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Abstract

Background: The calculation of arterial oxygen saturation (SpO2) relies heavily on
the amplitude information of the high-quality photoplethysmographic (PPG) signals,
which could be contaminated by motion artifacts (MA) during monitoring.

Methods: A new method combining temporally constrained independent
component analysis (cICA) and adaptive filters is presented here to extract the clean
PPG signals from the MA corrupted PPG signals with the amplitude information
reserved. The underlying PPG signal could be extracted from the MA contaminated
PPG signals automatically by using cICA algorithm. Then the amplitude information
of the PPG signals could be recovered by using adaptive filters.

Results: Compared with conventional ICA algorithms, the proposed approach is
permutation and scale ambiguity-free. Numerical examples with both synthetic
datasets and real-world MA corrupted PPG signals demonstrate that the proposed
method could remove the MA from MA contaminated PPG signals more effectively
than the two existing FFT-LMS and moving average filter (MAF) methods.

Conclusions: This paper presents a new method which combines the cICA
algorithm and adaptive filter to extract the underlying PPG signals from the MA
contaminated PPG signals with the amplitude information reserved. The new
method could be used in the situations where one wants to extract the interested
source automatically from the mixed observed signals with the amplitude
information reserved. The results of study demonstrated the efficacy of this proposed
method.

Keywords: Photoplethysmographic signal, Motion artifact, Independent component
analysis, Adaptive filter
Background
Pulse oximeter has been widely utilized to measure the level of arterial oxygen saturation

(SpO2) and pulse rate (PR) of humans noninvasively. It is based on the principles: 1) the

different light absorption properties between oxyhemoglobin (HbO2) and deoxyhemoglobin

(Hb); 2) only the arterial blood (provided that the mildly pulsatile venous blood can be

neglected) pulsate in the tissue contributing to the pulsation of emergent light intensity

(termed AC part), while others correspond to the emergent light intensity baseline (termed
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DC part). Generally, a pulse oximeter employs double wavelengths of light (red and infrared

(IR)) for the emission sources and a photodiode as detector to receive the information-

bearing light from the same or the opposite side with respect to the emitter. The measure-

ment positions of pulse oximeter are usually fingertips, earlobes, toes, foreheads, etc., since

the capillary network of these parts are abundant. A pulse oximeter is precise provided with

clean PPG signals, which are related to the blood volume changes in the microvascular bed

of tissue [1]. However, it is not a trivial task to acquire interference-free clean PPG signals

in real-world applications. Numerous factors, such as MA, ambient lights, low perfusion

and temperature variations could lead to pulse oximeters’ performance degradation. In par-

ticular, the removal of MA, which is caused by voluntary or involuntary movements of the

individual during the measurement, is always challenging ever since the appearance of pulse

oximeters. Conventional filters are incapable to get rid of MA effectively due to the fre-

quency overlaps between the MA and clean PPG signal [2]. Researchers have developed nu-

merous approaches to tackle this issue. The MAF method is good at suppressing the

sporadically occurring noise in the corrupted PPG signals, while it is at its wit’s end before

strong or sudden occurring artifacts [3]. Adaptive filters, which could adjust their weight

vector based on adaptive algorithms, are powerful tools to deal with the in-band noise, pro-

vided that the reference signal (which is either correlated with the MA part but uncorrelated

with PPG signal or correlated with the clean PPG signal but uncorrelated with the MA) is

available. One way to obtain the reference signal is with the help of extra hardware such as

accelerometers [4-7] or photoelectric devices [8]. Another way is to synthesize the reference

signal from the two channel contaminated PPG signals [2,9-11]. In consideration of the

nonstationarity of PPG signal, wavelet transform is performed to remove MA [12-14]. The

empirical mode decomposition (EMD), which is another powerful decomposition to handle

non-stationary signal, has been studied in [15,16]. Although these two methods could re-

duce the MA to some extent, both of them are troubled with the problem: how to select an

appropriate threshold to decide which components should be removed. High order statistics

are used in [17] to extract clean artifact-free PPG signals preserving all the essential mor-

phological features required. Applying cycle-by-cycle Fourier series analysis (CFSA) to deal

with MA also demonstrates a satisfying performance [18]. However, the period of every

PPG signal cycle must be acquired precisely when applying CFSA method. Based on the in-

dependence between the PPG signal and the MA, ICA combining a signal enhancement

preprocessor is used to separate the PPG signal from the contaminated original PPG signal

[19], from which the efficacy of the ICA algorithm in dealing with the MA corrupted PPG

signals could be confirmed. Despite the excellent performance of the ICA method, one

must keep in mind that the ICA has permutation and scale ambiguities [20]. Meanwhile,

the SpO2 computation needs the accurate amplitude information of both the red and IR

light channel PPG signals, the ICA output cannot be used to calculate the SpO2 value

directly.

