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Abstract

This paper proposes a method for capturing the perfor-

mance of a human or an animal from a multi-view video

sequence. Given an articulated template model and silhou-

ettes from a multi-view image sequence, our approach re-

covers not only the movement of the skeleton, but also the

possibly non-rigid temporal deformation of the 3D surface.

While large scale deformations or fast movements are cap-

tured by the skeleton pose and approximate surface skin-

ning, true small scale deformations or non-rigid garment

motion are captured by fitting the surface to the silhou-

ette. We further propose a novel optimization scheme for

skeleton-based pose estimation that exploits the skeleton’s

tree structure to split the optimization problem into a local

one and a lower dimensional global one. We show on vari-

ous sequences that our approach can capture the 3D motion

of animals and humans accurately even in the case of rapid

movements and wide apparel like skirts.

1. Introduction

Estimating the 3D motion of humans or animals is a fun-

damental problem in many applications, including realis-

tic character animation for games and movies, or motion

analysis for medical diagnostics and sport science. Ide-

ally, one expects to both estimate an articulated rigid-body

skeleton that explains the overall motion of the character,

as well as the potentially non-rigid deformation of the sur-

face, e.g. caused by tissue or garment. On the one end of the

spectrum, many current automatic approaches track only a

skeleton model which poses strong restrictions on the sub-

ject, like tight clothing. Since garment motion, for instance,

is non-rigid and rarely aligned with the motion of the under-

lying articulated body, these algorithms often dramatically

fail if the subject wears wide clothing like a dress. On the

other end of the spectrum, there are methods which capture

a faithfully deforming 3D surface of the subject, but do not

provide an underlying skeleton.

In contrast, our approach captures both skeletal motion

as well as an accurately deforming surface of an animal

Figure 1. Our approach captures the motion of animals and hu-

mans accurately even in the case of rapid movements and wide

apparel. The images show three examples of estimated surfaces

that are superimposed on the images.

or human by fitting a body model to multi-view image

data. Our body model is a combination of a bone skele-

ton with joints, as well as a surface whose deformation is

only loosely coupled with the skeleton motion. We can

accurately capture both detailed surface deformations and

motion of wide apparel, which are essential for realistic

character animations. At the same time, the skeleton pro-

vides a low-dimensional motion parametrization which fa-

cilitates tracking of fast movements. Our captured perfor-

mances can be easily edited and used in animation frame-

works typical for games and movies, which are almost ex-

clusively skeleton-based. Finally, our approach exceeds the

performance of related methods from the literature since

both accurate skeleton and surface motion are found fully-

automatically. This is achieved by the following contribu-

tions:

• Our approach recovers the movement of the skeleton

and the temporal deformation of the 3D surface in an

interleaved manner. To find the body pose in the cur-

rent frame, we first optimize the skeletal pose and use

simple approximate skinning to deform the detailed

surface of the previous time step into the current time

step. Once converged, the fine surface deformation

at the current time step is computed without limiting

the deformation to comply with the skeleton. This im-
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proves also the skeleton estimation and avoids errors

caused by wide apparel since the refined surface model

of the previous frame provides a good approximation

of the surface at the current frame.

• Since skeleton-based pose estimation is more con-

strained than surface estimation, our approach is less

sensitive to silhouette noise than comparable visual

hull approaches and runs even on medium qual-

ity multi-view sequences like the HumanEva bench-

mark [23]. The reliability and accuracy of our ap-

proach is demonstrated on 12 sequences that consist of

over 5000 frames with 9 different subjects (including a

dog) performing a wide range of motions and wearing

a variety of clothing.1

• Since local optimization methods get stuck in local

minima and cannot recover from errors, they cannot

track challenging sequences without manual interac-

tion. In order to overcome the limitations of local op-

timization, we propose a novel optimization scheme

for skeleton-based pose estimation. It exploits the tree

structure of the skeleton to split the optimization prob-

lem into a local and a lower dimensional global opti-

mization problem.

