
SUBMIT TO IEEE TIP 1

Motion-Aware Gradient Domain
Video Composition

Tao Chen, Jun-Yan Zhu, Ariel Shamir, and Shi-Min Hu∗

Abstract—For images, gradient domain composition methods like Poisson blending offer practical solutions for uncertain object

boundaries and differences in illumination conditions. However, adapting Poisson image blending to video faces new challenges

due to the added temporal dimension. In video, the human eye is sensitive to small changes in blending boundaries across

frames, and slight differences in motions of the source patch and target video. We present a novel video blending approach

that tackles these problems by merging the gradient of source and target videos and optimizing a consistent blending boundary

based on a user provided blending trimap for the source video. Our approach extends mean-value coordinates interpolation to

support hybrid blending with a dynamic boundary while maintaining interactive performance. We also provide a user interface

and source object positioning method that can efficiently deal with complex video sequences beyond the capabilities of alpha

blending.

Index Terms—gradient domain, video editing, mean-value coordinates, Poisson equation, seamless cloning.

✦

1 INTRODUCTION

Video composition is very useful in the film, television

and entertainment industries. Such composition takes a

frame sequence from a source video, usually extracting a

foreground object (here called a ‘patch’), and pastes it onto

a frame sequence in a target video. This process involves

two challenges: extracting the patch from the video, and

composing it with the target frames. In both cases a user

must typically be involved in the process, both to choose a

desirable source patch, and a composition location in space

and time. The main focus of video composition techniques

is to lower the amount of manual effort needed in this

process.

Many works related to image and video matting and

composition have been proposed in computer graphics and

image/video processing (see [1], [2], [3], [4]). Recent work

can even deal with transparent and refractive objects [5].

These techniques use alpha-blending composition and focus

mainly on how to cut out the alpha-matte of the video-

patch from the source video. Compositing using alpha-

blending provides good results for scenarios where the

source and target videos specifically have similar illumi-

nation conditions, the object is easily separable from its

background, and the videos do not differ too much in

terms of motion, including both global camera motion and

local object/texture motion. Uncertain object boundaries,

due to significant motion blur, smoke or dust, or varying

This work was supported by the National Basic Research Project of China

(Project Number 2011CB302205), the Natural Science Foundation of Chi-

na (Project Number 6113300861103079), National Significant Science and

Technology Program (Project Number 2012ZX01039001- 003), National

High Technology Research and Development Program of China (Project

Number 2013AA013903) and the Israel Science Foundation (grant no.

324/11).

T. Chen, J.-Y. Zhu and S.-M. Hu are with TNList, Department of Computer

Science, Tsinghua University, Beijing 100084, China.

A. Shamir is with The Interdisciplinary Center, Israel.

∗ The corresponding author.

illuminations conditions, make it difficult to achieve high

quality composition using alpha matting.

For images, gradient domain blending solves such problems

by transferring the gradient of the source image patch to

the target image while maintaining a seamless blending

boundary and correcting illumination differences. This can

be done by solving a Poisson equation, or by interpolation

using mean-value coordinates (MVC), the latter providing

interactive rates of composition [6].

The main challenges in gradient domain video blending,

as opposed to image blending, come from motion. Firstly,

even if blending results for each individual frame look

satisfactory, the blending boundaries in adjacent frames

may not be consistent, and ‘popping’ artifacts may appear.

Secondly, the motions of the source and target gradient

fields are typically different and can cause motion artifacts

even if the blending boundaries are consistent over time.

Thirdly, camera motion differences often exist between the

source and target videos, and there is a need to align them.

Our motion-aware gradient domain video blending tech-

nique addresses the above issues. The key idea is to use soft,

rather than hard, boundaries between the foreground and

background for composition inside the blending region. In

each frame, the real boundary of the source patch lies inside

the blending region, but its exact location can be adjusted

dynamically through time. This allows greater flexibility to

determine dynamic boundaries for complex moving objects,

and allows fast updates for user interaction, e.g. if the user

changes the position of the source object. Moreover, we

use a novel method for combining the gradient fields of

the source and target videos inside the blending region.

We reconstruct a mixing-gradient field based on consistency

and gradient saliency of the source and target videos. The

mixing gradient disperses motion differences across the

blending boundary between the source and target videos in-

SUBMIT TO IEEE TIP 2

(a) (b) (c) (d) (e) (f)

Fig. 1. Challenging problems for existing video composition schemes involving uncertain object boundaries due

to shadows, smoke and dust, motion blur etc., and complex motions of both camera and objects. Our robust

gradient domain video composition method can cope with such scenarios (top: source video, bottom: composed

video). Also see the supplementary materials.

Fig. 2. Pipeline for motion-aware video composition. Given input source and target video sequences, prepro-

cessing steps include calculating optical flow, video segmentation and stabilization. The user then inputs blending

trimaps on the source video, and positions the source object on the first frame. An output video is produced using

motion-aware gradient composition. The user can subsequently interactively refine object position in chosen

frames.

to the whole blending region, producing smoother and more

coherent blending results with reduced motion artifacts (see

Figure 1 and examples in the supplementary materials).

Our solution builds on several previous areas includ-

ing video segmentation [7], motion estimation [8], video

stabilization [9], grab-cut [10], [11]. We extend MVC

cloning [6] with hybrid blending boundary conditions in

a similar way to [12] and use a mixing-gradient field [13].

Our contributions are: (i) a fully interactive solution for

video composition, (ii) a novel video blending approach

that tackles consistency in both motion and appearance

by merging the gradients of source and target video and

optimizing the dynamic blending boundary, (iii) extension

of mean-value coordinates interpolation to support hybrid

blending with a dynamic boundary, while maintaining in-

teractive performance, (iv) we provide a user interface and

source object positioning method that can efficiently deal

with complex video sequences beyond the capability of

alpha blending.

2 RELATED WORK

Video matting and composition is a well studied problem in

computer graphics and computer vision. In 2002, Chuang

et al. [1] used bi-direction optical flow to propagate matting

trimaps across video frames. In Li et al. [2], Wang et

al. [3] and Armstrong et al. [14], graph-cut based video

segmentation is used for segmentation. In 2009, Bai et

al. [4] presented a video cutout system that achieved better

segmentation by use of a set of local classifiers. Tong et

al. [15] designed a novel interface which can efficiently

select and cut out video objects as a video plays. Tang

et al. [16] proposed a novel video matting method based

on opacity propagation. All these video matting approaches

rely on having a well-defined object boundary in the source

video. Gradient domain image composition avoids solving

the difficult matting problem for fuzzy boundaries, and

can also deal with large illumination differences between

source and target images. Burt and Adelson [17] used a

multiresolution spline technique to blend two images; while

this method is concise and fast, data incorporation from dis-

SUBMIT TO IEEE TIP 3

tant source and destination pixels may generate undesirable

results. Pérez et al. [18] improved upon this idea by solving

a Poisson equation in the blending region. Jia et al. [19]

eliminated blending artifacts by optimizing the blending

boundary and use of alpha matting. Chen et al. [12] further

improved composition quality by using mixed boundary

conditions when solving the Poisson equation. Zhang et

al. [20] proposed an environment-sensitive image blending

method based on image patches surrounding the source

object in the target image.

Bhat et al. [21] efficiently solved the Poisson equation

using Fourier analysis. To achieve real-time performance,

Farbman et al. [6] used mean-value coordinates interpo-

lation to approximately solve the Laplacian equation used

for gradient domain composition. Tao et al. [22] present-

ed an error-tolerant gradient-domain image compositing

technique. By defining boundary gradients and applying a

weighted integration scheme to the gradient field, it solved

the color bleeding problem and improved composition

quality. However, motion blur, camera shake and ill-defined

object boundaries due to scene complexity or video quality

still limit the applicability of these works to video.

