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Abstract

We present a novel off-line algorithm for target segmentation and tracking in video.

In our approach, video data is represented by a multi-label Markov Random Field model,

and segmentation is accomplished by finding the minimum energy label assignment. We

propose a novel energy formulation which incorporates both segmentation and motion

estimation in a single framework. Our energy functions enforce motion coherence both

within and across frames. We utilize state-of-the-art methods to efficiently optimize over

a large number of discrete labels. In addition, we introduce a new ground-truth dataset,

called SegTrack, for the evaluation of segmentation accuracy in video tracking. We com-

pare our method with two recent on-line tracking algorithms and provide quantitative and

qualitative performance comparisons.

1 Introduction

Recent work in visual target tracking has explored the interplay between state estimation and

target segmentation [1, 6, 15]. In the case of active contour trackers and level set methods, for

example, the state model of an evolving contour corresponds to a segmentation of target pix-

els in each frame. One key distinction, however, between tracking and segmentation is that

tracking systems are designed to operate automatically once the target has been identified,

while systems for video object segmentation [18] are usually interactive, and incorporate

guidance from the user throughout the analysis process. A second distinction is that tracking

systems are often designed for on-line, real-time use, while segmentation systems can work

off-line and operate at interactive speeds.

Several recent works have demonstrated excellent results for on-line tracking in real-

time [1, 6]. However, the quality of the segmentations produced by on-line trackers is in

general not competitive with those produced by systems for interactive segmentation [13, 14,

18], even in cases where the user intervention is limited. One reason is that segmentation-

based methods often adopt a global optimization method (e.g. graphcut) and explicitly search

a large fine-grained space of potential segmentations. In contrast, for tracking-based methods

the space of possible segmentations is usually defined implicitly via the parameterization of

the target model, and segmentation accuracy may be traded for computational efficiency.
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Our work is motivated by applications in biotracking, where there is a need for a general

purpose tool for tracking a wide range of animals with different morphologies. In these

applications, an off-line batch formulation of video analysis is acceptable, but the need for

guidance by the user must be minimized in order for the tool to be useful to biologists.

Furthermore, while it is highly-desirable to be able to reliably segment the limbs of a target

animal, in order to analyze its behavior, it is usually not necessary to obtain the pixel-accurate

segmentations that are needed in video post-production and special effects domains.

This paper describes a new method for automatic target segmentation and tracking which

uses a multi-label Markov Random Field (MRF) formulation to sequentially “carve” a target

of interest out of a video volume. Our goal is to obtain higher-quality segmentations than

existing on-line methods, without requiring significant user interaction. The primary nov-

elty of our approach is our treatment of the inter-related tasks of segmenting the target and

estimating its motion as a single global multi-label assignment problem. Energy functions

enforce the temporal coherence of the solution, both spatially and across time. The result

is a clean problem formulation based on global energy minimization. In contrast, on-line

tracking methods can employ a diverse set of techniques to achieve good performance, in-

cluding adaptive cue combination [1], spatially-varying appearance models [6], and shape

priors [4]. We demonstrate experimentally that our approach can yield higher-quality seg-

mentations than these previous methods, at the cost of greater computational requirements

within a batch formulation.

A second goal of this work is to support the quantitative assessment of segmentation qual-

ity in tracking, through the development of a standardized database of videos with ground-

truth segmentations. There has been no systematic quantitative or comparative evaluation

of segmentation quality within the visual tracking literature.1 We identify three properties

of video sequences that can hamper segmentation: color overlap between target and back-

ground appearance, interframe motion, and change in target shape. We have developed a

quantitative measure for each of these properties, and have assembled an evaluation dataset,

called SegTrack, which spans the space defined by these challenges. We provide quantitative

and qualitative evaluation of our method and compare it to two recent on-line contour-based

trackers [1, 6].

In summary, this paper makes three contributions:

• We introduce a novel multi-label MRF formulation of video tracking which provides

high-quality target segmentations and can handle extended video sequences.

• We propose an energy function that can enforce motion coherence between spatial

neighbors and across the temporal dimension.

• We present a novel database that supports systematic quantification of segmentation

quality with respect to three types of challenges found in real-world video footage.

2 Related Work
There are two bodies of previous work which are related to our method. The first are tech-

niques for video object segmentation and layer segmentation which also make use of an

MRF formulation. The second are tracking methods which make use of the segmentation of

the target object.