The optimization scheme is motivated by the observa-

tion that local optimization is efficient and accurately tracks

most frames of a sequence. However, it fails completely in

some frames where the motion is fast or the silhouettes are

noisy. The error often starts at a certain limb or branch of

the skeleton and is propagated through the kinematic chain

over time until the target is irrevocably lost. Our approach

interferes before the error spreads. It detects misaligned

limbs after local optimization and re-estimates the affected

branch by global optimization. Since global optimization is

only performed for few frames and for a lower dimensional

search space, the approach is suitable for large data sets and

high dimensional skeleton models with over 35 degrees of

freedom.

2. Related Work

Marker-less human motion capture has been studied for

more than 25 years and is still a very active field in com-

puter vision [20]. From the beginning, skeleton-based pose

estimation techniques have been popular where articulated

bone hierarchies model a human’s motion and simple shape

proxies such as cylinder or superquadrics approximate the

surface.

Bregler and Malik [7] represent the kinematic chain

by twists and estimate the pose by local optimization.

Stochastic meta descent for local optimization has been

1For results and data, see www.vision.ee.ethz.ch/~gallju.

used in [18]. Gavrila and Davis [16] propose a search

space decomposition where the pose of each limb is esti-

mated in a hierarchical manner according to the kinematic

chain. Starting with the torso and keeping the parameters

of the other limbs fixed, the pose of each limb is locally

searched in a low-dimensional space one after another. This

approach, however, propagates errors through the kinematic

chain such that the extremities suffer from estimation errors

of preceding limbs. Drummond and Cipolla [13] iteratively

propagate the distributions of the motion parameters for the

limbs through the kinematic chain to obtain the maximum a

posteriori pose for the entire chain subject to the articulation

constraints. Besides stochastic approaches [24, 12], global

optimization techniques [9, 15] have been also proposed to

overcome the limitations of local optimization. However,

global optimization is still too expensive for large data sets

and skeletons with many degrees of freedom.

Since articulated models are not very realistic models of

the human body, implicit surfaces based on metaballs [21],

shape-from-silhouette model acquisition [8], or the learned

SCAPE body model [1, 3] have been proposed. While these

approaches model the human body without clothing, Balan

and Black [2] have used SCAPE to estimate the human body

underneath clothes from a set of images. Tracking humans

wearing more general apparel has been addressed in [22]

where a physical model of the cloth is assumed to be known.

In contrast to skeleton-based approaches, 3D surface es-

timation methods are able to capture time-varying geom-

etry in detail. Many approaches like [25, 27] rely on the

visual hull but suffer from topology changes that occur fre-

quently in shape-from-silhouette reconstructions. Mesh-

based tracking approaches as proposed in [11] and [10]

provide frame-to-frame correspondences with a consistent

topology. Fitting a mesh model to silhouettes and stereo,

however, requires a large amount of correspondences to op-

timize the high dimensional parameter space of a 3D mesh.

This, in turn, makes them more demanding on processing

time and image quality than skeleton-based methods.

Our approach is most similar to the work of Vlasic et

al. [28] where a two-pass approach has been proposed. In

the first pass, a skeleton is geometrically fit into the visual

hull for each frame. The second pass deforms a template

model according to the estimated skeleton and refines the

template to fit the silhouettes. Despite of visual appealing

results, a considerable amount of manual interaction is re-

quired, namely up to every 20th frame, to correct the errors

of the skeleton estimation. The errors are caused by fitting

the skeleton to the visual hull via local optimization without

taking a complete surface model or texture information into

account. Moreover, their visual hull approach is sensitive

to silhouette errors. In contrast, our local-global optimiza-

tion makes for a fully-automatic approach that also works

on data of poor image quality.
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(a) Mesh model (b) Segmented images (c) Estimated skeleton (d) Deformed surface (e) Estimated surface (f) Estimated 3D Model

Figure 2. Having an articulated template model (a) and silhouettes (b) from several views, our methods tracks the skeleton and estimates

the time-varying surface consistently without supervision by the user (f). Using the estimated surface of the previous frame, the pose of the

skeleton (c) is optimized such that the deformed surface (d) fits the image data. Since skeleton-based pose estimation is not able to capture

garment motion (d), the surface is refined to fit the silhouettes (e).