Our work extends the range of video composition possible

by providing motion-aware blending. Several works have

attempted to extend the gradient domain scheme to video

composition. Wang et al. [23] proposed a 3D video integra-

tion algorithm which solves a 3D Poisson equation. Xie et

al. 2010 [24] adapted mean-value coordinates to efficiently

perform the video composition. However, these methods

do not take spatio-temporal and motion inconsistencies

of the source and target gradients into account, lowering

composition quality and narrowing the application range.

Other related works include illumination estimation from

images and videos. Since gradient domain composition

does not consider the real illumination condition of the

source and target, it can result in over-blending effects in

which pasted objects are too dark or over-saturated. Lalonde

et al. [25] used illumination clues to choose illumination-

consistent images for their Photo Clip Art. Lalonde et

al. [26] further estimated the illumination from a single

outdoor image, which can help prevent over-blending. In

GradientShop, Bhat et al. [13] used a general optimization

framework for gradient domain image and video process-

ing, which inspired our work. Gradient domain composition

suffers from image noise, has been addressed lately by

image harmonization techniques proposed in Sunkavalli et

al. [27]. The motion patches described in Zhang et al. [28]

inspired our gradient mixing approach.

3 OVERVIEW

Figure 2 shows the general pipeline of our method. In

the user input step, the user provides blending trimaps on

the source video: blue and red regions cover the definite

foreground and definite background respectively. The green

region in between is the blending region where a soft

blending boundary is defined; it usually covers uncertain

area around the foreground source object including shad-

ows, dust, smoke or waves (see e.g. Figure 3 and the

trimaps shown in Figure 10(a,c)). Both the hybrid blending

boundary and the mixing-gradient field are determined

inside this blending region. The boundary between the red

and green regions, denoted by Γout , is obtained as a user-

drawn closed loop on the first frame. The inner boundary

Γin, between the green and blue regions, is generated by

applying a refinement step of grab-cut [11] to another user-

drawn closed loop roughly around the object boundary in

the first frame. Trimaps in subsequent frames are generated

by propagating the user inputs from the first frame (see

details in Section 5.3).
To compose the new video, the user places the source

objects on the first frame of the target video. Using an

intuitive user interface, the source and target videos are

aligned. The position and scale of the source object is

automatically calculated in subsequent frames using feature

point registration and optical flow estimation. To generate

the desired motion path (i.e. the object’s moving path across

video frames), or to fix inaccurate automatic alignment, the

user can drag and resize the source object in selected mo-

tion keyframes. Our method allows interactive composition

results to be shown to the as the alignment is adjusted;

details of this user interface are presented in Section 6.

After the source objects have been positioned, the key

challenge for composition is to overcome large appearance

and motion differences between the source video patch and

the target video sequence. We first find a blending boundary

in each frame which minimizes the spatio-temporal and

motion differences along the boundary. Then, we construct

a mixing-gradient field inside the composition region based

on optical flow, gradient saliency and continuity. Gradient

domain blending also takes into account inter-frame con-

sistency. We efficiently calculate per-frame blending results

subject to a temporal restriction along the flow vectors of

the source and target sequences. These steps are described

in Section 5. Lastly, an approximate calculation is used

for mean-value coordinates, to achieve interactive real-time

updates when a dynamic blending boundary is used; we

describe this method for a single frame in Section 4.

4 REAL-TIME SINGLE FRAME HYBRID

BLENDING

Done directly, Poisson image blending involves solving

a large linear system which is too time-consuming for

video blending. Farbman et al. [6] introduced an alternative,

Fig. 3. Definitions of regions and boundaries.

SUBMIT TO IEEE TIP 4

(a) (b) (c)

(d) (e)

Fig. 4. Comparison between MVC cloning [6] and our

MVC hybrid blending. (a) Blending of the rectangular

region inside the dashed line and the background.

The black dashed line is an inconsistent boundary

that should be avoided for blending. (b) MVC cloning

with selective boundary suppression at this boundary

generates an undesirable red blending result due to ex-

trapolation of MVC. (c) MVC hybrid blending generates

a plausible blending result by setting Neumann bound-

ary conditions at this boundary. MVC hybrid blending’s

advantages of using (i) mixed boundary conditions are

further shown in (e, top), and (ii) an optimized blending

boundary in (e, bottom); compare these to to MVC

cloning’s results in (d).

coordinate-based, approach to perform the cloning process

of normal Poisson blending with Dirichlet boundary con-

ditions (which specifies the values a solution needs to take

on the boundary of the domain). The interpolated value at

each interior pixel is given by a weighted combination of

values along the boundary based on mean-value coordinates

(MVC). Use of MVC is advantageous in terms of speed,

ease of implementation, memory footprint, and paralleliza-

tion. However, since this solution uses a fixed blending

boundary with the same boundary conditions as Poisson

blending, it also carries the same limitations, especially in

the presence of large texture or color differences.

Farbman et al. [6] use selective boundary suppression,

which removes some boundary points for interpolation, to

reduce smudging artifacts. This fails when the removed

boundary points are extruded, as shown in Figure 4(a)–(c).

Jia et al. [19] optimize the blending boundary to achieve

minimal color variation within the source object, while

Lalonde et al. further improved this to deal with large

texture or color differences [25], [12]. Here, we improve

the MVC method by searching for an optimized boundary

and using mixed boundary conditions similar to the hybrid

blending approach suggested in Chen et al. [12].

Let Ω denote the patch of source frame f s to be composed

onto the target frame f t , and let Γ be its boundary. As

illustrated in Figure 3, Chen et al. [12] classify a band

region around the blending boundary Γ into two types: the

pixels where the texture and color of the source and target

are consistent are classified as M1, and all other pixels

are classified as M2. Texture and color consistencies are

measured by the difference of Gabor feature vectors and the

difference of the UV color components respectively. The

object pixels that are surrounded by the inner boundary Γin

are also classified into M1. Conventional Poisson blending

can be safely applied in the M1 region, but it can cause

artifacts (e.g. smudging and discoloration) within M2. For

M2 pixels, Chen et al. apply matting to separate the fore-

ground f s
f and background f s

b layers of the source image

f s, and use the foreground layer f s
f for blending the target

image f t to the source patch. This technique first solves

the following Poisson equation to compute an intermediate

blending result f ′:

△ f ′ = div(G) over Ω. (1)

This is similar to conventional Poisson blending, except that

it creates a mixed guidance vector field G over Ω:

G|M1
= ∇ f s and G|M2

= ∇ f s
f , (2)

with mixed boundary conditions on Γ: Dirichlet bound-

ary conditions on Γ1, and Neumann boundary conditions

(specifying values of the derivative of the solution on the

boundary of the domain) on Γ2:

f ′|Γ1
= f t and ∇ f ′|Γ2

= ∇ f s
f , where Γi = Γ∩Mi, i = 1,2 (3)

For pixels in M2, f ′ is combined with f t using alpha

blending to obtain the final result: f = α f ′ + (1−α) f t ,

where α is obtained by alpha matting.

In our work, we do not solve the Poisson equation but in-

stead use mean-value coordinates as mentioned in Farbman

et al. [6] for efficiency. To this end, we must address two

challenges. First, the position of the blending boundary Γ in

hybrid blending is optimized according to pixel differences

(mismatches). As the source and target alignment changes,

Γ also changes, and hence MVC weights cannot pre-

computed. This reduces the computational savings provided

by MVC . Secondly, in hybrid blending, the boundary

points on Γ2 have Neumann boundary conditions, and

therefore cannot be used directly for membrane interpola-

tion in MVC. We solve the first challenge by approximatng

MVC coordinates, and the second by first determining the

boundary values to be interpolated.