1In contrast, there has been extensive work on comparing the state estimation performance of standard state-

based trackers. Some representative examples are [9] and the VS-PETS workshops.
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Video object segmentation is usually formulated as a binary labeling problem in an MRF

and solved using graphcut. In the formulation from [3], the MRF is instantiated in the tem-

poral dimension by linking corresponding pixel sites in adjacent frames, and the solution is

given by a volume graphcut.2 This approach was improved by Li et. al. [13], by creating

links between superpixels in adjacent frames. In contrast to these earlier works, we incorpo-

rate motion and segmentation constraints into a single unified multi-label formulation.

There are many alternative ways to enforce temporal coherence in video analysis, using

techniques like KLT Tracking [14, 19], SIFT matching [18] and optical flow. These methods

rely heavily on the quality of the motion estimates and may fail in challenging sequences.

Furthermore, the flow in these works is primarily calculated between pairs of frames, and

does not exploit coherence over larger time windows. Other works which address the joint

computation of optical flow and segmentation [5, 21] are based on iterative estimation meth-

ods which do not provide any global guarantees on solution quality.

Recently, there have been significant advances in discrete optimization methods for large

label spaces. Komodakis et. al. proposed a discrete optimization algorithm called Fast-

PD [10], which provides an efficient approach to minimizing the discrete MRF energy. It

has been used in image registration [7], stereo disparity estimation [10], and optical flow

estimation [8]. In these latter applications it is sufficient to analyze pairs of frames, while

our case requires the analysis of the entire video volume.

A large number of on-line tracking methods can produce object segmentations (repre-

sentative examples are [1, 6, 17]). Since these methods are fully-automatic, they represent

an interesting point of comparison. Bibby and Reid describe an impressive tracking sys-

tem in [1], which demonstrates adaptation of the target model and integration of multiple

cues so as to track a wide range of challenging targets. A level-set based system, described

in [6], uses a combination of spatially-constrained appearance modeling and motion estima-

tion to achieve good segmentation performance. In comparison to these works, we employ

a volumetric multi-label MRF formulation. In addition, we conduct the first quantitative and

qualitative comparisons between these existing methods using a standardized testing set with

ground-truth.

3 Multi-Label MRF Framework

Given a video sequence and manual initialization of a target of interest in the first frame, our

goal is to carve the moving target out of the video volume, yielding a target segmentation

at every frame. We adopt the volumetric MRF formulation, in which the video volume is

represented as a multi-label MRF with hidden nodes corresponding to the unknown labels.

The resulting optimization problem is to find the joint label assignment L for all pixel sites

in the video volume that minimizes

E(L) = ∑
p∈G

Vp(lp)+ ∑
p∈G

∑
q∈N(p)

Vpq(lp, lq), (1)

where L =
{

lp

}

p∈G
,Vp(·) are the unary potentials representing the data term, Vpq(·, ·) are

the pairwise potentials representing the smoothness term, G represents the set of pixel sites

(nodes) in the video volume, and N represents the neighborhood system of the nodes, both

spatially and temporally. In this section, we define the label space and energy terms used in

Equation 1.
2Volume graphcuts have also been employed in medical image segmentation [2, 12].
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Figure 1: Illustration of label definition. We illustrate the label space for a center pixel

in frame t. If the maximum displacement in the x direction is 2, then there are 5 possible

displacements ranging from (-2,0) to (2,0). In each case, the pixel can also be labeled either

foreground (red, lower left figure) or background (black, lower right figure), resulting in 10

possible labels per pixel.

3.1 Definition of Label Sets
In contrast to the standard approach to MRF-based segmentation, our label set augments

the usual foreground/background binary attribute with a discrete representation of the flow

between frames. Associated with each label is a quantized motion field {d1
, · · · ,di}, such

that the label assignment lp to pixel site p is associated with displacing that node by the

corresponding vector dlp . If the maximum possible spatial displacement in x or y is M,

and all integer displacements are allowed, then there will be a total of (2M+1)2 (including

zero displacement) flow possibilities for a single pixel in a 2D image. In addition, each

pixel can be either foreground or background, leading to a total of 2× (2M+1)2 labels per

pixel. Figure. 1 illustrates these combinations for a simple 1D example. Note that we take

the Cartesian product of attributes and flows (rather than their sum) because the interaction

between these two components is a key element in enforcing temporal coherence between

frames.