3. Overview

The performance of an animal or human is captured by

synchronized and calibrated cameras and the silhouettes are

typically extracted by background subtraction or chroma-

keying. Our body model comprises of two components,

a 3D triangle mesh surface model M with 3D vertex lo-

cations Vi, and an underlying bone skeleton as shown in

Figure 2 a. We assume that a 3D surface model M of the

tracked subject in a static pose is available. It might be ac-

quired by a static full-body laser scan or by shape-from-

silhouette methods. In our experiments, we demonstrate re-

sults for both cases, but would like to note that model ac-

quisition is outside of the scope of this paper. A kinematic

skeleton is then inserted into the 3D mesh. In our case, an

object-specific skeleton with usually around 36 degrees-of-

freedom is generated by manually marking the joint posi-

tions. Thereafter, weights ρi,k are automatically computed

for each Vi which describe the association of Vi with each

bone k [5]. The weights allow us to do skinning, i.e. a sim-

ple approximation of non-linear surface deformation based

on the skeleton pose. Weighted skinning is used to inter-

polate the joint transformations on a per-vertex-basis. We

use quaternion blend skinning [17] which produces less ar-

tifacts than linear blend skinning methods.

An outline of the processing pipeline is given in Figure 2.

Starting with the estimated mesh and skeleton from the pre-

vious frame, the skeleton pose is optimized as described in

Section 4 such that the projection of the deformed surface

fits the image data in an globally optimal way (Figure 2 c).

Since this step only captures deformations that can be ap-

proximated by articulated surface skinning (Figure 2 d),

subsequently the non-rigid surface is refined as described

in Section 5 (Figure 2 e). The estimated refined surface and

skeleton pose serve as initialization for the next frame to be

tracked.

(a) (b) (c) (d)

Figure 3. Although local optimization is prone to errors, often only

a single branch of the kinematic chain is affected (a). This reduces

the computational burden for global optimization since it can be

performed in a lower dimensional subspace to correct the estima-

tion error (b). After detecting misaligned limbs (red circle), the

kinematic chain is traversed (red arrows) to label bones and asso-

ciated joints that have to be globally optimized (c,d).

4. Skeleton-based Pose Estimation

Since local pose optimization is prone to errors and

global pose optimization is very expensive, our method es-

timates poses in two phases. The first phase searches for the

nearest local minimum of an energy functional that assesses

the model-to-image alignment based on silhouettes and tex-

ture features. To this end, the whole articulated skeleton is

optimized locally (Section 4.1). Subsequently, misaligned

bones are detected by evaluating the energy Ek of each rigid

body part. When the energy exceeds a given threshold, the

affected limb is labeled as misaligned. In addition, the pre-

ceding limb in the kinematic chain is also labeled when the

joint between the limbs has less than three degrees of free-

dom (e.g. knee or elbow). For instance, a wrong estimate

of the shank might be caused by a rotation error along the

axis of the thigh. Then the labeling process is continued

such that all bones until the end of the branch are labeled

as illustrated in Figure 3. Thereafter, the labeled bones are

re-estimated by global optimization (Section 4.2).
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4.1. Local Optimization

The articulated pose is represented by a set of twists θj ξ̂j

as in [7]. A transformation of a vertex Vi which is associated

with bone ki and influenced by nki
out of totally N joints

is given by

TχVi =

nki
∏

j=0

exp
(

θιki
(j)ξ̂ιki

(j)

)

Vi, (1)

where the mapping ιki
represents the order of the joints in

the kinematic chain. Since the joint motion depends only on

the joint angle θj , the state of a kinematic chain is defined by

a parameter vector χ := (θ0ξ0,Θ) ∈ R
d that consists of the

six parameters for the global twist θ0ξ̂0 and the joint angles

Θ := (θ1, . . . , θN ). We remark that (1) can be extended by

taking the skinning weights into account as in [4].