In this paper, we introduce a new method combining cICA [21] and adaptive filters

to deal with the aforementioned problems related to ICA. By using cICA, we could ob-

tain the interested component automatically. By using the adaptive filter, we could ef-

fectively remove the MA with the PPG signal amplitude information recovered. In this

paper’s method, we firstly extract the artifact-free PPG-correlated component from the

contaminated measured PPG signal by cICA, then pass the output of the cICA through

the adaptive filters to obtain the two channel artifact-free PPG signals with the
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amplitude information reserved. In order to evaluate the efficiency of our method,

FFT-based MA removal algorithm proposed in [2] and MAF method were used as

comparisons. Experiments with synthetic and real-world data were performed to dem-

onstrate the efficacy of the proposed method.

Methods
Mathematical preliminaries

Constrained independent component analysis

ICA can be used to separate the observed mixed signals (X) into several independent

sources (S) based on certain criteria, such as maximization of non-Gaussianity,

minimization of mutual information and maximum likelihood estimation. The relation-

ship between the observed signals (X) and independent sources (S) can be expressed as

a linear mixture:

X¼AS ð1Þ

where A is the unknown mixing matrix. The independent sources S can be obtained

when finding an unmixing matrix W (=A− 1), as:

S¼WX ð2Þ

Several different implementations of ICA can be found in [22-25].
Because both A and S in equation (1) are unknown, ICA has the permutation ambi-

guity that has been mentioned in the introduction section. Where one desires a specific

IC, the cICA presented in [21] can effectively extract the desired component incorpor-

ating with a reference signal. The cICA algorithm can be modeled as:

Maximize : J yð Þ≈ρ E G wTxð Þ� �
− E G vð Þf g� �2

Subject to : g wð Þ ¼ ε y; rð Þ − ξ≤0; h wð Þ ¼ E y2f g − 1 ¼ 0
ð3Þ

where J(y) is the approximate negentropy, ρ is a positive constant, G(⋅) can be any non-

quadratic function, v is a zero mean, unit variance Gaussian variable, g(w) is the close-

ness constraint, ε(y, r) is the closeness measure, ξ is the closeness threshold and the

equality h(w) is to ensure that the contrast function J(y) and the weight vector w are

bounded. Reference [21] presents a solution for the problem of (3), where they consid-

ered it as a constraint optimization problem. By using the Newton-like learning method

the optimum weight vector w for the desired signal could be found.

Adaptive filter algorithm

For simplicity, the adaptive algorithm we used in this paper is the Least Mean Square

(LMS) algorithm:

y nð Þ ¼ wT nð Þu nð Þ
e nð Þ ¼ d nð Þ − y nð Þ
w nþ 1ð Þ ¼ w nð Þ þ μe nð Þu nð Þ

ð4Þ

where u(n) is the filter input, which could be either the MA part or the PPG signal

part, d(n) is the desired signal, which is the weighted summation of the MA part and

PPG signal, w(n) is the weight of the filter, e(n) is the error induced by the adaptive fil-

ter and μ is the step size used in weight vector update.
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Fast Fourier transform (FFT) combining LMS (FFT-LMS) method

In this section we briefly introduce the FFT-LMS method described in [2] as a com-

parison to our method. The steps of the FFT-LMS method are as follows:

a) After applying FFT on the MA contaminated PPG signal, the frequency spectra of

three different parts in the corrupted PPG signal are obtained: pulsatile PPG

portion (0.5-4 Hz), respiratory activity (0.2-0.35 Hz) and MA component (0.1 Hz

or more).

b) The coefficients of the frequency component corresponding to the pulsatile PPG

portion and respiration component are set to zero to generate the MA reference.