3.2 Data Term
The data term in Equation 1 is defined as follows:

Vp(lp) =
∫

Ω
w(x, p) ·ρ(I(x), I(x+D(lp)))dx

︸ ︷︷ ︸

Appearance Similarity

+ Up(lp)
︸ ︷︷ ︸

Appearance Model

(2)

The first term in Equation 2 measures the appearance similarity across the temporal di-

mension. Ω represents the nodes in the local patch, I(·) is the intensity of the pixel, and

ρ(·, ·) is the similarity measurement. Our implementation uses the Gaussian weighted Sum

of Absolute Differences between the two patches centered by control points. This is very

similar to the pixel-based matching costs used in stereo matching. Other more sophisticated

measures such as normalized cross correlation, Rank Filter, or mutual information, could be

used instead.

The second term measures pixel appearance relative to the foreground/background color
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frame t+3
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Figure 2: Example of Motion Coherence. (a) The movement is both spatially and tempo-

rally coherent (b) The movement is spatially and temporally incoherent.

models, and is defined as:

Up(lp) =

{
− logPr f g(p) Attr(lp) = f g

− logPrbg(p) Attr(lp) = bg
(3)

The appearance model term helps to decide whether one pixel is more likely to be fore-

ground or background. We employ Gaussian Mixture Models for both target and background

in RGB color space. These models are used to compute the pixel likelihoods in Equation 3.

3.3 Smoothness Term
The smoothness term is an important part of our formulation. It incorporates coherence

in attributes over time as well as spatial and temporal motion coherence. In Equation 1,

for each pixel p, we use N(p) to denote its neighbors, which includes both spatially and

temporally-adjacent pixel sites. An example is given in Figure 1. The yellow pixels are the

spatial neighbors of the target pixel, while the green pixels are the temporal neighbors. We

compute pairwise energies for every pair of neighbors. So for each pixel, there are a total

of 4 spatial neighbors and (2M + 1)2 temporal neighbors. The basic coherence function is

given in Equation 4. It is evaluated directly for spatial neighbors. For temporal neighbors, we

must ensure that it is only applied to corresponding pixels. Let Corr(lp) for a site p at time

t denote the corresponding site at time t + 1 that p maps to under the displacement D(lp).
The coherence term for temporal neighbors (p,q) is then given by Vpq(lp, lq)δ (q,Corr(lp)),
where δ denotes the indicator function which is one when its two arguments are equal and

zero otherwise.

Vpq(lp, lq) = λ |D(lp)−D(lq)|
︸ ︷︷ ︸

Motion Coherence

+ Upq(lp, lq)
︸ ︷︷ ︸

Attribute Coherence

(4)

The first term of Equation 4 captures the property of motion coherence, and has both spatial

and temporal components. In the spatial dimension, the intuition is that points which are

close to one another will move coherently. In the temporal dimension, the intuition is that the

object should maintain a coherent movement across frames. This is illustrated in Figure 2.

Returning to Equation 4, its second term captures the property of attribute coherence as

Upq(lp, lq) =

{
Ec Attr(lp) 6= Attr(lq)
0 Attr(lp) = Attr(lq)

(5)

This term models the interaction between segmentation and estimated motion, and is the

key benefit of the joint label space illustrated in Figure. 1. It penalizes labellings in which
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spatial and temporal neighbors receive different segmentations (i.e. pixel attributes). In

the spatial domain, it enforces the constraint that adjacent pixels have the same attributes.

This is identical to the spatial smoothness constraint used in the standard binary label MRF

formulation. In the temporal domain, it enforces the constraint that the two pixels connected

by a flow vector (i.e. temporal neighbors) should have the same attribute label.

3.4 Optimization and Propagation

In order to optimize the energy function in Equation 1, we adopt the Fast-PD method of

Komodakis et. al. [10, 11]. This discrete optimization technique takes advantage of the

primal-dual principle, which can be stated as a relationship between two problem formula-

tions:

Primal:min cTx Dual:max bTy

s.t. Ax = b,x ≥ 0 s.t. ATy ≤ c. (6)

Let x and y be integral-primal and dual feasible solutions having a primal-dual gap less than

f , which can be written:

cTx ≤ f ·bTy. (7)

Then x is an f -approximation to the optimal integral solution x∗: cTx∗ ≤ cTx ≤ f · cTx∗.