For estimating the parameters χ, a sufficient set of point

correspondences between the 3D model Vi and the current

frame xi is needed. For the local optimization, we rely on

silhouette contours and texture. Contour correspondences

are established between the projected surface and the image

silhouette by searching for closest points between the re-

spective contours. Texture correspondences between two

frames are obtained by matching SIFT features [19]. In

both cases, the 2D correspondences are associated with a

projected model vertex Vi yielding the 3D-2D correspon-

dences (Vi, xi). In the contour case, xi is the point on the

image contour closest to the projected vertex location vi in

the current frame. In the texture case, xi is the 2D location

in the current frame that is associated with the same SIFT

feature as the projected vertex Vi in the previous frame.

Since each 2D point xi defines a projection ray that can be

represented as Plücker line Li = (ni,mi) [26], the error of

a pair (TχVi, xi) is given by the norm of the perpendicular

vector between the line Li and the transformed point TχVi:

‖Π(TχVi) × ni − mi‖2 , (2)

where Π denotes the projection from homogeneous co-

ordinates to non-homogeneous coordinates. Using Equa-

tions (1) and (2), one obtains the weighted least squares

problem

argmin
χ

1

2

∑

i

wi ‖Π(TχVi) × ni − mi‖
2
2 (3)

that can be solved iteratively and linearized by using the

Taylor approximation exp(θξ̂) ≈ I + θξ̂, where I denotes

the identity matrix. In order to stabilize the optimization,

the linear system is regularized by βθj = βθ̂j where θ̂j

is the predicted angle from a linear 3rd order autoregres-

sion and β is a small constant. The pose χ̂ represented by

all θ̂j can be regarded as a conservative prediction for the

current frame. Since the optimization regards the limbs as

rigid structures, the mesh is updated between the iterations

by quaternion blending [17] to approximate smooth surface

deformation.

While contour correspondences are all weighted equally

with wC
i = 1, the texture correspondences have higher

weights wT
i during the first iteration since they can han-

dle large displacements. For the first iteration, we set the

weights such that
∑

i wT
i = α

∑

i wC
i with α = 2.0, i.e.

the impact of the texture features is twice as high as the

contour correspondences. After the first iteration, the solu-

tion already converges to the nearest local minimum such

that the texture features can be down-weighted by α = 0.1.

In addition, obvious outliers are discarded by thresholding

the re-projection error of the texture correspondences.

After the local optimization has converged to a solu-

tion χ, the error for each limb is evaluated individually.

Since each correspondence is associated with one limb k,

the limb-specific energy is obtained by

Ek(χ) =
1

K

∑

{i;ki=k}

‖Π(TχVi) × ni − mi‖
2
2 , (4)

where only contour correspondences are used and K =
|{i; ki = k}|. If at least one limb exceeds the predefined

upper bound of the energy function, the second phase of the

optimization, global optimization, is initiated.

4.2. Global Optimization

After labeling the joints of the misaligned limbs as il-

lustrated in Figure 3, the parameter space of the skeleton

pose R
d is projected onto a lower dimensional search space

P (χ) → χ̃ ∈ R
m with m ≤ d by keeping the parameters

of the non-labeled joints fixed. In order to find the optimal

solution for χ̃, we minimize the energy

argmin
χ̃

{

ES(P−1(χ̃)) + γ ER(χ̃)
}

. (5)

While the first term measures the silhouette consistency be-

tween the projected surface and the image, the second term

penalizes strong deviations from the predicted pose and

serves as a weak smoothness prior weighted by γ = 0.01.

