 0i

hN
gi N≤ < .

• : the number of color components in each frame. cN

• i

cL : The -th color component of the L-frame in the -th GOP, 0c i gi N≤ < , 0 cc N≤ < .

• : The -th color component of the -th H-frame in the i -th GOP, with , ,i j

cH c j 0 gi N≤ < 0 i

hj N≤ < and

. 0 cc N≤ <

• ,i j

BM : The base-layer motion information associated to the -th H-frame in the i -th GOP, with j 0 gi N≤ <

and 0 i

hj N≤ < .

• ,i j

EM : The enhancement layer motion information associated to the -th H-frame in the -th GOP, with

 and

j i

0 gi N≤ < 0 i

hj N≤ < .

• ,i j

BR : The rate in bytes needed to losslessly code the base-layer motion information ,i j

BM .

• TR : The target rate in bytes.

The embedded bit-stream fractions corresponding to each contribution { }, ,, ,i i j i j

c c EX L H M∈ ,

0 ,0 ,0i

g hi N j N c N≤ < ≤ < ≤ < c
 can be cut off in a number of points defined at encoding time. For each of

these truncation points, the rate is measured and the corresponding distortion of the contribution is measured

or estimated. These points are ordered according to increasing rate and stored for use in the rate allocation

13

procedure. The following operators are defined for every { }, ,, ,i i j i j

c c EX L H M∈ ,

0 , 0 ,0i

g h ci N j N c N≤ < ≤ < ≤ < :

• ()pN X : The number of truncation points defined for the bit-stream representing X .

• ()n
D X : The distortion of X associated to truncation point (),0 pn n N X≤ < .

• ()n
R X : The rate in bytes associated to truncation point (),0 pn n N X≤ <

The distortions are considered to be additive. Hence, the global distortion function for the entire video

sequence is given by:

 . (9) () () (), , ,,

1 1 11
,

0 0 0 0

i i
g c h h

i j c i ji c

N N NN
mn i j i j j i

T c c c c

i c j j

D D L D H Dµ η ξ
− − −−

= = = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= ⋅ + ⋅ + ⋅

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ,l j

EM

The weight factors , ,j j

c cµ η ξ are introduced to fine-tune the distortion function in order to better

approximate the behavior of the actual distortion after decoding. The appropriate selection of these weight

factors is discussed later in this section.

In the rate-allocation process, the truncation points for the bit-streams of the different

contributions are determined as to minimize the total distortion

, , , ,, ,i c i j c i jn m l

TD given the rate constraint:

 () () ()(, , ,,

1 1 11
, , ,

0 0 0 0

i i
g c h h

i j c i ji c

N N NN
m ln i i j i j i j

c c E B

i c j j

) TR L R H R M R

− − −−

= = = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+ + +

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ R≤

1

,

i
h

N

i j

B

 (10)

which is equivalent to:

 () () ()(), , ,,

1 11 11
' , ,

max
0 0 0 0 0 0

i i
g gc h h

i j c i ji c

N NN NN
m ln i i j i j

T c c E T

i c j j i j

R R L R H R M R R R

− −− −−

= = = = = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+ + ≤ = −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑

−

)

.(11)

This problem is solved by using Lagrangian rate-distortion optimization, which implies minimizing the

functional for some ('
maxT TJ D R Rλ= + − 0λ > . Define:

() () ()
() () () () ()

() () () () ()
() ()

, , ,

, , , ,, , ,
min , min , min

,

,

z i z i z i j z i j z i j z i j

c c c c E

i c i j c i j

E

z i z i z i j z i j z i j z i jz z z z z z
c c c c E

D L D L D H D H D M D M
z z z

R L R L R H R H R M R M
λ λ λ

′ ′ ′

′ ′′ ′ ′< < <

− −
′ ′′

− − E

′

−

−

for , and 0z > () () (), , , ,0 , 0 , 0i c i j c i jλ λ λ′ ′′∞ ∞ ∞

′′

,
c c E

. From the sets of rate-distortion points generated by the

embedded coding of the texture and motion information, only those points that lie on the convex-hull of the

distortion-rate characteristic for each frame are eligible, and thus retained. Denote by the sets

of feasible truncation points for the contributions j

, , , ,, ,i c i j c i j
′H H H

,, ,i i j iL H M

z

 respectively.

The necessary and sufficient conditions for a truncation point to belong to one of these sets are

respectively [22]:

14

() ()
() ()
() ()

() ()
() ()
() ()

() ()
() ()
() ()

, , ,

, ,

, , , , , , ,

, ,

, , , , ,

0 max ,

0 max

0 max

z i t i

c c

i c i c i c t i z it z
c c

z i j t i j

c

i j c i j c i j c t i j z i jt z
c c

z i j t i j

E E

i j i j i j t i j z i jt z
E E

D L D L
z z and z

R L R L

D H D H
z z and z

R H R H

D M D M
z z and z

R M R M

λ λ

λ λ

λ λ

>

>

>

−
∈ ⇔ > >

−

−
′ ′ ′∈ ⇔ > >

−

−
′′ ′′ ′′∈ ⇔ > >

−

H

H

H

,
,

.

c
 (12)

Minimizing the functional J for a given λ corresponds to finding the optimum truncation points

 as: , , , ,, ,opt opt opt

i c i j c i jn m l

()

()

()

, , ,

, , , , , ,

, , ,

max | ,

max | ,

max | .

opt

i c i c i c

c

opt

i j c i j c i j c j

c

opt

i j i j i j j

n h h

m h h

l h h

λλ
µ

λλ
η

λλ
ξ

⎧ ⎫
= ∈ >⎨ ⎬

⎩ ⎭
⎧

′ ′= ∈ >⎨
⎩ ⎭

⎧ ⎫′′ ′′= ∈ >⎨ ⎬
⎩ ⎭

H

H

H

⎫
⎬ (13)

The global optimization problem then reduces to finding the optimum value optλ as:

 (14) () () (), , ,,

1 1 11
, ,

max
0 0 0 0

min |

i i
g c h hopt optopt

i j c i ji c

N N NN
m lnopt i i j i j

c c E

i c j j

R L R H R M Rλ λ
− − −−

= = = =

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎛ ⎞⎜ ⎟⎜ ⎟= + + ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∑ ∑ ∑ ∑ ≤

Since TR′ is monotonically decreasing function of λ , the search for optλ can be performed by using the

well-known bi-section method [22].