4.1 MVC approximation

In Farbman et al. [6], the membrane value at each interior

pixel of seamless cloning is given by a weighted combina-

tion of values along the boundary. The process includes

three steps: region triangulation, mean-value coordinate

computation, and interpolation. If the blending boundary is

fixed, the first two steps can be pre-computed. Then, multi-

ple cloning positions of the source patch can be considered

efficiently. However, using a fixed, user-drawn boundary

is insufficient for seamless blending in our case. Dynamic

blending boundaries as suggested in [19] aim to minimize

the difference of color mismatches along the boundary, and

so are optimized for different blending positions. To deal

with such a changing boundary we use a new method to

approximate mean-value coordinates.

The most time-consuming part of MVC computation is

calculating the angles from the inner points x ∈ Ω to the

SUBMIT TO IEEE TIP 5

Fig. 5. Angle approximation for mean-value coordi-

nates using a fixed enclosed boundary Γout (blue).

points on the blending boundary pi,pi+1 ∈ Γ. The tangents

of these angles ∢pi,x,pi+1 are used as weights in the MVC

calculation (see Figure 5). To avoid computing these angles

every time the boundary Γ is changed, we approximate

these angles using pre-computed values close to the actual

values. To achieve this we require a fixed boundary that

encloses all possible dynamic blending boundaries. The

user-drawn boundary Γout naturally fits this role, since all

blending boundary optimizations are applied within this

boundary. We construct an adaptive triangular mesh inside

Γout using a similar method to that in Farbman et al. [6],

but using a constant vertex density in the region between

Γin and Γout , identical to the vertex density on Γout . For

each inner vertex x, we calculate the angles to all vertices

on Γout : α ′
i−1 = ∢p’i−1,x,p’i and α ′

i = ∢p’i,x,p’i+1 (see

Figure 5). The points p’ are sampled on Γout by hierarchical

boundary sampling as described in Farbman et al. [6]. The

semi-tangents of these angles are saved for all vertices.

Next, each time the position of a blending boundary Γ is

optimized for a given source patch position, we compute

corresponding points on Γ for each sampled point on Γout .

First, we uniformly sample Γ with twice the number of

points p’ on Γout . Next, we link each p’ point on Γout to

its nearest sample point on Γ, giving one-to-one correspon-

dences for all pairs. If multiple p’ points are linked to the

same point on Γ, we use only the one with the shortest

distance. For a point p’ whose correspondence cannot

be decided by the above procedure, we find its closest

left and right neighboring points p’l ,p’r that already have

corresponding points pl ,pr on Γ. We find the interval ratio

(by counting pixels along the boundary) of the point from

p’l and p’r and match it to a point on Γout with the same

interval ratio between pl and pr. Now, the jth component

(before normalization) of our approximated MVC for a

vertex x is given by:

w j =
tan(α ′

j−1/2)+ tan(α ′
j/2)

||p j −x|| (4)

Since the tangents are pre-computed, the approximated

MVC can be computed in real-time. Although this approx-

imation is different from the true MVC, especially when

Γ is close to Γin, in practice, approximate interpolation is

visually indistinguishable from MVC interpolation.

4.2 Boundary value solution

MVC are used to approximate the solution of the Laplacian

equation in [6]. Thus, a prerequisite for using MVC is

to convert the Poisson equation in hybrid blending to a

Laplacian equation. The mixed boundary conditions must

also be modified appropriately. To obtain the Laplacian

form, we define the correction function f̃ on Ω such

that f ′ = g + f̃ , where g is the image that provides the

source gradient field G (see Section 5.2). By substituting

f ′ from Equation (1), the Laplacian form of hybrid blending

becomes:

△ f̃ = 0 over Ω,with f̃ |Γ1
= f t −g and ∇ f̃ |Γ2

= 0. (5)

If the hybrid blending boundary con-

tains parts with Neumann boundary

conditions, it cannot be directly ap-

proximated by MVC interpolation, as

some boundary values for interpola-

tion remain unknown. Thus, we find

these values before applying approx-

imate MVC interpolation. At boundary points on Γ2 with

Neumann boundary conditions we only know the gradient.

Hence, we assume their values fit a function f̃ |Γ2
= h

(illustrated on the right). Then, by considering coordinate-

based interpolation, we can form a small linear system for

the pixel values around the Neumann boundary and the

known gradient values ∇ f̃ |Γ2
= 0.

h(pi)− ∑
p j∈Γ1

w
j
i (f t(p j)−g(p j))− ∑

pk∈Γ2

wk
i (h(pk)) = 0, (6)

where w
j
i and wk

i are mean-value coordinates for qi (neigh-

boring points of pi) in Γ1 and Γ2 respectively. We solve

this linear system, which usually contains hundreds of

unknowns h(pi) by LU factorization. Then, we apply ap-

proximate MVC interpolation as above to these boundary

values h(pi).

Figure 4(b)–(e) compares Farbman et al.’s MVC cloning [6]

and our MVC hybrid blending. In Figure 4(d), since the

manually specified blending boundary intersects with the

sky and wood, the results shows serious texture smudging,

which is avoided by MVC hybrid blending and blending

boundary optimization, as shown in Figure 4(e). In practice,

we have found that the difference between hybrid blending

based on the Poisson equation and blending based on

MVC interpolation are almost indistinguishable. However,

after pre-computation, MVC interpolation is about two

orders of magnitudes faster. This key technique enables

efficient gradient domain blending for video and interactive

editing. Since we pre-compute the tangents instead of the

entire w j, our method must compute one more addition

and division operation for each vertex. Combining the

additional boundary optimization step and boundary value

solving step, on average our MVC hybrid blending is about

three times slower than conventional MVC.

5 MOTION-AWARE VIDEO COMPOSITION

The image blending method described in the previous

section can produce plausible composition results even

for foreground objects that are difficult to extract using

conventional alpha-matte cut-out methods, such as the

regions inside the blue boxes in Figure 6. However, if

SUBMIT TO IEEE TIP 6

Fig. 6. Challenges for video composition. Motion blur,

uncertain boundaries, shadows and reflections occur

inside the blue rectangles.

we compose each frame (e.g., by inserting the boat in

Figure 6(a)) independently without considering inter-frame

consistency, the results suffer from boundary flickering, and

inconsistent color and texture motion around the composed

source object. These artifacts occur for three reasons:

Motion differences. There may be differences in the color

and texture motion between the source patch and the target

surroundings. These differences can cause a visible seam

to appear at the blending boundary in the video, not only

because of foreground object movement, but also due to

motion in the surroundings (e.g., smoke, haze, water). As

an example, the water flow around the boat in the source

patch is not consistent with the water flow of the rest of

the target frame.

Position mismatch. Due to our use of a dynamic compo-

sition boundary, the boundary can change in consecutive

frames and cause regions to pop or disappear.

Temporal fluctuations in color mismatch. Differences in

color between the source and target across the blending

boundary may also change between frames. Color mis-

match is used as a boundary condition in our blending

method and therefore affects color inside the blending

region as well. Changes in this mismatch over consecutive

frames can cause color flickering in the entire blending

region.

To address these issues, we first create coherent blending

boundaries that change smoothly throughout the frames,

and then construct a novel mixing-gradient field to guide

the blending by considering both source and target gradient

fields throughout the entire video.