The silhouette functional ES(P−1(χ̃)) is a modifica-

tion of the Hamming distance. Using the inverse mapping

χ = P−1(χ̃) as new pose, the surface model is deformed

by quaternion blend skinning and projected onto the image

plane for each camera view c. The consistency error for a

single view is then obtained by the pixel-wise differences

between the projected surface Sp
c (χ) in model pose χ and

the binary silhouette image Sc:

Ec
S(χ) =

1

area(Sp
c )

∑

p

|Sp
c (χ)(p) − Sc(p)|

+
1

area(Sc)

∑

q

|Sc(q) − Sp
c (χ)(q)| , (6)
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where the sums with respect to p and q are only computed

over the silhouette areas of Sp
c (χ) and Sc, respectively. In

order to penalize pixel mismatches that are far away from

the silhouette, a Chamfer distance transform is previously

applied to the silhouette image. The silhouette term ES is

finally the average of Ec
S over all views.

The second term of the energy function (5) introduces

a smoothness constraint by penalizing deviations from the

predicted pose χ̂ in the lower dimensional space:

ER(χ̃) = ‖χ̃ − P (χ̂)‖2
2. (7)

Since we seek for the globally optimal solution for

χ̃ ∈ R
m, we use a particle-based global optimization ap-

proach [14, 15]. The method is appropriate to our optimiza-

tion scheme since the computational effort can be adapted

to the dimensions of the search space and the optimization

can be initiated with several hypotheses. It uses a finite set

of particles to approximate a distribution whose mass con-

centrates around the global minimum of an energy function

as the number of iterations increases. In our setting, each

particle represents a single vector χ̃ in the search space that

can be mapped to a skeleton pose by the inverse projection

P−1. The computational effort depends on two parameters,

namely the number of iterations and the number of parti-

cles. While the latter needs to be scaled with the search

space, the number of iterations can be fixed. In our experi-

ments, we have used 15 iterations and 20 ∗m particles with

a maximum of 300 particles. These limits are necessary to

have an upper bound for the computation time per frame.

Furthermore, the optimization is performed on the whole

search space when more than 50% of the joints are affected.

It usually happens when the torso rotation is not well esti-

mated by the local optimization which is however rarely the

case.

The initial set of particles is constructed from two hy-

potheses, the pose after the local optimization and the pre-

dicted pose. To this end, we uniformly interpolate between

the two poses and diffuse the particles by a Gaussian kernel.

5. Surface Estimation

Since quaternion blend skinning is based on the overly

simplistic assumption that the surface deformation is ex-

plained only in terms of an underlying skeleton, the posi-

tions of all vertices need to be refined to fit the image data

better as illustrated in Figures 2 d and e. To this end, we

abandon the coupling of vertices to underlying bones and

refine the surface by an algorithm that is related to the tech-

niques used by de Aguiar et al. [10] and Vlasic et al. [28].

We also use a Laplacian deformation framework (see [6] for

a comprehensive overview) to move the silhouette rim ver-

tices of our mesh (vertices that should project onto the sil-

houette contour in one camera) towards the corresponding

silhouette contours of our images. In contrast to previous

work we do not formulate deformation constraints in 3D,

i.e. we do not require contour vertices on the model M to

move towards specific 3D points found via reprojection. In-

stead, we constrain the projection of the vertices to lie on

2D positions on the image silhouette boundary. This makes

the linear system to be solved for the refined surface more

complex, as we have to solve for all three dimensions con-

currently rather than sequentially, as is possible in the previ-

ous works. But on the other hand this gives the deformation

further degrees of freedom to adapt to our constraints in the

best way possible. We reconstructed the refined surface by

solving the least-squares system

argmin
v

{

‖LV − δ‖2
2 + α‖CsilV − qsil‖

2
2

}

. (8)

Here, L is the cotangent Laplacian matrix and δ are the

differential coordinates of our current mesh with vertices

V [6]. The second term in our energy function defines the

silhouette constraints and their weighting factor α. Ma-

trix Csil and vector qsil are assembled from individual con-

straints that take the following form: Given the 3 × 4 pro-

jection matrix M ℓ of a camera ℓ, split into its translation

vector T ℓ and the remaining 3 × 3 transformation N ℓ, the

target screen space coordinates vi = (vi,u, vi,v) and the 3D

position Vi of a vertex on the 3D silhouette rim of M, we

can express a silhouette alignment constraint using two lin-

ear equations:

(N ℓ
1 − vi,uN ℓ

3)Vi = −T ℓ
1 + vi,uT ℓ

3

(N ℓ
2 − vi,vN ℓ

3)Vi = −T ℓ
2 + vi,vT ℓ

3
(9)

Here the subscripts of Ni and Ti correspond to the respec-

tive rows of the matrix/entry of the vector. These equations

force the vertex to lie somewhere on the ray going through

the camera’s center of projection and the pixel position vi.

Since the error of this constraint is depth-dependent and

thus not linear in the image plane, we weight each constraint

such that the error is 1 for a single pixel difference at the

original vertex position.

Enforcing too high weights for our constraints may lead

to an overadaptation in presence of inaccurate silhouettes.

We therefore perform several iterations of the deformation,

using lower weights. As the silhouette rim points may

change after a deformation, we have to recalculate them

following each deformation. In all our experiments we per-

formed 8 iterations and used weights of α = 0.5.

The estimation for the next frame is then initiated with

the estimated skeleton and an adapted surface model which

is obtained by a linear vertex interpolation between the

mesh from skeleton-pose estimation V
t,p
i and the refined

mesh V
t,r
i , i.e. V t+1

i = λV
t,r
i + (1 − λ)V t,p

i . In general, a

small value λ = 0.1 is sufficient and enforces mesh consis-

tency
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(a) (b) (c)

Figure 4. Visual comparison of our approach with [10]. (a) Input

image. (b) Tracked surface mesh from [10]. (c) Tracked surface

mesh with lower resolution obtained by our method. While [10]

handles loose clothes better, our approach estimates the human

pose more reliably.

We finally remark that the surface estimation uses 2D

constraints while the skeleton-based pose estimation (Sec-

tion 4) uses 3D constraints. In both cases 3D constraints can

be computed faster, but 2D constraints are more accurate.

We therefore resort to 3D constraints during skeleton-based

pose estimation which only produces an approximate pose

and surface estimate, but use 2D constraints during refine-

ment where accuracy matters.

6. Experiments

For a quantitative and qualitative evaluation of our ap-

proach, we have recorded new sequences and used pub-

lic available datasets for a comparison to the related meth-

ods [10] and [28]. Altogether, we demonstrate the reliability

and accuracy of our method on 12 sequences with 9 differ-

ent subjects. An overview of the sequences is given in Ta-

ble 1. The number of available camera views ranges from 4

to 8 cameras and the 3D surface models have been acquired

by a static full body laser scan or by a shape-from-silhouette

method, or by the SCAPE model. While our newly recorded

sequences have been captured with 40Hz at 1004x1004
pixel resolution, the other sequences are recorded with the

settings: 25Hz and 1920x1080 pixel resolution [25], 25Hz

and 1004x1004 pixel resolution [10], or 60Hz and 656x490
pixel resolution [23]. Despite of the different recording set-

tings, the sequences cover various challenging movements

from rapid capoeira moves over dancing sequences to a

handstand where visual hull approaches are usually prone

to topology changes. Furthermore, we have addressed scale

issues by capturing the motion of a small dog and wide

apparel by three skirt sequences where skeleton-based ap-

proaches usually fail. The last column in Table 1 gives the

achieved dimensionality reduction of the search space for

global optimization and indicates the reduced computation

Sequence Frames Views Model %DoF

Handstand 401 8 Scan 3.3
Wheel 281 8 Scan 0.2
Dance 574 8 Scan 4.0
Skirt 721 8 Scan 0.2
Dog 60 8 Scan 98.3

Lock [25] 250 8 S-f-S 33.9

Capoeira1 [10] 499 8 Scan 3.4
Capoeira2 [10] 269 8 Scan 11.8
Jazz Dance [10] 359 8 Scan 43.8

Skirt1 [10] 437 8 Scan 7.2
Skirt2 [10] 430 8 Scan 6.5

HuEvaII S4 [23] 1258 4 SCAPE 79.3

Table 1. Sequences used for evaluation. The first 5 sequences are

newly recorded. The other sequences are public available datasets.