An important aspect of the proposed algorithm is the estimation of the employed distortions (),i cn i

cD L ,

 and (, , ,i j cm i j

cD H) (), ,i jl i j

ED M . The SDMCTF-based video codec used in our experiments employs the QT-L

embedded coding algorithm of [21] to encode the texture information of the L-frames and H-frames. This

algorithm codes the wavelet coefficients in a bit-plane by bit-plane fashion. Each bit-plane is coded using

three coding passes, the non-significance pass, the significance pass and the refinement pass. These passes

respectively resemble the significance propagation, normalization and magnitude-refinement coding passes

of EBCOT [22]. A threshold is associated with each bit-plane i . A wavelet coefficient is said to

be significant for a threshold T if

2i
T =

wc

wc T≥ . In the non-significance and significance passes, the significance

of all previously non-significant components is encoded [21]. When a component becomes significant for the

first time its sign is also coded. The refinement pass encodes the current bit-plane of the wavelet coefficients

that are already significant.

The distortions (),i cn i

cD L and are obtained by estimating the average distortion-reduction after

each decoding pass. Specifically, to obtain the average distortion-reduction for the non-significance or

significance decoding passes of bit-plane , the number of coefficients that become significant is multiplied

(, , ,i j cm i j

cD H)

k

15

with the estimated average distortion-reduction ()SD k∆ obtained when a single coefficient becomes

significant. ()SD k∆ can be calculated as [21, 22]:

 () 227
2

12
k

SD k∆ = (15)

The distortion reduction for the refinement pass of bit-plane is calculated by multiplying the number of

refined coefficients with the estimated average distortion-reduction

k

()RD k∆ obtained by refining a single

coefficient. ()RD k∆ is given by [21, 22]:

 () ()2 1
2

k

RD k
−∆ = (16)

LL LL

HH

HH

Erroneous
H-frameH

Erroneous
H-frameH

Encoded H-frameH Encoded H-frameH

Lossless L-frames (encoder)L Lossless L-frames (encoder)L

Original motion
information
Original motion
information

Lossy decoded
motion information

Figure 4: Calculation of the distortion incurred by the truncation of the motion information.

Finally, the distortions (), ,i jl i j

ED M associated to the motion information are not estimated but measured. At

encoding time, each H-frame is produced by motion-compensated temporal filtering using the motion

information generated in the motion-estimation process and one or more lossless L-frames. For each

truncation point of the compressed motion-information associated to , an erroneous H-frame

H

l H
l

H is

generated using the lossyly-decoded motion information. The distortion associated to the given

truncation point is then measured as the MSE between and

l
D

l H
l

H . Figure 4 illustrates this process for the

simple case of unconstrained motion-compensated temporal filtering (UMCTF) [6].

The weight factors , ,j j

c cµ η ξ in the distortion function TD account for the difference in behavior between

the unweighted distortion function and the real distortion observed after decoding. This difference occurs

because of two reasons. First of all, the procedure for calculating the distortions (), ,i jl i j

ED M does not take

into account that errors introduced in a single frame by the truncation of motion information will also

propagate to other frames in the GOP through the MCTF process. This means the distortion caused by

motion-information truncation is underestimated. Moreover, the higher the temporal decomposition-level of

the H-frame in which the error is introduced, the more frames in the GOP will be affected by the propagation

of the error. As a consequence, the higher the temporal level of the H-frame, the more the distortion

contribution associated to the truncation of its motion information is underestimated. The weight factors jξ

16

can be used to compensate for these error propagation effects. Larger weights should be used for the

distortions associated to H-frames of higher temporal levels.

Secondly, the distortion contributions for the texture information (),i cn i

cD L and are estimated

in the wavelet domain. In a spatio-temporally transformed GOP, distortions introduced in frames of higher

temporal decomposition-levels have a larger impact on the total distortion of the decoded GOP. Two

different solutions can be used to take this into account. The first solution is to appropriately choose

(, , ,i j cm i j

cD H)

, j

c cµ η

so that the distortion contributions for frames of higher temporal levels get larger weights assigned to them.

The second solution is to make the temporal transform approximately unitary prior to coding and distortion

estimation. This can be done by multiplying the wavelet coefficients with a scaling factor depending on the

frame’s temporal decomposition level, as proposed in [24]. The procedure was detailed in section III.2.

When this solution is chosen, the weight factors , j

c cµ η can be set to 1, assuming all color components are

attributed equal importance. In our experiments, the latter approach is adopted. This means that only the

weight factors jξ must be experimentally determined. With this respect, the SDMCTF-codec of [6],

equipped with the prediction-based scalable MVC and the R-D-optimized rate allocation technique was used

to code a limited set of test sequences using different values of jξ . The following values of jξ yielded the

best compression performance: for the highest temporal level, jξ is set to 2.5, for level 3 to 2, for level 2 to

1.66, and for level 1 to 1.43.

IV. EXPERIMENTAL RESULTS

In a first set of experiments, our prediction-based scalable MVC is compared to a wavelet-based quality-

scalable motion-vector coding technique. The experimental setup and results are presented in subsection

IV.1. In the second set of experiments, the impact on the compression performance of using a prediction-

based scalable MVC instead of a classical, non-scalable MVC is demonstrated for two different SDMCTF-

based video codecs. The details of these experiments are given in subsection IV.2. In the last set of

experiments, the base-layer rate-control mechanism is validated, the performance of the proposed R-D-

optimized rate-allocation scheme is assessed, and the rate distribution obtained using this rate-allocation

scheme is examined in detail. The experimental setup and the results are discussed in subsection IV.3.

IV.1 Comparison of prediction-based versus wavelet-based scalable MVC

Our prediction-based scalable MVC is compared against a wavelet-based quality-scalable MVC similar to

the one proposed in [13]. This MVC separately codes the components of the motion vectors by performing a

5/3 integer wavelet transform on the motion-vector components followed by quality-scalable coding of the

17

resulting transform coefficients. The difference with respect to [13] is that the encoding is performed using

the QT-L codec of [21, 23], whereas the JPEG2000 codec [22] is used in [13]. Since the performance of QT-

L is on par with that of JPEG2000 [21], both scalable MVC systems are expected to yield similar coding

performance.

Name Resolution No. of frames Framerate (Hz)
Football CIF 260 30
Canoa CIF 220 30

Bus CIF 150 30
Container CIF 300 30

Table 1: Test sequences used in the experiments.