5.1 Optimizing the blending boundary

First we minimize the boundary color mismatch between

the source patch and target surroundings across the blend-

ing boundary. This effectively suppresses variation in ap-

pearance of the source object in the blended video. We

extend the boundary optimization method of hybrid blend-

ing (Section 4) from images to video, taking temporal

coherence into account. We apply video segmentation [7]

to both source and target videos, using a hierarchical

graph-based algorithm to over-segment a volumetric video

graph into space-time regions. These regions, or super-

voxels, are grouped by appearance to ensure color and

texture consistency. We also apply the motion estimation

method described in [8] to compute optical flow for both

source and target videos. Based on non-local total variation

regularization, motion estimation integrates the low level

image segmentation process so that it can tackle poorly

textured regions, occlusions and small scale image struc-

tures. Then, we calculate the texture and color differences

for the corresponding super-voxels in the two videos in

the soft boundaries to classify them as either belonging

to M1 or M2 as described in Section 4. The blending

boundaries of M2 are generated by coherent matting [4],

which adds a temporal alpha prior into the alpha matting

optimization process to achieve temporally coherent alpha

matting. Therefore, we only need to optimize the position

of the blending boundary in M1.

Boundary optimization can be effectively performed using

dynamic programming [19]. Extending this to video must

not only preserve the preceding function, but also minimize

the artifacts caused by the above three issues. While directly

optimizing the boundary on the 3D volume can solve

the position mismatch problem, it cannot resolve motion

differences or color mismatches. Another drawback of opti-

mizing over the 3D volume is that neighboring pixels along

the time axis are usually not continuous due to motion.

Moreover, a continuous blending boundary in 3D space is

over-restrictive and leads to non-optimal results for each

frame. As discussed in [29], [4], [13], a better solution is to

optimize the consistency of motion-compensated neighbors

instead of direct neighbors. Bhat et al. [13] show that this

can be done using a moderately (50% to 60%) accurate

optical flow, and by taking confidence values from the

motion vectors into account. We follow a similar approach.

We define a cost function for the blending boundary Γ

in each frame, using additional terms to control temporal

consistency according to motion vectors:

E(Γ,k) = ∑
p∈Γ

1

Dp
{(kp − k)2 +(kp − ktp)

2 + ||vt
p −vs

p||2} (7)

There are three terms for each boundary point p. In the first

term, kp is the color mismatch of the target and source at p,

kp =(f t
p− f s

p), and k is the average mismatch for the current

frame. This term minimizes the color mismatch on a single

frame, and is similar to the one used in Jia et al. [19]. In the

second term, ktp is the average mismatch between p and

the nearest boundary points on two adjacent frames. This

term minimizes the color mismatch between consecutive

frames. In the third term, vt
p and vs

p are target and source

optical flow vectors from p to the corresponding point

in the next frames in the target and source respectively.

This term seeks a boundary with similar optical flows so

that motion differences are reduced. Dp is a penalty term

that minimizes boundary point distances across frames,

and will be discussed shortly. Note that Dp is not a hard

constraint and noticeable boundary offsets may still occur

after optimization. Our scheme gives higher priority to color

mismatches, and we rely on gradient mixing in the next

subsection to remove popping artifacts caused by position

mismatch.

We iteratively minimize the cost function in Equation (7).

SUBMIT TO IEEE TIP 7

Initially, k is set to the average mismatch on the user-

provided outer boundaries Γout , Dp is set to 1, and the

second term (kp−ktp)
2 is set to 0. On each iteration, a new

boundary is calculated using dynamic programming, where

the cost for each pixel is set to the sum of the three terms in

Equation (7). Next, we project the boundary points to their

motion-compensated neighbors in adjacent frames, in both

forward and backward directions, using optical flow vectors

(Figure 7). Note that the target and source optical flow

vectors can generate two different projections for a single

boundary point p in an adjacent frame. We consider the

nearest distance from p to its projections in each adjacent

frame, and set Dp to the average of the two nearest distances

to the two adjacent frames. Accordingly, ktp is set to the

average of the color mismatches between p and the two

nearest projected pixels on those two frames. On each

iteration we first find the new boundaries and then update

k, Dp and ktp. Iteration terminates when the boundaries

converge or a maximum number of iterations has been

reached (we use 20).

5.2 Gradient mixing

To deal with the remaining artifacts caused by position mis-

match and motion differences, we mix the source and target

gradients coherently in the soft boundary region. Mixing

of gradients for image cloning was proposed by Pérez et

al. [18] to preserve salient content in both source and target

images. We extend this approach to video in a spatio-

temporally coherent manner. Gradient mixing is applied to

the band region between Γin and blending boundary Γ. The

key idea is to create a gradually mixed gradient field in the

spatial domain to reduce motion inconsistency artifacts. If

Gs
i and Gt

i are source and target gradients respectively, then

in its naive form, mixing could be obtained for i-th pixel of

this region as a linear combination of the source and target

gradients:

Gi = αi · (Gs
i)+ [1−αi] · (Gt

i), (8)

However, our approach is based on the observation that

different situations may need different mixing rules to

selectively preserve content from either the source or the

target video. For example, motions with greater gradient

values are more noticeable, and they usually depict the

structure of the source object. Hence, larger gradients

should be preserved as much as possible. Moreover, to

generate temporally coherent results, preservation of the

gradient field should be temporally consistent in motion-

compensated neighbors. We use user-defined mixing pa-

Fig. 7. Pixels used to calculate the temporal cost in

blending boundary optimization.

rameters that address the specific composition problem (see

Table 1).

The use of MVC cloning demands that the mixed gradient

field should be conservative. We reconstruct a conservative

mixing gradient field as a guidance vector field based on

(i) the gradient magnitude of source and target, and (ii) the

spatio-temporal coherence of the source and target gradi-

ents. We define F (G) as a filtering function governed by

the gradient mixing parameters with values set by the user;

these values can differ for source and the target filtering. We

also define ai =(αx
i ,α

y
i) as the mixing weighting factor. For

a conservative gradient field, αx
i and α

y
i can be different.

At the i-th pixel of this region, the reconstructed gradient

value is given by a linear combination of the filtered source

and target gradients:

Gi = ai ◦Fs(G
s)i +[(1,1)−ai]◦Ft(G

t)i, (9)

where ◦ is the Hadamard product (or entrywise product)

of two vectors. 2D gradient vector Fs(G
s)i and Ft(G

t)i

are the i-th elements of filtered source and target gradient

field matrices. In the following, we show how to define

the mixing parameters and how to use them to generate

the gradient filtering functions F , and the initial values for

ainit
i = (α init

i ,α init
i).

Mixing parameters. We provide three gradient mixing

parameters, namely “salient”, “base”, and “distinct“. Each

can be toggled on or off for both the source and target

gradient fields. The “salient” toggle decides whether to

preserve gradients that are more salient (large) in the source

and target videos. The “base” toggle decides whether to

preserve the low frequency appearance of each video. These

toggles affect the filtering function F of the gradient field

G (either source or target) as follows:

F (G) =

G−K ∗G if only “salient” is on,
K ∗G if only “base” is on,
G if both are on,
0 if both are off

(10)

where K = N(pi;σ2) is a Gaussian filter centered at the

i-th pixel (we set σ = 5), and ∗ is the convolution operator.

The “salient” toggle is effective for preserving edges and

sharp textures, while the “base” toggle preserves shadows,

reflections and smooth textures.

The “distinct” parameter decides whether to preserve re-

gions with distinct motion, including motion that differs

from its surrounding area and motion with low optical flow

confidence (typically, unpredictable motion). The user can

toggle this setting to affect the initial mixing weight α init
i :

α init
i =

||Gs
i ||2

||Gs
i ||2 + ||Gt

i||2
+(ds

D
s
i −dt

D
t
i), (11)

where ||Gs
i || and ||Gt

i|| are the gradient magnitudes of the

source and target gradient at the i-th pixel respectively. The

first term favors the preservation of larger gradient magni-

tudes. ds or dt are equal to 1, if the “distinct” toggle for

source or target is on, and 0 otherwise. D s
i and D t

i are the

SUBMIT TO IEEE TIP 8

“distinct” measures for the source and target respectively.