Thus, a modified frequency spectrum corresponding to MA noise is obtained.

c) By applying the inverse FFT on the modified spectrum, a synthetic noise reference

signal in time-domain is generated.

d) The synthetic MA noise is then fed into the LMS adaptive filter as the reference

signal, with the MA corrupted PPG signal acting as the desired signal.
Motion artifact removal by combining cICA and adaptive filter

The red and IR channel signals (X) can be modeled as the linear mixture of MA and

PPG signal sources (S). The MA signal is postulated as the complex combination of

multiple sources, which means that the measured signals may contain more than two

independent sources [19]. Unlike the conventional ICA algorithm, the cICA algorithm,

which needs no assumption regarding the number of actual underlying sources could

automatically extract a specific source. Due to the fact that the PPG signal possesses

periodic behaviour, the PPG-correlated component could be extracted by using the

cICA algorithm, with the help of the periodic information of PPG signal. However, this

obtained PPG-correlated component misses the amplitude information.

The adaptive filter can remove the in-band MA noise effectively provided that the

reference input which should be correlated with either MA component or PPG compo-

nent has been obtained. In our study, we combine the cICA algorithm and adaptive fil-

ter to remove the MA from PPG signals. On one hand, the adaptive filter can recover

the amplitude information of the PPG-correlated component obtained by the cICA al-

gorithm. On the other hand, the PPG-correlated component can serve as the reference

input for the adaptive filter.

The main idea of the method is described briefly in Figure 1. To test the effectiveness

of our approach in extracting the underlying PPG component from MA corrupted PPG

signals, we validate our approach in the following sections.

Preparation for the proposed method

Low-pass filtering and DC removal The signals captured by the signal-acquisition

instrument inevitably contain plenty high frequency noise which is the mixture of the

ambient light induced noise, thermal noise, electromagnetic noise especially the power

frequency interference (50/60 Hz) and other unclassified noise. Fortunately, these noise

usually possess the characteristic of either wide band frequency spectra or higher

frequency contrasted to the PPG signal, such that a conventional low-pass filter could

be utilized to remove the bulk of noise. Based on the fact that PPG signal frequency
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Figure 1 The primary flow chart of the proposed method.
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distributes within the range 0.5-4 Hz [2], we use a FIR hamming window low-pass filter

with 20 dB attenuation at 8 Hz to wipe out most of the high frequency noise.

To separate the DC part, a first-order IIR filter is used, the transfer function is:

H zð Þ ¼ Y zð Þ
X zð Þ ¼

1 − z−1

1 − 0:992z−1
ð5Þ

which could provide an attenuation about 20 dB for DC component and have negligible

effect on the AC part.

Generating the reference signal for cICA To generate the reference signal for cICA,

we must obtain some prior knowledge about the desired signal. Generally, the period

of the desired signal is the straightforward information to generate the reference sig-

nal. Since that PPG signal exhibits periodic behaviour and MA component is mainly

caused by voluntary or involuntary movements which result in irregular waveform,

we can use the periodic information of the PPG signal to generate the reference sig-

nal. Autocorrelation is implemented on the MA corrupted PPG signal to obtain the

period of the PPG signal after the low-pass filtering and DC removal process. A refer-

ence signal with periodic rectangular pulse waves is generated based on the periodic

information obtained from the original PPG signals.

Detailed implementation of the new method

The whole detailed block diagram of our approach is shown in Figure 2, which is the

refinement of Figure 1.

The detailed steps of the proposed method are described as follows:

a) The two channel original PPG signals are firstly processed by the filters described

above to remove the high frequency noise and the DC component.

b) Autocorrelation is implemented on the IR channel signal to get the period of the PPG

signal, and the reference signal for cICA is generated based on the period obtained.

c) The two channel preprocessed PPG signals and the reference signal generated in

step b are all fed into the cICA algorithm. Then the artifact-free PPG-correlated

component is generated.



Figure 2 Detailed block diagram of the proposed MA removal scheme.
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d) The artifact-free PPG-correlated component is fed into the adaptive filter as the

reference input to recover the amplitude information of the two channel PPG

signals. The two channel corrupted PPG signals act as the corresponding desired

signals respectively. Two channel MA-reduced PPG signals are obtained.

For simplicity, the LMS algorithm is used here. In the next context, we name our

method as cICA-LMS.