In the first experiment, the wavelet-based and prediction-based scalable MVCs are applied to motion

information generated by multi-hypothesis block-based motion estimation using 2 reference frames, 2 block

sizes and quarter-pel accuracy and their lossless compression performance is compared. The motion-

estimation algorithm is employed in a 4-level 5/3 MCTF-decomposition without update step (UMCTF). In

its original form, the wavelet-based scalable MVC cannot handle the irregularly sampled motion-field

generated by block-based motion estimation with variable block-sizes. The most straightforward solution to

this problem is to transform the original motion field into a new motion field with a regular sampling-grid

corresponding to the smallest block-size (see Figure 5) and to apply wavelet-based motion-vector coding to

this new field. This technique is used in our experiment. To encode the side information (reference indices,

hypothesis information), the wavelet-based MVC employs the same coding mechanisms as the prediction-

based scalable MVC.

Figure 5: Resampling of the motion field prior to wavelet-based motion vector coding.

In the prediction-based scalable MVC, the base-layer size was kept below 427 bytes/frame (corresponding to

96 kbps) by the base-layer rate-control algorithm proposed in subsection III.1. The four sequences described

in Table 1 were used in the experiment. In Table 2, we report the average number of bytes needed to

losslessly code the motion information using the prediction-based and wavelet-based MVCs. For reference

purposes, the average uncompressed size of the motion information is also reported. The results show that

the prediction-based scalable MVC significantly outperforms the wavelet-based scalable MVC. Moreover,

the wavelet-based MVC does not achieve any compression for 3 of the 4 sequences. These results clearly

18

indicate that adapting the wavelet-based MVC to motion information generated by multi-hypothesis block-

based motion estimation using multiple reference-frames and variable block-sizes is not a straightforward

problem indeed.

In the following set of experiments, the difficulties of adapting the wavelet-based MVC to more complex

motion information are avoided by employing a simpler motion model. Specifically, we evaluate the lossy

and lossless compression performance of the MVCs for motion information generated by a multi-hypothesis

block-based motion estimation algorithm, using two reference frames, no intra mode, no macro-block

splitting and quarter-pel accuracy. The motion estimation is employed in a 4-level 5/3 MCTF-decomposition

without update step (UMCTF).

Sequence Prediction-based scalable MVC Wavelet-based scalable MVC Uncompressed

Football 817 3455 938

Canoa 1022 3656 1262

Bus 668 2562 1058

Container 43 180 200
Table 2: Lossless compression performance of the scalable MVCs when coding motion information generated by multi-

hypothesis block-based motion estimation using 2 reference frames, 2 block sizes and quarter-pel accuracy (the average

number of bytes per frame is reported).

The experiments were again conducted using the four sequences of Table 1. The lossless compression

performance is compared first. In Table 3, the average number of bytes per frame needed to code the motion

information is given. In the proposed MVC, the base-layer size was kept below 200 bytes/frame.

Sequence Prediction-based scalable MVC Wavelet-based scalable MVC
Football 682 722
Canoa 670 709

Bus 578 616
Container 161 211

Table 3: Lossless compression performance of the prediction-based and wavelet-based scalable MVCs when coding motion

information generated by multi-hypothesis block-based motion estimation using two reference frames, no intra mode, no

macro-block splitting and quarter-pel accuracy (the average number of bytes needed to code the motion information of an H-

frame is reported).

Next, the lossy coding performance of both motion-vector coding schemes is compared. For each predicted

frame, the MSE of the motion vectors is calculated for different motion vector bit-rates. Based on these MSE

figures, a global PSNR value is calculated for the entire sequence. The MSE of the motion vectors associated

to predicted frame k is calculated as follows:

 () ()()1 2 2

0

1

2

kN

k i i i i

ik

MSE x x y y
N

−

=

= − + −∑ , (17)

where represents the number of motion vectors associated to predicted frame k ,kN ix , are the original

motion vector components, with 0 , and

iy

ki N≤ < ix , are the reconstructed motion-vector components.

The global motion-vector PSNR for the entire sequence is then calculated as:

iy

19

()2

10 1

0

10 log
1MV N

k

k

MAX MIN
PSNR

MSE
N

−

=

⎛ ⎞
⎜ ⎟−
⎜= ⋅
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
⎟ (18)

In equation (18), MAX and MIN respectively denote the maximum and the minimum of the range of

possible motion-vector component values, and denotes the number of predicted frames in the sequence.

The obtained results are shown in Figure 6. The base-layer size in the proposed MVC is again kept below

200 bytes/frame for all sequences. Remark that, since the motion information is highly correlated for the

“Container” sequence, lossless compression with less than 200 bytes/frame is attained for some of the frames

in the sequence.

N

30

35

40

45

50

55

60

65

70

75

80

140 145 150 155 160 165 170 175 180 185 190

Average motion vector rate (bytes/frame)

A
v

e
ra

g
e
 m

o
ti

o
n

 v
e
c

to
r

P
S

N
R

 (
d

B
)

Prediction-based MVC Wavelet-based MVC

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

Average motion vector rate (bytes/frame)

A
v
e

ra
g

e
 m

o
ti

o
n

 v
e
c

to
r

P
S

N
R

 (
d

B
)

Prediction-based MVC Wavelet-based MVC

“Container” “Football”

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800

Average motion vector rate (bytes/frame)

A
v
e

ra
g

e
 m

o
ti

o
n

 v
e
c

to
r

P
S

N
R

 (
d

B
)

Prediction-based MVC Wavelet-based MVC

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Average motion vector rate (bytes/frame)

A
v
e

ra
g

e
 m

o
ti

o
n

 v
e
c

to
r

P
S

N
R

 (
d

B
)

Prediction-based MVC Wavelet-based MVC

“Canoa” “Bus”
Figure 6: Comparison between the lossy compression performance of the prediction-based and wavelet-based scalable MVCs

when coding motion information generated by multi-hypothesis block-based motion estimation using two reference frames,

no intra mode, no macro-block splitting and quarter-pel accuracy.

From these results we can clearly draw the conclusion that, when coding motion information generated by

multi-hypothesis block-based motion estimation, the prediction-based scalable MVC systematically

outperforms wavelet-based scalable motion vector coding for both lossless and lossy compression.

Notice that the first experiments served to compare the coding performance of the scalable MVCs for motion

information generated by block-based motion estimation. However, the wavelet-based scalable MVC of [13]

was originally designed to code motion information generated by mesh-based motion estimation. Hence, in

20

order to ensure a fair comparison, we must also evaluate the coding efficiency of both scalable MVCs for

this type of data. The mesh-based motion estimation algorithm used in this experiment employs a backward-

mapped warping approach [25], bilinear interpolation and a 4-step iterative search of the node positions to

obtain the optimal deformation of the mesh. This motion estimation algorithm is employed in a 4-level Haar

MCTF-decomposition without update step (UMCTF). The test sequences described in Table 1 are used in

this experiment. In the prediction-based scalable MVC the base-layer is restricted to 150 bytes/frame. Table

4 shows the lossless compression results, while the lossy compression results are summarized in Figure 7.