When only considering mono-directional optical flow, the

measures are defined as :

Di =

{
||(DoG∗V)i||2

ψ
if wvi > 0.5,

1−wvi otherwise,
(12)

where DoG ∗V is the convolution of DoG (difference of

Gaussian) and the optical flow vector field V. The two

bandwidths of the DoG are 12 and 3. The scale factor ψ

is set to 50. wvi is the confidence in optical flow at the

i-th pixel. To take the optical flow fields of both directions

into account, we use the average value of the two Di

generated by both optical flow fields. The value of α init
i is

clamped to [0,1]. Toggling “distinct” directly changes the

initial mixing weight of gradient mixing, thus changing the

gradient mixing result. This parameter emphasizes motions

that are distinct from their backgrounds inside the blending

region. Note that this region usually contains scene objects

that move together or are affected by the foreground object,

such as motion blur, shadow, wave, smoke, dust, etc. User-

defined mixing parameter values for the examples in this

paper are shown in Table 1.

Using the initial mixing weights and filtered gradients,

we define a cost function for each ai to ensure feature

preservation and smoothness:

C(ai) = ||ai −ainit
i ||2+ (13)

+w1 ∑
j∈Ntem(i)

||ai −a j||2 +w2 ∑
k∈Nspa(i)

||ai −ak||2

The first term requires that the mixing weights are close

to the initial mixing weight ainit
i . The second and third

terms penalize temporal and spatial variations respectively.

Ntem(i) is the set of indices of the motion-compensated

neighbors of the i-th pixel, if the corresponding optical

flow confidence is higher than 0.5. Since we may have

up to four optical flow vectors (source and target in both

forward and backward directions) for each pixel, Ntem(i)
contains at most 4 elements. Nspa(i) is the set of indices

of the 4-connected neighbors of the i-th pixel in a single

frame. We require that the mixing weights ai are all 0 on Γ

and 1 on Γin. The third term effectively drives the mixing

weights to gradually increase from Γ to Γin, which smooths

the motion differences between the source and target inside

the blending region. We set w1 and w2 to 0.5 and 0.3 in all

our results.

Assuming that the coordinate of the

i-th pixel on its frame is (x,y) (see

right), any Gi = (Gx
(x,y),G

y

(x,y)
) must

satisfy the following equation to en-

sure conservative mixed gradients:

Gx
(x,y−1)+G

y

(x,y)
= G

y

(x−1,y)
+Gx

(x,y)

(14)

Substituting Equation (9) into Equation (14) gives a lin-

ear equation involving αx
(x,y−1),α

y

(x,y)
,αy

(x−1,y)
and αx

(x,y).

Combining these equations for all pixels yields a set of

linear constraints for all ai = (αx
i ,α

y
i). The cost function

(a) (b) (c)

(d) (e) (f)

Fig. 8. Gradient mixing: the red line is the blending

boundary Γ. (a) source gradient. (b) target gradient. (c)

mixing-gradient. (d) gradient alpha map, illustrated by

the norm of alpha vector. (e) composition result without

mixing. Note the evident seam between the textures in

this case. On videos, such seams also appear when

there are motion differences. (f) composition result

using our mixing-gradient field.

in Equation (13) is minimized with this set of linear

constraints, ensuring that the mixing of the gradients is

still conservative. This quadratic programming problem can

be transformed to a large sparse linear system by using

Lagrange multipliers. We iteratively solve the system by

successive over-relaxation with relaxation factor ω = 1.8.

In practice, after five iterations, even without convergence,

the resulting mixing weights already ensure smoothness

of gradient mixing. We replace the source gradient field

in the soft boundary region by the mixing-gradient field

and perform blending using the composition technique

discussed in Section 4.

Figure 8 shows gradient fields before and after mixing,

the gradient alpha map, and blending results with and

without gradient mixing. Even in a single frame composi-

tion, gradient blending produces better results than simple

blending. For video blending, it further reduces motion

artifacts (please see the supplementary materials).

5.3 Coherent MVC cloning

As described in Section 4, the final composition for each

frame is achieved using MVC hybrid blending. The trian-

gulation and angle tangents for MVC are calculated using

Γout . Hence, to reduce computation cost, we would like Γout

to remain as consistent as possible through frames. After

the trimap is provided in the first frame, the boundaries are

propagated to subsequent frames. The inner boundaries Γin

are propagated using Bai et al.’s method [4], which relies on

overlapping local classifiers and local window propagation.

The outer boundaries Γout are sampled and corresponding

points found on Γin as explained in Section 4. Γout are

propagated to subsequent frames using the translations of

the corresponding points on Γin. Whenever there is a large

deviation from the desired boundary the user can refine it

manually in a specific frame, determining propagation to

later frames. Next, we project Γi
out to Γi+1

out by a similarity

SUBMIT TO IEEE TIP 9

transformation. If the union of projected boundary and Γi+1
out

does not deviate too much (10%) from both boundaries,

we use the union as the new Γout for both frames. This

way, Γout is updated and clustered into several groups

over time. Within each group, the only differences in Γout

are a similarity transformation; the triangulation and angle

tangents are computed only once for each group.

To further reduce flickering, we smooth the membrane

value of MVC interpolation at the mesh vertices temporally.

Our membrane may move together with the source object,

unlike the fixed membrane used in Farbman 2009 [6].

Therefore, instead of smoothing temporal neighbors as in

their paper, we smooth motion-compensated neighbors and

modify the smoothing weights of older frames accordingly.

The smoothed vertex membrane value at frame i is calcu-

lated as follow:

1

W
[mi +2−d(

i−1

∑
j=i−5

(i− j)−0.75(||a||ms
j

i−1

∏
k= j

wvs
k + ||(1,1)−a||mt

j

i−1

∏
k= j

wvt
k)],

(15)

where mi is the vertex membrane value before smoothing,

and ms
j and mt

j are membrane values of the motion-

compensated neighbors on frame j according to source and

target optical flow respectively. a is the gradient mixing

weight. wvs
k and wvt

k are the optical flow confidences for

the source and target respectively at frame k. d is the

normalized distance to boundary Γ. W is the sum of weights

for all m.

6 INTERACTIVE POSITIONING

Matching a source video object to a target video is challeng-

ing not only because the scale, angle, position and lighting

must match in all frames, but also because the motion

along the frames must be consistent with the target video

scene. Our blending technique can compose source objects

with the background better, since it seamlessly transfers

the surroundings (e.g. shadows) of the transplanted object.

However, it can still appear unrealistic if we do not position

the object correctly.

We provide an interactive positioning interface to extend

the flexibility of our motion-aware composition framework.

It has two main goals: to better align the motions of the

source and target videos, and more importantly, to allow

fine tuning and editing of the motion of the source object

on the target video. We define the trajectory of the center

of the source object on the target frame as the object’s

motion path. Our user interface design combines automatic

computation with user interaction to reduce user effort and

allow fast update with interactive feedback while editing.

Towards this end we constrain the possible user edits to

specific points along the object’s motion path, and also

constrain the magnitude and orientation of possible velocity

changes. These manual changes are then automatically

propagated to other frames. This prevents the creation

of unnatural motion artifacts, and allows efficient local

updates. Combining interaction and computation provides

an interactive-feedback system for easy motion refinement

and editing.