Experiments setup

Synthetic dataset simulation

In this section, a simulation experiment was performed on the synthetic dataset by

using the cICA-LMS, FFT-LMS and MAF methods. In the simulation, we mixed two

signals: the target PPG signal (s(t)), which was captured from the stationary finger,

and another, unwanted signal (MA(t)), which was randomly generated from the MA

corrupted PPG signals. The two signals were synthesized in the following way:

x tð Þ ¼ s tð Þ þ λMA tð Þ ð6Þ

where x(t) is the mixed signal, and parameter λ defines the proportion of MA(t) in x(t).

Changing parameter λ alters the ratio of MA noise part to PPG signal in the mixed sig-

nal. In order to investigate the efficiency of our method with respect to different MA

noise proportions occupied in the mixed signal, we used parameter SNR defined as:

SNR ¼ 20 log
RMS s tð Þð Þ

RMS λMA tð Þð Þ dB ð7Þ

The simulation performance is expressed in terms of relative root mean squared error
(RRMSE), which is defined as:
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RRMSE ¼ RMS s tð Þ−ŝ tð Þð Þ
RMS s tð Þð Þ 100 %½ � ð8Þ

where ŝ tð Þ is the estimation of the interested signal s(t).

Real-world MA corrupted PPG signals

To validate cICA-LMS method in removing MA from corrupted PPG signals, we con-

sidered five different motion situations. Seven healthy volunteers (four males with aver-

age age (29 ± 6) and three females with average age (25 ± 2)) were recruited to perform

the experiments with the informed consent obtained. The procedure was also approved

by the Ethics Committee of Chinese PLA General Hospital. Before the experiment, all

the participants were required to sit still within doors (18 Celsius degree) for five mi-

nutes. The PPG signals were captured from the index finger using AFE4400SPO2EVM

(from Texas Instruments Corporation) with 200 Hz sample frequency. Five different

motions (vertical movement of finger, horizontal movement of finger, bending finger,

pressurizing probe clip and waving hand) were performed during data acquisition. Each

recording consists of six different sections: 1-min motionless period, 1-min vertical

movement period, 1-min horizontal movement period, 1-min bending finger period, 1-

min pressurizing probe clip period and 1-min waving hand period.

Results
Synthetic dataset

Figure 3 shows the waveforms of the clean PPG signal, the real MA noise part, and

three mixed signals with SNRs of −5 dB, 0 dB and 5 dB. The corresponding frequency

spectra of different signals are also provided in the right sub-figure. It is very clear that

the frequency distribution of the MA and PPG signal are overlapped. Therefore, the

conventional filter with constant cut-off frequency cannot reduce the MA effectively.

Figure 4 presents the waveforms of the cICA-LMS method applying on the synthetic

signal with SNR equaled to 0 dB. Figure 4a-b are 20-s epoch of red channel and IR

channel PPG signals captured from the stationary fingertip. Figure 4c is the MA noise

component extracted from the MA corrupted PPG signal by the cICA-LMS method.

Figure 4d-e are the linear mixed signals of the two channel PPG signals and the MA

with SNR equaled to 0 dB. Figure 4f is the reference signal for the cICA algorithm gen-

erated from the mixed IR PPG signal. It can be seen that the reference signal have the
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same period with the PPG signal. Figure 4g is the output of the cICA, i.e. artifact-free

PPG-correlated component, which loses the energy information of the original PPG

signal. Figure 4h-j are the artifact-free red and IR PPG signals and the MA noise ex-

tracted from the corrupted PPG signals, respectively. Both the red and IR PPG signals

are effectively separated from the MA with the amplitude information reserved.

Figure 5 presents the mean result of 100 times Monte Carlo simulations on the syn-

thetic signals by using the cICA-LMS method. The results of the FFT-LMS and MAF

methods are also provided for comparison. In each of the sub-figure, the x-coordinate

is the SNR changing from −10 dB to 10 dB with a step size of 1 dB, and the y-

coordinate is the RRMSE. In addition, we roughly took the best performance among

1000 times Monte Carlo simulations as the performance bound for the proposed

method, which is also shown in the figure.
MA removal from the real-world corrupted PPG signals

Figure 6 shows the results of the cICA-LMS method in dealing with MA under five dif-

ferent motion situations: vertical movement of the finger (Figure 6a), horizontal move-

ment of the finger (Figure 6b), bending the finger (Figure 6c), pressurizing probe clip