Fast-PD has demonstrated impressive performance in multi-label MRF optimization.

The generated solution is guaranteed to be be an f -approximation to the true optimum, and

in practice the per-instance approximation factor often drops quickly to 1 [10]. Fast-PD can

provide substantial speed-ups over conventional graphcut methods such as alpha-expansion,

which would be unacceptably slow for a large label space such as ours. In our experiments,

we use the library described in [11].

In our implementation, we use a multi-grid sliding window approach to address the prac-

tical infeasibility of storing the entire video volume graph in memory. We perform a global

optimization on a window of n frames and infer motion and segmentation variables simulta-

neously. Within each window, we use down-sampled control points as nodes to reduce the

spatial resolution, increasing computational efficiency. We then use the standard graph cut

to interpolate the down-sampled segmentation result to the original size. For each sliding

window position, the first frame of the current window is overlapped with the last frame of

the previous window. Hard constraints are established for the first frame using labels ob-

tained from the previous volumetric label assignment (or from the initialization frame in the

beginning.) This enforces the continuity of the solution between window evaluations.

4 SegTrack Database
In addition to developing an effective motion coherent tracker, the second goal of this work

is to facilitate a deeper understanding of the trade-offs and issues involved in on-line and off-

line formulations of video segmentation and tracking, via a standardized database of videos

with ground-truth segmentations. There has been very little comparative work addressing

the segmentation performance of tracking methods. Our starting point was to identify three

properties of video sequences that pose challenges for segmentation quality: color overlap

between target and background appearance, interframe motion, and change in target shape.

We developed a quantitative measure for each these phenomena, described below, and we

systematically assembled an evaluation dataset, called SegTrack, which spans the space of

challenges. We also provide direct comparison between our batch tracking method and two

state-of-the-art on-line contour-based algorithms [1, 6].
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In order to obtain a set of sequences which adequately cover the space of challenge prop-

erties, we went through the following selection procedure. First, a set of 11 image sequences

were manually identified as potentially containing the desired challenge combinations. Each

sequence was manually rated as being either high or low with respect to each challenge type.

The sequences were assigned to one of eight combination bins (high/low per challenge for

3 challenges). Next, the sequences were manually segmented and the challenge measures

were computed for each one. Finally, using the computed measures we selected six image

sequences, ranging in length from 21 to 70 frames, that maximally cover the challenge space.

We can see from Table 1 that with respect to the challenge measures (color, motion, and

shape), the difficulty of the sequences can be characterized as: parachute: low-low-low, girl:

low-low-high, monkeydog: low-high-high, penguin: high-low-low, bird: high-high-low, and

cheetah: high-high-high. We now describe the three challenge metrics.

Target-background color overlap: An accurate segmentation of the target, provided by

the user, is commonly used to estimate a color model for the target and non-target pixels. Un-

fortunately, the discriminative power of such models is inversely proportional to the degree

of overlap between the figure-ground color distributions. Numerous trackers and interactive

segmentation systems evaluate color overlap to decide how and when to lessen the impor-

tance of color and increase reliance on other models of the target (e.g. a locally modeled

shape prior as in [18]). We chose to model target and ground colors with GMMs containing

5 Gaussians. Equation 8 gives a formula for evaluating color overlap on a per-frame basis.

High C1 values correspond to large target-background overlap, which makes segmentation

and tracking more difficult. The average measure per sequence is given in Table 1.

C1 =

∫

X∈ f g p(X |bg)
∫

X∈ f g p(X | f g)
+

∫

X∈bg p(X | f g)
∫

X∈bg p(X |bg)
(8)

Interframe target motion: Many tracking systems rely on the matching of discrimi-

native local features to maintain temporal coherence. Large target motions result in an ex-

panded search space for registration, which can result in poor matching performance. From

ground truth segmentation, we measure interframe motion as the foreground XOR intersec-

tion area normalized by the mean object bounding box area. The per-frame average motion

is reported in Table 1.