These results show that, when coding motion information generated by mesh-based motion estimation, the

prediction-based scalable MVC again outperforms the wavelet-based scalable MVC for both lossless and

lossy compression.

Sequence Prediction-based scalable MVC Wavelet-based scalable MVC
Football 472 495
Canoa 447 470

Bus 391 401
Container 139 173

Table 4: Lossless compression performance of the prediction-based and wavelet-based scalable MVCs when coding motion

information generated by mesh-based motion estimation (the average number of bytes per frame is reported).

0

10

20

30

40

50

60

70

80

90

100 110 120 130 140 150 160 170 180

Average motion vector rate (bytes/frame)

A
v

e
ra

g
e

 m
o

ti
o

n
 v

e
c

to
r

P
S

N
R

 (
d

B
)

Prediction-based Wavelet-based

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

Average motion vector rate (bytes/frame)

A
v

e
ra

g
e

 m
o

ti
o

n
 v

e
c

to
r

P
S

N
R

 (
d

B
)

Prediction-based Wavelet-based

“Container” “Football”

0

10

20

30

40

50

60

70

100 150 200 250 300 350 400 450 500

Average motion vector rate (bytes/frame)

A
v

e
ra

g
e

 m
o

ti
o

n
 v

e
c

to
r

P
S

N
R

 (
d

B
)

Prediction-based Wavelet-based

0

10

20

30

40

50

60

70

100 150 200 250 300 350 400 450

Average motion vector rate (bytes/frame)

A
v

e
ra

g
e

 m
o

ti
o

n
 v

e
c

to
r

P
S

N
R

 (
d

B
)

Prediction-based Wavelet-based

“Canoa” “Bus”
Figure 7: Comparison between the lossy compression performance of the prediction-based and wavelet-based scalable MVCs

when coding motion information generated by mesh-based motion estimation

We conclude that, irrespective of the employed motion model, the prediction-based scalable MVC

systematically outperforms the wavelet-based technique for both lossless and lossy compression. This might

21

be explained by the very nature of the motion vector field. The wavelet bases overlap the high density of

singularities present in the motion vector field, creating a large number of high amplitude coefficients that

are expensive to code. On the other hand, in contrast to the wavelet transform, which is linear, median-based

prediction is a non-linear operation, and therefore, less affected by the presence of singularities. This results

into a better compression performance, as observed in the experiments. Additionally, similar to the wavelet-

based approach, the predictive-based MVC supports arbitrarily fine granularity of the motion vector rate,

while providing better lossy coding performance at all rates higher than the base-layer rate.

IV.2 Benefits of scalable motion vector coding

In this set of experiments, a prediction-based MVC is incorporated into two different SDMCTF-based video

codecs and the overall compression performance of the video codecs is compared when using scalable and

non-scalable motion vector coding. In the first experiment, our video codec described in [6] is employed. It

uses a 5/3 MCTF-decomposition without update step and multi-hypothesis motion estimation with two

reference-frames, two block-sizes and quarter-pel accuracy [6]. The employed non-scalable motion vector

codec is identical to the prediction-based motion vector codec used to encode the base-layer information in

our scalable MVC (see section II.3). The base-layer size in the scalable MVC is kept below 96 kbps. When

using the scalable MVC, the distribution of the rate between texture data and motion information is

performed using the heuristic technique described in subsection III.2. When the non-scalable motion vector

coding technique is employed, the bit-rate needed to losslessly code the motion information is subtracted

from the target bit-rate and the remaining rate is allocated to the texture information, as described in

subsection III.2. This means that the bit-rate available to code the texture information is allocated in the same

way, regardless of the motion-vector codec used (scalable or not). Four levels of temporal and spatial

decomposition are performed during encoding. The results of the experiment are shown in Table 5-Table 8

for the sequences described in Table 1. We report the average PSNR (in dB) for each color component and

the average PSNR per frame calculated as [26]:

 ()4avg Y U VPSNR PSNR PSNR PSNR= ⋅ + + / 6 (19)

Visual results are shown in Figure 8 and Figure 9.

22

Target bit-rate (kbps)
Football

128 192 256 384 512 1024

YPSNR (dB) 21.86 25.07 25.75 27.44 28.23 30.83

UPSNR (dB) 27.70 29.07 30.47 31.99 32.94 35.43

VPSNR (dB) 32.64 33.28 34.39 35.35 35.97 37.92
Scalable MVC

avgPSNR (dB) 24.63 27.10 27.98 29.52 30.30 32.78

YPSNR (dB) - 22.99 25.99 27.46 28.24 30.84

UPSNR (dB) - 27.15 29.86 32.02 32.96 35.43

VPSNR (dB) - 32.46 33.83 35.37 35.98 37.93

Non-scalable

MVC

avgPSNR (dB) - 25.26 27.94 29.54 30.32 32.79

Table 5: Comparison between scalable and non-scalable MVC employed in the codec of [6]: “Football” sequence. The symbol

“–“ signifies that the corresponding rate could not be met.

Non-scalable MVCScalable MVC

Non-scalable MVCScalable MVC

(a)

(b)

Non-scalable MVCScalable MVC

Non-scalable MVCScalable MVC

(a)

(b)

Figure 8: Comparison between scalable and non-scalable MVC employed in the codec of [6]: Visual comparison for the

“Football”-sequence decoded at 192 kbps. (a) Frame 0. (b) Frame 8.

Target bit-rate (kbps)
Canoa

128 192 256 384 512 1024

YPSNR (dB) 20.26 22.02 23.52 25.02 26.05 28.55

UPSNR (dB) 30.93 32.46 33.13 34.25 34.86 36.42

VPSNR (dB) 28.62 30.69 31.59 32.89 33.64 35.85
Scalable MVC

avgPSNR (dB) 23.43 25.21 26.46 27.87 28.78 31.08

YPSNR (dB) - - 23.16 25.13 26.10 28.58

UPSNR (dB) - - 31.88 34.09 34.91 36.44

VPSNR (dB) - - 30.32 32.75 33.69 35.87

Non-scalable

MVC

avgPSNR (dB) - - 25.81 27.89 28.83 31.11

Table 6: Comparison between scalable and non-scalable MVC employed in the codec of [6]: “Canoa” sequence. The symbol

“–“ signifies that the corresponding rate could not be met.