6.1 Motion alignment

To remove camera shake, we first stabilize the source and

target videos using ideas from Zhang et al. [9]. This method

is based on a 3D perspective camera model, and formulates

the stabilization problem as a quadratic cost function using

smoothness and similarity constraints. Stabilization helps

the subsequent video registration step. Zhang et al. [30]

perform automatic metric reconstruction from long video

sequences with varying focal length. We use their method

to recover the camera parameters and remove the camera

motion from both source and target videos. We remove

the moving source object from the source video to prevent

outliers. The user places the source object on the first frame,

possibly with some rotation and scaling. The system calcu-

lates a motion path for subsequent frames using automatic

alignment. Trying to neutralize camera motion for all types

of complex video scenes is impractical, so we allow the

user to correct the position of the object on certain frames

manually.

6.2 Motion editing

After automatic alignment and user refinement, good video

composition results can be achieved. However, users may

still want to speed up, slow down, or change the trajectory

of the source object on the target frame. Such effects cannot

be achieved by simple composition with an aligned path:

we support them via interactive motion editing.

Allowing arbitrary modifications to any point in the object’s

path will break the intrinsic property of the motion path,

causing artifacts to occur. Moreover, each time the path is

changed by the user, boundary optimization (Equation (7))

and gradient mixing (Equation (13)) must be re-computed.

This becomes a bottleneck for interactive update perfor-

mance. In our boat example, MVC hybrid blending takes

only 1s, but these other computations take 6.6 seconds per

100 frames. Hence, to prevent unnatural motion artifacts,

and for efficiency, we intelligently constrain the editing of

the motion path both to very specific points in time and to

preset amounts.

The key idea is to explore both the motion properties

of the object and the visual feature of the frames to

obtain several control points, 2D points on the motion

path that indicate motion keyframes. We allow the user to

edit only control points, and their modifications (including

translation, rotation and scale) are propagated to other

frames by linear interpolation. These points are optimal

points for adjustment. The motion path is divided into

several segments based on two criteria: (i) the motion in

one segment can be approximated by a uniform motion in

a straight line, and (ii) the motion properties and visual

features should be stable at the control points.

Motion is quantified by speed, and visual features are

measured by color mismatch across the blending boundary

as mentioned in Section 5. These two criteria allow us to

determine two properties: motion discontinuity at control

points, and stability of the control points themselves. We

SUBMIT TO IEEE TIP 10

greedily find n control points on the motion path by

minimizing the following energy function:

En = µ1

n

∑
i=1

(kti −
kti−1 + kti+1

2
)2 +µ2

n

∑
i=1

−→
vti

2 +µ3

n−1

∑
i=1

σ2
i , (16)

where ti is the frame containing the i-th control point, kti

is the average color mismatch on the blending boundary

in frame ti, and
−→
vti is the object velocity in frame ti. Both

||−→v || and k are normalized to [0,1]. σi is the variance of−→
v inside the i-th segment of the motion path with control

points at the ends of the segment. We set µ1 = 0.2,µ2 = 0.2
and µ3 = 0.6 in our experiments. Initially, the motion path

only contains one segment, which means n = 2. The first

two terms of Equation (16) are set to zero whereas the last

term is large. Next, we greedily find new control points

until Equation (16) stops decreasing.

Using the control points, we divide the motion into several

segments of approximate uniform straight line motion. If

the user edits the control point, these uniform motions are

largely preserved. In contrast, if modification is applied to

an internal segment point, it will create a discontinuity.

In addition, we impose local modification constraints on

the magnitude and orientation of velocity changes during

editing. These restrictions bound the area where the user

can change the path positions. When editing the k-th control

point, assume θi,θ
′
i are the old and new orientation of the

i-th point’s velocity. If vi,v
′
i are its old and new magnitudes,

then the restriction is:

∀i∈ [nk−1,nk+1],max(θ ′
i −θi)

2 < Tθ and max(v′i−vi)
2 < Tv

(17)

To maintain the perspective continuity of the composition,

we set Tθ = 30o and Tv = 20 as threshold values for all our

examples. Figure 9 illustrates control-point-based motion

editing.

Another key advantage of using control points lies in

the ability to apply only local updates and to interleave

interaction with computation time. When the user edits the

path, we do not perform global optimization of Equation (7)

and Equation (13) for the whole sequence. Instead, we cal-

culate the blending results on segments which were changed

previously but are not being edited. If previous calculations

have provided the boundary, mixing-gradient and MVC

membrane values on the end frames of these segments, they

are made hard constraints in the optimization. In summary,

we interleave computation with user interaction to compute

results for other, non-edited parts. In our experiments,

t1

t2

t3

t4

t5

tn

Fig. 9. Interactive motion editing. t1, t2, ...tn are control

points on motion keyframes. Editing control points only

affects segments between locked control points.

editing one point requires 1-2 seconds, during which we can

compute 20-35 frames based on local optimization. Because

of motion stability of the control points, and because the

temporal coherency restriction mainly utilizes information

in consecutive frames, we can merge several passes of local

optimization to approximate global optimization.

Compared with 3D Poisson blending, our algorithm allows

interactive video editing both because of lower computa-

tional complexity, and because of our control-point op-

timization. While editing one particular frame, the user

can see the real-time result for just this frame via MVC

hybrid blending. Segments that are not yet calculated, are

being calculated, and have been calculated are visualized in

different colors (red, yellow and green respectively) on the

motion path. The user can press a “play” button to instantly

check video results using local optimization. The user can

also lock control points to avoid unnecessary re-calculation

of already decided segments (see supplementary materials

for examples).

7 EXPERIMENTAL RESULTS

We have tested our video composition system on several

challenging examples and demonstrate the results in the

paper and accompanying video. Table 1 shows the gradient

mixing parameters for each example. Figure 1(a) shows

a slow motion hummingbird blended onto a stop-motion

flower. The blending trimap for this example is shown in

Figure 10(a). Our blending faithfully preserves the rapid

motion of the wing of the hummingbird and the water-

drops. Figure 1(b) pastes a boat on the sea surface at sunset.

The original source and target sequences contain severe

camera shaking, and the water flow directions differ. The

waves, reflections, and flag with the pole pose challenges

to previous methods, yet are faithfully preserved, and the

motion of the boat is natural due to interactive positioning.

Figure 1(c) shows several planes blended into a cloud scene.

Our method preserves the clouds between and through

the planes and smoke without complicated matting. The

blending trimap is shown in Figure 10(c). Figure 1(d)

shows a spinning top cloned to a different table. Our

method preserves the shadow and reflection of the spinning

top, while adjusting the texture to match the target table.

Figure 1(e) is an interesting chase scene which pastes

a snowmobile into a desert scene, chasing some goats.

Figure 1(f) pastes a group of people diving into a fish tank,

producing an interesting montage. The swimming fish in

the target video and the bubbles in the source video are

TABLE 1

The gradient mixing parameters for each example.

Source Target

salient base distinct salient base distinct

bird
√ √ √ √

boat
√ √ √ √

planes
√ √ √

top
√ √ √ √

snow
√ √

dive
√ √ √ √

SUBMIT TO IEEE TIP 11

(a)

(b)

(c)

(d)

Fig. 10. The input trimap and blending result. The user interaction strokes are shown in black and white. Please

see the accompanying video for the results.

both preserved without sudden disappearances thanks to

our temporally coherent motion-aware blending technique.

Figure 1(a) and (d) demonstrate that our blending method

can deal with serious motion blur of source objects, Fig-

ure 1(b), (c) and (e) demonstrate that our method is capable

of preserving waves, smoke and dust effects in video. Our

method provides harmonious compositions with the target

environment.

Performance. All our experiments were performed on a

PC with an i7 920 Quad core CPU and 12GB RAM.