The sequences cover a wide range of motion, apparel, subjects,

and recording settings. The last column gives the average dimen-

sionality of the search space for the global optimization in percent-

age of the full search space.

Figure 5. Comparison of our optimization scheme with local op-

timization. The bars show the average error and standard devi-

ation of the joint positions of the skeleton for the S4 sequence

of the HumanEva benchmark. The three sets cover the frames

2 − 350 (walking), 2 − 700 (walking+jogging), and 2 − 1258

(walking+jogging+balancing). While our approach recovers ac-

curately the joint positions over the whole sequence, the error for

local optimization is significantly larger.

time. On the newly recorded sequences, the surface esti-

mation requires 1.7 seconds per frame (spf), the local opti-

mization 3 spf, and the global optimization 14 seconds for

each DoF (maximal 214 spf). For the skirt sequence, the av-

erage computation time for all steps is 9 spf whereas global

optimization without local optimization takes 216 spf using

15 iterations and 300 particles.

The examples in Figure 6 show that our approach ac-

curately estimates both skeleton and surface deformation.
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Even the challenging lock sequence [25] can be tracked

fully automatically whereas the approach [28] requires a

manual pose correction for 13 out of 250 frames. A vi-

sual comparison with a mesh-based method [10] is shown

in Figure 4. Since this method does not rely on a skeleton,

it is free of skinning artifacts and estimates apparel surfaces

more accurately. The prior skeleton model in our approach,

on the other hand, makes pose recovery of the extremities

more accurate.

In contrast to [10] and [28], our algorithm can also

handle medium-resolution multi-view sequences with ex-

tremely noisy silhouettes like the HumanEvaII bench-

mark [23]. The dataset provides a ground truth for 3D

joint positions of the skeleton that has been obtained by a

marker-based motion capture system that was synchronized

with the cameras. The sequences S4 with three subsets con-

tains the motions walking, jogging, and balancing. The av-

erage errors for all three subsets are given in Figure 5. The

plot shows that our method provides accurate estimates for

the skeleton pose, but it also demonstrates the significant

improvement of our optimization scheme compared to lo-

cal optimization. We finally remark that the jazz dance se-

quence contains some inaccurate estimates for the feet. The

errors do not result from the optimization itself, but a sil-

houette problem in the data. Therefore the functional being

optimized, which is dominated by this error-corrupted term,

may lead to problems. This could be improved by using ad-

ditional cues like edges.

7. Conclusion

We have presented an approach that recovers skeleton

pose and surface motion fully-automatically from a multi-

view video sequence. To this end, the skeleton motion

and the temporal surface deformation are captured in an

interleaved manner that improves both accurate skeleton

and detailed surface estimation. In addition, we have in-

troduced a novel optimization scheme for skeleton-based

pose estimation that makes automatic processing of large

data sets feasible. It reduces the computational burden for

global optimization in high dimensional spaces by split-

ting the skeleton-specific optimization problem into a lo-

cal optimization problem and a lower dimensional global

optimization problem. The reliability of our approach has

been evaluated on a large variety of sequences including the

HumanEva benchmark. The proposed method exceeds the

performance of related methods since it allows both accu-

rate skeleton estimation for subjects wearing wide apparel

and surface estimation without topology changes for fast

movements and noisy silhouettes. This simplifies the acqui-

sition of marker-less motion capture data for applications

like character animation and motion analysis.

The work was partially funded by the Cluster of Excellence on Multi-

modal Computing and Interaction.
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Figure 6. Input image, adapted mesh overlay, and 3D model with estimated skeleton from a different viewpoint respectively.
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