23

Non-scalable MVCScalable MVC

Non-scalable MVCScalable MVC

(a)

(b)

Non-scalable MVCScalable MVC

Non-scalable MVCScalable MVC

(a)

(b)

Figure 9: Comparison between scalable and non-scalable MVC employed in the codec of [6]: Visual comparison for the

“Canoa”-sequence decoded at 256 kbps. (a) Frame 0. (b) Frame 2.

Target bit-rate (kbps)
Bus

128 192 256 384 512 1024

YPSNR (dB) 19.76 23.25 24.89 27.15 28.23 31.20

UPSNR (dB) 33.03 34.05 35.16 36.91 37.77 39.58

VPSNR (dB) 34.23 35.64 36.32 37.97 39.16 41.23
Scalable MVC

avgPSNR (dB) 24.38 27.11 28.51 30.58 31.64 34.27

YPSNR (dB) - 23.53 25.14 27.24 28.34 31.26

UPSNR (dB) - 34.05 35.42 37.02 37.84 39.60

VPSNR (dB) - 35.61 36.44 38.16 39.25 41.24

Non-scalable

MVC

avgPSNR (dB) - 27.30 28.74 30.69 31.74 34.31

Table 7: Comparison between scalable and non-scalable MVC employed in the codec of [6]: “Bus” sequence. The symbol “–“

signifies that the corresponding rate could not be met.

Target bit-rate (kbps)
Container

128 192 256 384 512 1024

YPSNR (dB) 31.05 33.04 33.96 35.59 36.59 39.25

UPSNR (dB) 38.58 40.65 41.65 43.12 44.08 46.76

VPSNR (dB) 38.17 40.47 41.49 43.16 44.15 46.79
Scalable MVC

avgPSNR (dB) 33.49 35.55 36.49 38.11 39.10 41.76

YPSNR (dB) 31.06 33.05 33.96 35.59 36.60 39.25

UPSNR (dB) 38.59 40.66 41.65 43.12 44.08 46.76

VPSNR (dB) 38.18 40.48 41.49 43.16 44.15 46.80

Non-scalable

MVC

avgPSNR (dB) 33.50 35.55 36.50 38.11 39.10 41.76

Table 8: Comparison between scalable and non-scalable MVC employed in the codec of [6]: “Container” sequence. The

symbol “–“ signifies that the corresponding rate could not be met.

In a second experiment, the state-of-the-art scalable video codec developed by Microsoft Research Asia

(MSRA) [9, 10] is equipped with a prediction-based scalable MVC. In this MVC, the base-layer motion

24

information is encoded using the prediction-based motion vector codec originally employed by the MSRA

SVC codec. The enhancement layer is coded as described in subsection II.3.5. We again compare the

performance of the video codec when using the scalable MVC and when using the original MVC of [9, 10]

configured to generate a single-layer (i.e. non-scalable) motion representation. For the scalable MVC, the

base-layer size is kept below 72 kbps. The distribution of the rate between texture data and motion

information is performed using the heuristic technique described in subsection III.2. Four levels of temporal

and spatial decomposition are used during encoding. Table 9-Table 10 summarize the results for the “Canoa”

and “Bus” sequences described in Table 1. Visual results are shown in Figure 10.

Target bit-rate (kbps)
Canoa

96 128 192 256 384 512

YPSNR (dB) 21.30 22.78 24.25 25.16 26.62 27.67

UPSNR (dB) 28.69 32.45 34.02 34.62 35.09 35.85

VPSNR (dB) 28.98 30.93 32.49 33.53 34.30 35.16
Scalable MVC

avgPSNR (dB) 23.81 25.75 27.25 28.13 29.31 30.28

YPSNR (dB) - 14.67 24.20 25.39 26.86 27.84

UPSNR (dB) - 24.86 33.77 34.49 35.17 36.01

VPSNR (dB) - 25.66 31.94 33.50 34.49 35.26

Non-scalable

MVC

avgPSNR (dB) - 18.20 27.08 28.26 29.52 30.44

Table 9: Comparison between scalable and non-scalable MVC (MSRA SVC codec): “Canoa” sequence. The symbol “–“

signifies that the corresponding rate could not be met.

Target bit-rate (kbps)
Bus

96 128 192 256 384 512

YPSNR (dB) 21.27 23.54 25.93 27.33 29.12 30.43

UPSNR (dB) 32.04 35.21 36.05 37.04 38.20 38.90

VPSNR (dB) 34.86 35.33 37.24 37.95 39.66 40.31
Scalable MVC

avgPSNR (dB) 25.33 27.45 29.50 30.72 32.39 33.49

YPSNR (dB) 20.99 23.91 26.21 27.50 29.24 30.51

UPSNR (dB) 31.64 34.81 36.30 37.06 38.30 39.02

VPSNR (dB) 33.90 35.33 37.38 38.03 39.66 40.50

Non-scalable

MVC

avgPSNR (dB) 24.91 27.63 29.75 30.85 32.48 33.60

Table 10: Comparison between scalable and non-scalable MVC (MSRA SVC codec): “Bus” sequence. The symbol “–“

signifies that the corresponding rate could not be met.

25

Scalable MVC Non-scalable MVC

Figure 10: Comparison between scalable and non-scalable MVC (MSRA SVC codec) for the “Canoa” sequence decoded at

192 kbps, frame 0.

The benefits of integrating the designed quality-scalable MVC into an SDMCTF-based video codec are

clearly demonstrated by these results; lower bit-rates can be attained without sacrificing motion estimation

efficiency and the overall coding performance at low rates is improved by a better distribution of the

available rate between texture and motion information. The only drawback of using scalable motion vector

coding is the minor performance penalty at higher bit-rates (in the order of 0.05 dB for the video codec of [6]

and 0.1-0.2 dB for the MSRA SVC codec of [9, 10]).

IV.3 Base-layer rate control and global rate allocation

The proposed mechanism to control the base-layer rate (see section III.1) finds the minimum quantization

step size needed to meet the target base-layer bit-rate. The underlying assumption is that the performance of

the prediction-based scalable MVC diminishes if the quantization step-size is increased. In the first

experiment of this section, this assumption is verified. Motion information generated by a multi-hypothesis

block-based motion estimation algorithm, using two reference frames, no intra mode, no macro-block

splitting and quarter-pel accuracy, integrated into a 4-level 5/3 MCTF-decomposition without update step

(UMCTF) is compressed with the prediction-based scalable MVC using different quantization step-sizes.

The sequences described in Table 1 are used in the experiment. The results are shown in Table 11. We report

the average number of bytes needed per H-frame to losslessly code the motion information. Q denotes the

employed quantization step-size.