Preprocessing includes dense optical flow calculation, video

segmentation to decide the blending boundary type, and

video stabilization (if necessary). Using our un-optimized

implementation, these three steps typically take 5, 2 and

2 minutes per 100 frames of VGA video. The user can

interactively draw the blending trimap and set the gradient

mixing parameters. The number of needed user strokes for

generating 100 frame trimaps is usually under 10, as we do

not need to extract the boundary of the object. Next, the

system generates an initial blending result for each frame

with automatic alignment. With this initial blending, we

also save the vertex and angle information for MVC hybrid

blending. Then, the user can begin to interact for motion

alignment refinement and motion editing.

Computation time and user interaction time for each step

are shown in Table 2. Interaction time includes time for

generating trimaps and (optional) motion editing. Video

blending time indicates initial blending time and blending

update time in motion editing. The current frame blending

rate is achieved by utilizing two cores of CPU. Although it

is approximately three times slower than the original MVC

cloning method due to boundary optimization and distances

computation, etc., it is still an order of magnitude faster

than solving a Poisson equation as done in hybrid blending

(using the TAUCS sparse linear solver). In practice, we

restrict current frame blending to a single thread, and limit

its rate to below 24 fps to save the computational power

for segment blending optimization. Since our method uses

approximate MVC, we also show the RMS (root mean

square) differences of the hybrid blending results. These

values indicate that the differences are unnoticeable. Us-

ing per-segment blending optimization produces additional

differences from the global optimization, which can be

distinguished, especially on motion keyframes. However,

as long as temporal coherence is maintained between these

frames, blending results are still plausible.

Comparison. The supplementary video shows some com-

parisons of our method to alpha blending using alpha matte

generated by Bai et al.’s method [4], frame-by-frame hybrid

blending, 3D Poisson blending [23] and Xie’s method [24].

Alpha matting loses many details around the source object,

and the composition is unrealistic due to large illumination

differences. Xie’s method also loses details due to use of

matting. We further compare the amount of interaction to

that needed by alpha matting in Table 2: alpha matting

usually requires 5-10 times more strokes than our method,

even though the alpha mattes in those examples are still

not optimal. Frame-by-frame blending and Xie’s method

produce results which lack temporal coherence: flickering

on the boat and the wake are due to temporal fluctuations

in color mismatch, which are overcome by our blending

boundary optimization step. In frame-by-frame blending

and 3D Poisson blending, inconsistent motion along the

blending boundary leads to a very noticeable seam; this

problem is solved by gradient mixing in our approach.

Our composition results are not affected by the artifacts

mentioned above, and are also achieved at an interactive

rate.

In Table 2 we summarize statistics and performance for the

examples in this paper. For single frame composition, our

MVC hybrid blending has higher quality than conventional

MVC [6] as evident in less color bleeding and texture

smudging, albeit at a cost of greater computation. For video

composition, compared to matting based methods such

as [4] and [24], our method better preserves motion details

such as smoke, blurring and spray; compared to frame-by-

frame hybrid blending and [24], our results displays better

temporal coherence; compared to 3D Poisson blending [23],

our method avoids visual seams around objects, and is

more flexible when the target video contains motion-salient

objects in the blending region.

Limitation. When the blending boundaries of the source

SUBMIT TO IEEE TIP 12

TABLE 2

Performance of video composition.

frame number average cloned preprocessing interaction trimap matting video blending current frame MVC
& frame size pixels per frame time(s) time(s) strokes strokes time(s) blending rate RMS

bird 115×1280×720 284,316 814 82 22 98 12.55 37 0.042

boat 91×1280×720 182,405 855 127 7 43 6.64 88 0.037

planes 106×1440×1080 101,346 1,274 104 5 27 4.10 137 0.024

top 82×330×300 37,762 65 25 4 39 0.93 211 0.018

snow 94×1280×720 220,818 902 93 8 137 9.56 49 0.029

dive 297×1008×566 29,484 2,512 155 26 158 2.81 235 0.025

and target video sequences are very inconsistent, i.e. their

appearances and textures have large differences, our hybrid

blending based method degenerates to video matting, e.g.

when compositing a white rabbit against a black wall.

However, such cases are unsuitable for blending in the

first place. Inconsistent lighting directions can also create

unnatural blending results. This may be solved by illumi-

nation estimation and relighting. Another limitation is that

our method cannot align video scenes with large camera

rotation differences, since we are lacking 3D information.

Since positioning is only applied in the image plane, it is

unable to produce complex 3D object motion: for example,

our editing tool cannot distinguish whether the snow mobile

is jumping up or moving away from the screen. However,

this could be improved by reconstructing a ground plane of

the target scene and adding more degrees of freedom for

positioning. Our method also relies on various computer

vision techniques for pre-processing, and their imperfec-

tions can also lead to artifacts. For example, although our

boat result vastly outperforms those generated by existing

approaches, one can still notice a blurred region on the deck

of the boat. This is caused by inaccuracy of optical flow and

its confidence values around the thin handrail of the boat.

Adopting more recent advanced approaches like those in

Liu et al. 2011 [31] may improve the results. Comparison

of different composition methods is also limited: there

is no reliable way to quantitatively evaluate composition

quality such as temporal consistency, apart from examining

the results. Currently, such comparisons rely mostly on

subjective judgements or user studies.

Not every pair of video sequences is suitable for com-

position. Large illumination differences, inconsistent back-

ground environments and various motions of source object,

camera, and background can all prevent good composition

results. In fact, an added value of our approach is that we

are able to give an approximate evaluation of the com-

position quality by checking the consistency in different

steps. For example, using hybrid blending, we can calculate

the composition cost, and after source object positioning,

motion consistency could be easily determined. The accu-

mulated score can suggest if the two video sequences can,

in fact, be composed successfully.

8 CONCLUSION

We have presented a novel video blending approach that

tackles key challenges in video composition: complex ob-

ject blending (smoke, water, dust) and motion differences.

User-provided blending trimaps of the source video allow

us to create consistent blending boundaries over time. We

mix the gradients of the source and target videos inside the

blending region, based on an efficient implementation of

mean-value coordinates interpolation instead of traditional

Poisson methods. We also provide a user interface to

position source objects and refine the results. All these

enable us to efficiently deal with complex video sequences

beyond the capability of current solutions.

Our current implementation cannot generate the globally

optimized video composition result in realtime; a possi-

ble solution is to use a KD-tree to accelerate boundary

optimization and gradient mixing. It would also be inter-

esting to extend the method to more challenging results,

for example, source objects that are moving towards or

away from the camera rather than primarily on a plane

perpendicular to the camera. This would require more

sophisticated user controls. To more faithfully recover the

appearance of the source objects in the target video, better

illumination estimation could also provide guidance for

gradient domain blending. Lastly, our user interface is still

limited in versatility and accessibility, and it could be

improved by modern video editing techniques like those

in Chen et al. 2011 [32].

REFERENCES

[1] Y.-Y. Chuang, A. Agarwala, B. Curless, D. H. Salesin, and R. Szelis-
ki, “Video matting of complex scenes,” ACM Transactions on

Graphics, vol. 21, no. 3, pp. 243–248, July 2002.

[2] Y. Li, J. Sun, and H.-Y. Shum, “Video object cut and paste,” ACM

Transactions on Graphics, vol. 24, no. 3, pp. 595–600, 2005.

[3] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Cohen,
“Interactive video cutout,” ACM Transactions on Graphics, vol. 24,
no. 3, pp. 585–594, Jul. 2005.

[4] X. Bai, J. Wang, D. Simons, and G. Sapiro, “Video snapcut: robust
video object cutout using localized classifiers,” ACM Transactions

on Graphics, vol. 28, no. 3, pp. 1–11, 2009.