(Figure 6d) and waving hand (Figure 6e). The performance of FFT-LMS and MAF

methods are also shown in the figure for comparison. In each of the sub-figure, the



(a) (b)

-10 -5 0 5 10
0

50

100

150

200

250

300

350

SNR [dB]

R
R

M
S

E
 %

cICA-LMS
FFT-LMS
MAF
No Disposal
cICA-LMS Performance Bound

-10 -5 0 5 10
0

50

100

150

SNR [dB]

R
R

M
S

E
 %

cICA-LMS
FFT-LMS
MAF
No Disposal
cICA-LMS Performance Bound

Figure 5 Statistic performance of cICA-LMS method in comparison with FFT-LMS and MAF methods.
It shows the RRMSE (%) changing with SNR (dB) of three different methods. The performance bound of
cICA-LMS is also shown using the solid line. (a): Red channel PPG; (b): IR channel PPG.

Peng et al. BioMedical Engineering OnLine 2014, 13:50 Page 9 of 14
http://www.biomedical-engineering-online.com/content/13/1/50
upper two subplots are the red and IR PPG signals corrupted by MA, the next two sub-

plots are MA reduced signals by the FFT-LMS method, then the next two subplots are

MA reduced signals by MAF method, and the last two subplots are MA reduced sig-

nals by the proposed cICA-LMS method.

As the calculation of SpO2 depends on the peak-to-peak values of PPG signals, it is

important that the MA reduction method proposed here preserves this characteristic in

the recovered PPG. We used the peak-to-peak values of PPG signals to evaluate the ef-

ficacy of our method [18]. Table 1 shows the results of the peak-to-peak values (in

terms of mean ± standard deviation) of corresponding MA reduced red channel PPG

signal by the three methods. The PPG signal without MA and the PPG signal corrupted

by MA are also showed for contrast. Similarly, Table 2 shows the results of correspond-

ing peak-to-peak values of IR channel PPG signal. The values in the tables are dimen-

sionless, this does not influence the calculation of SpO2.
Discussion
The results of both the synthetic datasets and real-world experiments demonstrated that

the proposed cICA-LMS algorithm could remove MA component from PPG signals effect-

ively. The results also indicate that the cICA-LMS method outperforms the FFT-LMS and

MAF methods. Unlike the FFT-LMS method, the cICA algorithm could effectively produce

the reference signal for adaptive filter without any assumption of the frequency distribution.

Our method could deal with the in-band MA noise effectively when MA noise and PPG

signal are independent. In the simulation section, the cICA-LMS algorithm performed very

well to extract the sources from the mixed signals. This excellent performance is due to fact

that the synthetic mixed signals are from a linear summation of two completely independ-

ent components. In the situations where the cICA-LMS is applied on the real-world MA

corrupted PPG signals, the cICA-LMS algorithm may not perform as well as that in the

simulation dataset. This might be because that the MA component is produced by a quite

complex mechanism, and is not completely independent from the PPG signals. Even

though, the cICA-LMS algorithm still presents much better performance than the FFT-

LMS and MAF methods. The compromised performance of the FFT-LMS and MAF

methods may be caused by the frequency overlap between MA component and PPG signal.
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Figure 6 Performance of the cICA-LMS in reducing the MA under five different motion situations.
(a): Vertical movement of finger; (b): Horizontal movement of finger (c): Bending finger; (d): Pressurizing
probe clip; (e): Waving hand. In each of the sub-figure, the upper two subplots are MA corrupted red and
IR channel PPG signals, the next two subplots are recovered PPG signals using FFT-LMS method, then the
next two subplots are recovered PPG signals using MAF method, and the last two subplots are recovered
PPG signals by the cICA-LMS method.
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Although the use of ICA to remove MA from the corrupted PPG signals has exhib-

ited good result [19], the extracted components by conventional ICA are actually not

ordered. Hence, in our study, the cICA algorithm is proposed to deal with this prob-

lem. For signal recordings which have large numbers of channels, the cICA algorithm

could avoid the subsequent laborious and highly subjective analysis on the large num-

ber of resulting extracted sources. To the best of our knowledge, the cICA has not been

used to extract the underlying PPG signal from the MA corrupted PPG signals previ-

ously. Another inherent disadvantage of conventional ICA is that the extracted compo-

nents do not include amplitude information of the original sources. Because the

ultimate goal of our work is to extract clean PPG signals for SpO2 calculation, ampli-

tude information of the extracted PPG signal is indispensable. In order to recover the

amplitude information of the extracted PPG signal, an adaptive filter is used in our