Sequence
Q=1

(no quantization)
Q=2 Q=4 Q=8 Q=16

Football 652 662 673 682 689
Canoa 642 650 656 664 677
Bus 536 546 549 567 594

Container 161 162 158 154 150
Table 11: Impact of the quantization step-size on the lossless compression performance of the prediction-based scalable MVC

(The average number of bytes per frame needed to losslessly code the motion information is reported).

26

For three of the four test sequences, the compression performance of the prediction-based scalable MVC

indeed diminishes as the quantization step-size is increased. Only for the “Container” sequence, a slight

increase in compression performance is observed when is increased. However, since the obtained motion

information bit-rate for the “Container” sequence is very small, the performance deficit caused by

inappropriately selecting a low quantization step size is practically negligible. We can therefore conclude

that the underlying assumption made in the proposed base-layer rate-control algorithm is appropriate.

Q

In the next experiment, the proposed R-D-optimized rate allocation strategy is compared against our own

heuristic rate-allocation technique, which was employed in [14, 18, 19]. The SDMCTF-based video codec of

[6], using multi-hypothesis motion estimation with two reference-frames, two block-sizes and quarter-pel

accuracy is equipped with the proposed scalable MVC and with both rate-allocation schemes. The codec

uses an approximately unitary temporal transform (see subsection III.2). Four levels of temporal and spatial

decomposition are performed. In both cases, the base layer bit-rate is kept below 96 kbps. The sequences

presented in Table 1 are used in these experiments. The PSNR figures obtained with the two rate-allocation

techniques are given in Table 12-Table 15.

Target bit-rate (kbps)
Football

128 192 256 384 512 1024

YPSNR (dB) 22.80 24.95 25.74 27.11 27.89 30.47

UPSNR (dB) 29.50 31.39 32.61 34.31 34.96 37.62

VPSNR (dB) 33.34 34.96 35.85 36.98 37.55 39.49

R-D

optimized

avgPSNR (dB) 25.67 27.69 28.57 29.95 30.68 33.17

YPSNR (dB) 21.86 25.07 25.75 27.44 28.23 30.83

UPSNR (dB) 27.70 29.07 30.47 31.99 32.94 35.43

VPSNR (dB) 32.64 33.28 34.39 35.35 35.97 37.92
Heuristic

avgPSNR (dB) 24.63 27.10 27.98 29.52 30.30 32.78

Table 12: Comparison between the proposed rate allocation schemes: results for the “Football” sequence.

Target bit-rate (kbps)
Canoa

128 192 256 384 512 1024

YPSNR (dB) 20.98 22.87 23.75 24.93 25.76 28.29

UPSNR (dB) 32.81 34.10 34.50 35.73 36.25 37.96

VPSNR (dB) 31.08 32.60 33.19 34.93 35.60 37.83

R-D

optimized

avgPSNR (dB) 24.64 26.37 27.11 28.40 29.15 31.49

YPSNR (dB) 20.26 22.02 23.52 25.02 26.05 28.55

UPSNR (dB) 30.93 32.46 33.13 34.25 34.86 36.42

VPSNR (dB) 28.62 30.69 31.59 32.89 33.64 35.85
Heuristic

avgPSNR (dB) 23.43 25.21 26.46 27.87 28.78 31.08

Table 13: Comparison between the proposed rate allocation schemes: results for the “Canoa” sequence.

27

Target bit-rate (kbps)
Bus

128 192 256 384 512 1024

YPSNR (dB) 20.84 23.58 24.97 27.18 28.30 31.11

UPSNR (dB) 34.42 36.40 37.64 38.61 39.55 41.11

VPSNR (dB) 35.72 37.28 39.13 40.10 41.04 42.77

R-D

optimized

avgPSNR (dB) 25.58 28.00 29.44 31.24 32.30 34.72

YPSNR (dB) 19.76 23.25 24.89 27.15 28.23 31.20

UPSNR (dB) 33.03 34.05 35.16 36.91 37.77 39.58

VPSNR (dB) 34.23 35.64 36.32 37.97 39.16 41.23
Heuristic

avgPSNR (dB) 24.38 27.11 28.51 30.58 31.64 34.27

Table 14: Comparison between the proposed rate allocation schemes: results for the “Bus” sequence.

Target bit-rate (kbps)
Container

128 192 256 384 512 1024

YPSNR (dB) 31.06 32.79 33.87 35.31 36.40 38.96

UPSNR (dB) 41.24 43.07 43.86 45.93 46.89 48.35

VPSNR (dB) 41.08 43.06 43.93 45.85 46.87 48.78

R-D

optimized

avgPSNR (dB) 34.42 36.22 37.21 38.84 39.89 42.16

YPSNR (dB) 31.05 33.04 33.96 35.59 36.59 39.25

UPSNR (dB) 38.58 40.65 41.65 43.12 44.08 46.76

VPSNR (dB) 38.17 40.47 41.49 43.16 44.15 46.79
Heuristic

avgPSNR (dB) 33.49 35.55 36.49 38.11 39.10 41.76

Table 15: Comparison between the proposed rate allocation schemes: results for the “Container” sequence.

The results of Table 12-Table 15 clearly show that in the average-PSNR sense the rate-distortion optimized

approach systematically outperforms the heuristic rate-allocation strategy. A part of the gain in performance

can be attributed to an improved allocation of the texture bit-rate. This can be noticed for instance from the

results reported in Table 15 for the “Container” sequence. For this sequence, the motion vectors are always

coded in a lossless fashion by both rate-allocation schemes because the motion vector bit-rate is negligible

(around 9 kbps). By consequence, any difference in performance (up to 0.8 dB) is solely caused by a better

allocation of the texture bit-rate. The other part of the performance gain occurs especially at low bit-rates and

is caused by an optimized distribution of the rate between motion and texture information.

To provide a better insight into the R-D-optimized rate-allocation algorithm, the rate distribution obtained in

the previous experiment for each target bit-rate was recorded. The results for the “Football” and “Canoa”

sequences, encoded at 128, 384 and 1024 kbps are shown in Figure 12-Figure 17. The rates allocated to the

texture and motion information are reported for each frame of the sequence. Additionally, the rate needed to

losslessly code the motion information is shown as a reference. For each GOP, the frames are ordered

according to their temporal level, from the A-frame of the highest temporal level to the last H-frame of

temporal level 1. The ordering is illustrated in Figure 11 for the first GOP of the “Football” sequence,

28

encoded at 128 kbps. In this figure, denotes the A-frame of the highest temporal level, while A H Lx y−

denotes the -th H-frame of temporal level y x .