[5] S.-K. Yeung, C.-K. Tang, M. S. Brown, and S. B. Kang, “Matting
and compositing of transparent and refractive objects,” ACM Trans-

actions on Graphics, vol. 30, pp. 2:1–2:13, February 2011.

[6] Z. Farbman, G. Hoffer, Y. Lipman, D. Cohen-Or, and D. Lischinski,
“Coordinates for instant image cloning,” ACM Transactions on

Graphics, vol. 28, no. 3, p. 67, Aug. 2009.

[7] M. Grundmann, V. Kwatra, M. Han, and I. Essa, “Efficient hier-
archical graph-based video segmentation,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2010, pp. 2141–
2148.

[8] M. Werlberger, T. Pock, and H. Bischof, “Motion estimation with
non-local total variation regularization,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2010, pp. 2464–
2471.

SUBMIT TO IEEE TIP 13

[9] G. Zhang, W. Hua, X. Qin, Y. Shao, and H. Bao, “Video stabilization
based on a 3d perspective camera model,” The Visual Computer,
vol. 25, pp. 997–1008, October 2009.

[10] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal
boundary amp; region segmentation of objects in n-d images,” in
IEEE International Conference on Computer Vision, vol. 1, 2001,
pp. 105 –112 vol.1.

[11] C. Rother, V. Kolmogorov, and A. Blake, ““grabcut”: interactive
foreground extraction using iterated graph cuts,” ACM Transactions

on Graphics, vol. 23, no. 3, pp. 309–314, 2004.

[12] T. Chen, M.-M. Cheng, P. Tan, A. Shamir, and S.-M. Hu, “S-
ketch2photo: internet image montage,” ACM Transactions on Graph-

ics, vol. 28, no. 5, pp. 124: 1–10, 2009.

[13] P. Bhat, C. L. Zitnick, M. Cohen, and B. Curless, “Gradientshop:
A gradient-domain optimization framework for image and video
filtering,” ACM Transactions on Graphics, vol. 29, no. 2, pp. 1–14,
2010.

[14] C. J. Armstrong, B. L. Price, and W. A. Barrett, “Interactive
segmentation of image volumes with live surface,” Computers &

Graphics, vol. 31, no. 2, pp. 212–229, 2007.

[15] R.-F. Tong, Y. Zhang, and M. Ding, “Video brush: A novel interface
for efficient video cutout,” Computer Graphics Forum, vol. 30, no. 7,
pp. 2049–2057, 2011.

[16] Z. Tang, Z. Miao, Y. Wan, and D. Zhang, “Video matting via opacity
propagation,” The Visual Computer, vol. 28, pp. 47–61, 2012.

[17] P. J. Burt and E. H. Adelson, “A multiresolution spline with appli-
cation to image mosaics,” ACM Transactions on Graphics, vol. 2,
pp. 217–236, October 1983.

[18] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM

Transactions on Graphics, vol. 22, no. 3, Jul. 2003.

[19] J. Jia, J. Sun, C.-K. Tang, and H.-Y. Shum, “Drag-and-drop pasting,”
ACM Transactions on Graphics, vol. 25, no. 3, pp. 631–637, Jul.
2006.

[20] Y. Zhang and R. Tong, “Environment-sensitive cloning in images,”
The Visual Computer, vol. 27, pp. 739–748, 2011.

[21] P. Bhat, B. Curless, M. Cohen, and C. Zitnick, “Fourier analysis
of the 2d screened poisson equation for gradient domain problems,”
Proceedings of European Conference on Computer Vision (ECCV),
pp. 114–128, 2008.

[22] M. Tao, M. Johnson, and S. Paris, “Error-tolerant image com-
positing,” Proceedings of European Conference on Computer Vision

(ECCV), pp. 31–44, 2010.

[23] H. Wang, R. Raskar, and N. Ahuja, “Seamless video editing,” in
International Conference on Pattern Recognition (ICPR). Wash-
ington, DC, USA: IEEE Computer Society, 2004, pp. 858–861.

[24] Z.-F. Xie, Y. Shen, L.-Z. Ma, and Z.-H. Chen, “Seamless video com-
position using optimized mean-value cloning,” The Visual Computer,
vol. 26, no. 6-8, pp. 1123–1134, 2010.

[25] J.-F. Lalonde, D. Hoiem, A. A. Efros, C. Rother, J. Winn, and
A. Criminisi, “Photo clip art,” ACM Transactions on Graphics,
vol. 26, no. 3, pp. 3:1–10, 2007.

[26] J. Lalonde, A. Efros, and S. Narasimhan, “Estimating natural il-
lumination from a single outdoor image,” in IEEE International

Conference on Computer Vision, 2009, pp. 183–190.

[27] K. Sunkavalli, M. K. Johnson, W. Matusik, and H. Pfister, “Multi-
scale image harmonization,” ACM Transactions on Graphics, vol. 29,
no. 4, pp. 125:1–125:10, 2010.

[28] S. Zhang, Q. Tong, S. Hu, and R. Martin, “Painting patches:
Reducing flicker in painterly re-rendering of video,” Science China

Information Sciences, vol. 54, pp. 2592–2601, 2011.

[29] A. Bousseau, F. Neyret, J. Thollot, and D. Salesin, “Video watercol-
orization using bidirectional texture advection,” ACM Transactions

on Graphics, vol. 26, July 2007.

[30] G. Zhang, X. Qin, W. Hua, T.-T. Wong, P.-A. Heng, and H. Bao,
“Robust metric reconstruction from challenging video sequences,”
in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2007, pp. 1 –8.

[31] F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agarwala, “Subspace
video stabilization,” ACM Transactions on Graphics, vol. 30, pp.
4:1–4:10, February 2011.

[32] J. Chen, S. Paris, J. Wang, W. Matusik, M. Cohen, and F. Du-
rand, “The video mesh: A data structure for image-based three-
dimensional video editing,” in IEEE International Conference on

Computational Photography (ICCP), april 2011, pp. 1 –8.

Tao Chen received the BS degree in Funda-
mental Science Class and the PhD degree in
computer science from Tsinghua University
in 2005 and 2011 respectively. He is cur-
rently a postdoctoral researcher in Depart-
ment of Computer Science and Technology,
Tsinghua University, Beijing. His research in-
terests include computer graphics, computer
vision and image/video composition. He re-
ceived the Netexplorateur Internet Invention
Award of the World in 2009, and China Com-

puter Federation Best Dissertation Award in 2011.

Jun-Yan Zhu received the BE degree with
honors in computer science and technology
from Tsinghua University in 2012. He is cur-
rently a PhD student in the Computer Sci-
ence Department at Carnegie Mellon Univer-
sity. His research interests include computer
vision, computer graphics and computational
photography.

Ariel Shamir is an associate Professor at
the school of Computer Science at the Inter-
disciplinary Center in Israel. Prof. Shamir re-
ceived his Ph.D. in computer science in 2000
from the Hebrew University in Jerusalem. He
spent two years at the center for computa-
tional visualization at the University of Texas
in Austin. During 2006 he held the position
of visiting scientist at Mitsubishi Electric Re-
search Labs in Cambridge MA. Prof. Shamir
he has numerous publications in journals and

international refereed conferences, he has a broad commercial ex-
perience working with and consulting numerous companies. He is a
member of the ACM SIGGRAPH, IEEE Computer and Eurographics
societies.

Shi-Min Hu received the PhD degree from
Zhejiang University in 1996. He is current-
ly a professor in the Department of Com-
puter Science and Technology at Tsinghua
University, Beijing. His research interests
include digital geometry processing, video
processing, rendering, computer animation,
and computer-aided geometric design. He
is associate Editor-in-Chief of The Visual
Computer, and on the editorial boards of
Computer-Aided Design and Computer &

Graphics. He is a member of the IEEE and ACM.