Table 1 Effectiveness of the proposed method in restoring the peak-to-peak values of red channel PPG

Vertical movement Horizontal movement Bending finger Pressurizing probe clip Waving hand

PPG without MA 7009.0 ± 408.3 4377.5 ± 435.8 792.7 ± 215.8 2843.4 ± 411.1 2708.0 ± 428.1

PPG with MA 6247.8 ± 840.8 4501.6 ± 886.0 1805.4 ± 1076.2 3890.1 ± 2020.7 3278.4 ± 821.1

Recovered PPG Using FFT-LMS 6412.6 ± 1058.3 4159.3 ± 1018.9 1836.7 ± 1029.0 3587.8 ± 1494.2 3224.3 ± 894.5

Recovered PPG Using MAF 5431.1 ± 939.5 4098.5 ± 856.4 1549.4 ± 846.2 3216.7 ± 1440.6 2855.4 ± 642.8

Recovered PPG Using cICA-LMS 6284.6 ± 606.3 4196.2 ± 688.9 971.2 ± 338.1 3181.4 ± 473.4 2735.3 ± 589.5

Data are expressed as mean ± SD. The values in the tables are dimensionless, this does not influence the calculation of SpO2.
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Table 2 Effectiveness of the proposed method in restoring the peak-to-peak values of IR channel PPG

Vertical movement Horizontal movement Bending finger Pressurizing probe clip Waving hand

PPG without MA 8294.3 ± 534.8 6502.2 ± 703.0 1754.1 ± 367.4 4218.9 ± 642.5 3886.2 ± 602.0

PPG with MA 8204.5 ± 931.4 6728.7 ± 1072.8 2879.1 ± 1028.0 5293.5 ± 1888.5 4549.3 ± 829.2

Recovered PPG Using FFT-LMS 8316.7 ± 1232.4 6235.9 ± 1376.3 2674.8 ± 721.2 4941.6 ± 1325.9 4464.9 ± 1057.8

Recovered PPG Using MAF 7238.4 ± 1057.3 5824.3 ± 1167.4 2485.8 ± 817.2 4556.4 ± 1353.5 3970.6 ± 816.2

Recovered PPG Using cICA-LMS 8091.4 ± 780.5 6299.5 ± 835.9 2129.2 ± 258.0 4806.2 ± 942.1 4125.6 ± 888.9

Data are expressed as mean ± SD. The values in the tables are dimensionless, this does not influence the calculation of SpO2.
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method with the output of the cICA as reference signal. The results demonstrated that

the algorithm combing cICA and adaptive filter performed very well both in the syn-

thetic dataset and real-world PPG signals experiments.

The excellent performance of our method in extracting the underlying PPG signal

from the MA corrupted signals lies in the assumption that the MA and PPG signals are

independent. In the situations where the MA and PPG signals are not independent, the

performance of our algorithm might be compromised. In addition, generating the cor-

rect reference signal for cICA plays an important role in extracting the source of inter-

est. In situations where the MA possesses the same period with the PPG signal, the

cICA algorithm may fail to produce correct output. However, this does not happen fre-

quently in real life.

The adaptive algorithm used in this study is the LMS algorithm. For LMS algorithm,

the step size is very critical in controlling the stability and convergence speed of the al-

gorithm. Improper step size may degrade the performance of our cICA-LMS algorithm.

In order to improve the characteristics of the LMS-based adaptive filter, some other al-

gorithms could be tried, such as RLS, NLMS and any other suitable algorithms.
Conclusions
This paper presents a new method which combines the cICA algorithm and adaptive

filter to remove MA component from the MA contaminated PPG signals with the amp-

litude information reserved. The contribution of this paper lies in the fact that the new

algorithm has solved permutation and scale ambiguity problems of conventional ICA.

Thus, this algorithm could be used in the situations where one wants to extract the in-

terested source automatically from the mixed observed signals with the amplitude in-

formation reserved. The results of this study demonstrated the effectiveness of this

proposed method.
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