0

200

400

600

800

1000

1200

1400

1600

1800

A H
 L

4
-1

H
 L

3
-1

H
 L

3
-2

H
 L

2
-1

H
 L

2
-2

H
 L

2
-3

H
 L

2
-4

H
 L

1
-1

H
 L

1
-2

H
 L

1
-3

H
 L

1
-4

H
 L

1
-5

H
 L

1
-6

H
 L

1
-7

H
 L

1
-8

A
ll

o
c
a
te

d
 r

a
te

 (
b

y
te

s
/f

ra
m

e
)

Texture Motion (lossless) Motion
Figure 11: Rate distribution obtained for the first GOP of the "Football" sequence, encoded at 128 kbps. Notice that the

frames are ordered according to descending temporal level, starting with the A-frame of the highest temporal level.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257

Frame number

A
ll

o
c

a
te

d
 R

a
te

 (
b

y
te

s
/f

ra
m

e
)

Texture Motion Motion (lossless)

Figure 12: Rate distribution obtained for the "Football" sequence at a target bit-rate of 128 kbps.

0

2000

4000

6000

8000

10000

12000

14000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257

Frame Number

A
ll

o
c

a
te

d
 r

a
te

 (
b

y
te

s
/f

ra
m

e
)

Texture Motion Motion Lossless

Figure 13: Rate distribution obtained for the "Football" sequence at a target bit-rate of 384 kbps.

29

0

5000

10000

15000

20000

25000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257

Frame number

A
ll

o
c

a
te

d
 r

a
te

 (
b

y
te

s
/f

ra
m

e
)

Texture Motion Motion Lossless

Figure 14: Rate distribution obtained for the "Football" sequence at a target bit-rate of 1024 kbps.

0

500

1000

1500

2000

2500

3000

3500

1 17 33 49 65 81 97 113 129 145 161 177 193 209

Frame number

A
ll

o
c

a
te

d
 r

a
te

 (
b

y
te

s
/f

ra
m

e
)

Texture Motion Motion (lossless)

Figure 15: Rate distribution obtained for the "Canoa" sequence at a target bit-rate of 128 kbps.

0

2000

4000

6000

8000

10000

12000

1 17 33 49 65 81 97 113 129 145 161 177 193 209

Frame Number

A
ll

o
c

a
te

d
 r

a
te

 (
b

y
te

s
/f

ra
m

e
)

Texture Motion Motion (lossless)

Figure 16: Rate distribution obtained for the "Canoa" sequence at a target bit-rate of 384 kbps.

30

0

5000

10000

15000

20000

25000

1 17 33 49 65 81 97 113 129 145 161 177 193 209

Frame Number

A
ll

o
c

a
te

d
 r

a
te

 (
b

y
te

s
/f

ra
m

e
)

Texture Motion Motion (lossless)

Figure 17: Rate distribution obtained for the "Canoa" sequence at a target bit-rate of 1024 kbps.

Based on these graphs, several observations can be made. Within a GOP, the rate spent to code a frame is

directly proportional to the associated temporal level, with the largest part of the rate being spent on the A-

and H-frames of the highest temporal level. This behavior is desirable since the impact on the overall

distortion of quantization errors introduced at a certain temporal level decreases with . Additionally, the

motion information bit-rate at 128 kbps is significantly lower than the lossless motion information bit-rate.

This is consistent with the results obtained in section IV.2, showing that, for low target-bit-rates, a lower

distortion can obtained by sacrificing motion information bit-rate in favor of texture bit-rate. As the target

bit-rate is increased, the motion vector rate gradually increases and at high bit-rates, the motion information

is practically coded losslessly. This is again in correspondence with the results in section IV.2, showing that,

at higher target bit-rates, employing a non-scalable MVC (and thus lossless coding of the motion

information) gives the best rate-distortion performance.

t t

V. CONCLUSIONS

The scalable motion-vector coding technique we introduced in [14] combines the compression efficiency of

classical prediction-based motion-vector codecs with support for scalability. The technique is designed to

code motion information generated by multi-hypothesis block-based motion estimation with variable block-

sizes and multiple reference-frames, and can be employed in any scalable video codec employing this motion

model. The algorithm encodes the motion information by first quantizing the motion vectors. The quantized

motion vectors and the side information (hypothesis information. splitting information and reference frame

indices) are coded using non-scalable prediction-based motion vector coding. The resulting compressed data

forms the base-layer of the final bit-stream. This base-layer must always be coded losslessly. The

quantization errors are coded using an embedded bit-plane coding technique, producing the quality-scalable

31

enhancement layer. The coding architecture is completely different from that of current state-of-the-art

scalable motion vector codecs [13], performing an integer wavelet-transform of the motion vector

components, followed by scalable coding of the produced wavelet coefficients. Extensive experimental

results show that the proposed scalable MVC systematically outperforms wavelet-based scalable MVCs.

To be able to effectively use the prediction-based scalable MVC, a novel rate allocation scheme is presented

in this paper. The technique is based on Lagrangian rate-distortion optimization. The proposed rate allocation

scheme is compared to the heuristic rate allocation scheme employed in [14, 18, 19]. Experiments show that

the proposed rate allocation strategy yields the best output quality for any given target bit-rate.

The prediction-based scalable MVC was incorporated into the SDMCTF-based video codec of [6] and into

the Microsoft SVC codec of [9, 10]. Experiments comparing the performance of these codecs using both

scalable and non-scalable motion vector coding confirm that, by using a scalable MVC, lower bit-rates can

be attained without sacrificing motion estimation efficiency and that the overall coding performance at low

rates is significantly improved by a better distribution of the available rate between texture and motion

information. The only drawback of scalable motion vector coding is a slight performance loss observed at

higher bit-rates.

VI. ACKNOWLEDGEMENTS

This work was supported by the Flemish Institute for the Promotion of Innovation by Science and

Technology (PhD bursary J. Barbarien), DWTC (IAP Phase V - Mobile Multimedia) and the Fund for

Scientific Research – Flanders (FWO) (project G.0053.03.N and post-doctoral fellowships A. Munteanu and

P. Schelkens).

VII. REFERENCES

[1] M. van der Schaar and H. Radha, "Adaptive motion-compensation fine-granular-scalability (AMC-
FGS) for wireless video," IEEE Transactions on Circuits and Systems for Video Technology, vol. 12,
no. 6, pp. 360-371, 2002.

[2] Y. He, R. Yan, F. Wu, and S. Li, "H.26L-based fine granularity scalable video coding," ISO/IEC
JTC1/SC29/WG11, Pattaya, Thailand, M7788, 2001.