Target shape change: Shape priors constructed from target initialization, keyframes

(as obtained automatically in [20]) and previously-segmented frames are often adaptively

applied when other appearance models (e.g. color) are predicted to have small discriminative

power. When target shape is relatively constant and motion estimation is reliable, shape

priors can be used to track reliably in sequences with large figure-ground color overlap and

occlusions [18]. However, when motion estimation is unreliable or shape change is drastic,

this strategy can fail for obvious reasons. The SegTrack database contains such challenging

scenarios. The measurement of shape change is similar to that of target motion: it is given

by the foreground XOR intersection area normalized by the mean object bounding box area

after compensating for translational motion estimated from centroid differences. Table 1

reports the mean shape change for each sequence.

5 Experiments
In this section, we provide experimental evidence for the benefits of our approach. First,

we provide quantitative comparisons to the method described in [6], using the SegTrack

Database. Second, we provide qualitative performance comparisons to [1] and [6], demon-

strating our method’s ability to generate more accurate segmentations in many cases. Finally,
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sequence color motion shape Our score [6] score

parachute .038 .119 .024 235 502

girl .205 .145 .147 1304 1755

monkeydog .299 .243 .132 563 683

penguin 1.02 .016 .013 1705 6627

birdfall .466 .283 .070 252 454

cheetah .760 .273 .187 1142 1217

Table 1: SegTrack database metrics and scores: Challenge measures and scores for each of

the six SegTrack sequences. Scores correspond to average number of error pixels per frame.

Select frames from parachute, girl, monkeydog and birdfall are illustrated in Figure 4, while

frames from penguin are displayed in Figure 3.

we assess our system’s performance in tracking longer sequences. We use a single set of

manually-specified parameters in all of our experiments.

Our tracker is initialized by a segmentation of the first frame into foreground and back-

ground pixels, provided by the user. This is similar to [6], where the user specifies an initial

contour in the first frame.

5.1 Quantitative Comparison
In order to perform a quantitative performance comparison using SegTrack, we carefully

tuned and benchmarked a state-of-the-art level set-based tracker [6], using code provided

by the authors. Our system is suited to offline batch processing while the system of [6]

is an on-line method. The quantitative comparison is provided in Table 1. Our per-pixel

segmentation accuracy is better than that of [6] across all sequences. The large difference in

the score for penguin was caused by tracker failure (the target contour vanished completely).

For the cheetah case, neither of the trackers perform well, as it is the most difficult sequence

according to the three challenge measures.

5.2 Qualitative Comparison
Figure 3 shows a comparison between our method and that of [1] and [6] for selected frames

in 5 different test sequences. To compare our output with [1], we identified the source video

clips used by the authors and initialized our tracker by labeling the first frame. Our method

was able to track the target and provide more accurate segmentations. In the comparison

to [6], we used the testing video clips provided by the authors.

In Figure 4, we show a greater variety of example tracker outputs. The upper four se-

quences are a selection of frames from our SegTrack database while the two bottom clips

were long sequences from BBC’s Planet Earth. Full length outputs are provided in the sup-

plementary video and on our project website.

6 Conclusion
We have described an off-line method for target tracking through the sequential segmentation

of the video volume. Our formulation uses multi-label MRF optimization with an energy

function that enforces spatio-temporal coherence. We present a ground-truth dataset for

target tracking, called SegTrack, which is based on a systematic assessment of the sources of

difficulty in accurate segmentation. We compare our method to two recent on-line trackers,

and demonstrate improved performance. Our results suggest that it is possible to obtain more

accurate segmentations using an off-line approach, at the cost of increased computation. Our

dataset and software are available from our project website.3

3http://cpl.cc.gatech.edu/projects/SegTrack
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Our Result [1] ResultSequence

frog

Our Result [6] ResultSequence

worm

monkey

frame t frame t’ frame t frame t’

penguin

monkeydog

frame t frame t’ frame t frame t’

Figure 3: Comparative results: Tracking results are illustrated for selected frames from five

sequences, comparing our method to that of [1] and [6].
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Figure 4: Qualitative tracking results: Top: Girl sequence[16] from the UCF action

database, illustrating shape changes. Row 2: BirdFall sequence from SegTrack, exhibit-

ing color overlap, large motion and small shape change, followed by Parachute, the easiest

sequence in SegTrack. Row4: MonkeyDog sequence from Segtrack, showing large motion

and significant shape change. Row5: One more penguin example. Rows 6 and 7: Two

successfully tracked long sequences.