[3] J.-R. Ohm, "Three-dimensional subband coding with motion compensation," IEEE Transactions on
Image Processing, vol. 3, no. 5, pp. 559-571, 1994.

[4] D. Taubman and A. Zakhor, "Multirate 3-D Subband Coding of Video," IEEE Transactions on
Image Processing, vol. 3, no. 5, pp. 572-588, 1994.

[5] S.-J. Choi and J. W. Woods, "Motion-compensated 3-D subband coding of video," IEEE
Transactions on Image Processing, vol. 8, no. 2, pp. 155-167, 1999.

[6] I. Andreopoulos, J. Barbarien, F. Verdicchio, A. Munteanu, M. van der Schaar, J. Cornelis, and P.
Schelkens, "Response to call for evidence on scalable video coding," ISO/IEC JTC1/SC29/WG11
(MPEG), Trondheim, Norway, M9911, 2003.

[7] P. Chen and J. W. Woods, "Bidirectional MC-EZBC with lifting implementations," IEEE
Transactions on Circuits and Systems for Video Technology, vol. 14, no. 10, pp. 1183-1194, 2004.

32

[8] G. Pau, C. Tillier, B. Pesquet-Popescu, and H. Heijmans, "Motion compensation and scalability in
lifting-based video coding," Signal Processing: Image Communication, Special issue on
subband/wavelet interframe video coding, vol. 19, no. 7, pp. 577-600, 2004.

[9] J. Xu, R. Xiong, B. Feng, G. Sullivan, M.-C. Lee, F. Wu, and S. Li, "3D Sub-band Video Coding
using Barbell lifting," ISO/IEC JTC1/SC29/WG11 MPEG, Munich, M10569/S05, 2004.

[10] L. Luo, F. Wu, S. Li, Z. Xiong, and Z. Zhuang, "Advanced motion threading for 3D wavelet video
coding," Signal Processing: Image Communication, Special issue on subband/wavelet interframe
video coding, vol. 19, no. 7, pp. 601-616, 2004.

[11] T. Wiegand and G. Sullivan, "Draft ITU-T recommendation and final draft international standard of
joint video specification," ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6.

[12] J. Barbarien, I. Andreopoulos, A. Munteanu, P. Schelkens, and J. Cornelis, "Coding of motion
vectors produced by wavelet-domain motion estimation," ISO/IEC JTC1/SC29/WG11 (MPEG),
Awaji island, Japan, M9249, 2002.

[13] D. Taubman and A. Secker, "Highly scalable video compression with scalable motion coding,"
Proceedings of Int. Conf. Image Processing (ICIP 2003), vol. 3, pp. 273-276, Barcelona, Spain,
2003.

[14] J. Barbarien, A. Munteanu, F. Verdicchio, I. Andreopoulos, J. Cornelis, and P. Schelkens, "Scalable
motion vector coding," IEE Electronics Letters, vol. 40, no. 15, pp. 932-934, 2004.

[15] S. S. Tsai, H.-M. Hang, and T. Chiang, "Motion information scalability for MC-EZBC: Response to
call for evidence on scalable video coding," ISO/IEC JTC1/SC 29/WG 11 (MPEG), Trondheim,
Norway, M9756, 2003.

[16] Y. Wu, A. Golwelkar, and J. W. Woods, "MC-EZBC video proposal from Rensselaer Polytechnic
Institute," ISO/IEC JTC1/SC29/WG11 (MPEG), Munich, Germany, M10569/S15, 2004.

[17] M. Flierl and T. Wiegand, "Rate-constrained multihypothesis prediction for motion-compensated
video compression," IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no.
11, pp. 957-969, 2002.

[18] J. Barbarien, A. Munteanu, F. Verdicchio, I. Andreopoulos, J. Cornelis, and P. Schelkens, "Scalable
motion vector coding," Proceedings of IEEE International Conference on Image Processing, pp.
1321-1324, Singapore, 2004.

[19] J. Barbarien, A. Munteanu, F. Verdicchio, I. Andreopoulos, P. Schelkens, and J. Cornelis, "Scalable
motion vector coding," Proceedings of SPIE International Symposium on Optical Science and
Technology (SPIE's 49th Annual Meeting), vol. 5558, pp. 395-409, Denver, Colorado, U.S.A., 2004.

[20] I. Andreopoulos, A. Munteanu, J. Barbarien, M. van der Schaar, J. Cornelis, and P. Schelkens, "In-
band motion compensated temporal filtering," Signal Processing: Image Communication, vol. 19,
no. 7, pp. 653-673, 2004.

[21] A. Munteanu,"Wavelet image coding and multiscale edge detection," PhD thesis, Department of
Electronics and Information Processing (ETRO), Vrije Universiteit Brussel, 2003

[22] D. Taubman and M. W. Marcellin, "JPEG2000 - Image Compression: Fundamentals, Standards and
Practice." Hingham, MA, Kluwer Academic Publishers, 2001.

[23] P. Schelkens, A. Munteanu, J. Barbarien, M. Galca, X. Giro i Nieto, and J. Cornelis, "Wavelet
Coding of Volumetric Medical Datasets," IEEE Transactions on Medical Imaging, vol. 22, no. 3, pp.
441-458, 2003.

[24] A. Said and W. Pearlman, "An image multiresolution representation for lossless and lossy
compression," IEEE Transactions on Image Processing, vol. 5, pp. 1303-1310, 1996.

[25] G. Wolberg, "Digital Image Warping," IEEE Computer Society Press, 1992.
[26] A. Golwelkar, I. Bajic, and J. W. Woods, "Response to Call for Evidence on Scalable Video

Coding," ISO/IEC JTC1/SC29/WG11 (MPEG), Trondheim, Norway, M9723, 2003.

33

	INTRODUCTION
	QUALITY AND RESOLUTION SCALABLE PREDICTION-BASED MOTION VECT
	Structure of the motion information
	General setup of the prediction-based scalable motion-vector
	Detailed description of the prediction-based scalable MVC
	Splitting information
	Hypothesis information
	Reference frame indices
	Quantized motion vectors
	Embedded coding of the motion-vector quantization errors

	BASE-LAYER RATE-CONTROL AND GLOBAL RATE-ALLOCATION
	Base-layer rate-control
	Heuristic technique for global rate-allocation
	Rate allocation using Lagrangian rate-distortion optimizatio

	EXPERIMENTAL RESULTS
	Comparison of prediction-based versus wavelet-based scalable
	Benefits of scalable motion vector coding
	Base-layer rate control and global rate allocation

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

