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Abstract. One of the key challenges in human action recognition from
video sequences is how to model an action sufficiently. Therefore, in this
paper we propose a novel motion-based representation called Motion

Context (MC), which is insensitive to the scale and direction of an ac-
tion, by employing image representation techniques. A MC captures the
distribution of the motion words (MWs) over relative locations in a lo-
cal region of the motion image (MI) around a reference point and thus
summarizes the local motion information in a rich 3D MC descriptor.
In this way, any human action can be represented as a 3D descriptor
by summing up all the MC descriptors of this action. For action recog-
nition, we propose 4 different recognition configurations: MW+pLSA,
MW+SVM, MC+w3-pLSA (a new direct graphical model by extending
pLSA), and MC+SVM. We test our approach on two human action video
datasets from KTH and Weizmann Institute of Science (WIS) and our
performances are quite promising. For the KTH dataset, the proposed
MC representation achieves the highest performance using the proposed
w3-pLSA. For the WIS dataset, the best performance of the proposed
MC is comparable to the state of the art.

1 Introduction

With the development of advanced security systems, human action recognition
in video sequences has become an important research topic in computer vision,
whose aim is to make machines recognize human actions using different types of
information, especially the motion information, in the video sequences.

The basic process for this problem can be divided into three issues: First,
how to detect the existence of human actions? Second, how to represent human
actions? Lastly, how to recognize these actions? Many research works have been
done to address these issues (e.g. [1], [2], [3], [4], [5], [6]). In this paper, we mainly
focus on the second issue, that is, how to represent human actions after having
detected their existence. In our approach, we model each video sequence as a
collection of so-called motion images (MIs), and to model the action in each
MI, we propose a novel motion-based representation called motion context

(MC), which is insensitive to the scale and direction of an action, to capture
the distribution of the motion words (MWs) over relative locations in a local
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Fig. 1. Illustrations of the frame groups, motion images, and our motion context rep-
resentations on the KTH dataset. This figure is best viewed in color.

region around a reference point and thus summarize the local motion informa-
tion in a rich, local 3D MC descriptor. Fig.1 illustrates some MIs and their
corresponding MC representations using the video clips in the KTH dataset.
To describe an action, only one 3D descriptor is generated by summing up all
the MC descriptors of this action in the MIs. For action recognition, we employ
3 different approaches: pLSA [7], w3-pLSA (a new direct graphical model by
extending pLSA) and SVM [8]. Our approach is tested on two human action
video datasets from KTH [2] and Weizmann Institute of Science [9], and the
performances are quite promising.

The rest of this paper is organized as follows: Section 2 reviews some related
works in human action recognition. Section 3 presents the details of our MC rep-
resentation. Section 4 introduces the 3 recognition approaches. Our experimental
results are shown in Section 5, and finally Section 6 concludes the paper.

2 Related Work

Each video sequence can be considered as a collection of consecutive images
(frames), which makes it possible to model human actions using some image
representation techniques. One influential model is the Bag-of-Words (BOW)
model (e.g. [4], [6], [10], [11]). This model represents each human action as a
collection of independent codewords in a pre-defined codebook generated from
the training data. However, videos contain temporal information while images
do not. So how to exploit this temporal information becomes a key issue for
human action representation.

Based on image representation techniques, many research works have shown
that temporal information can be integrated with the interesting point detectors
and descriptors to locate and describe the interesting points in the videos. Laptev
et al. [1] proposed a 3D interesting point detector where they added the temporal
constraint to the Harris interesting point detector to detect local structures in
the space-time dimensions. Efros et al. [12] proposed a motion descriptor using
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the optical flow from different frames to represent human actions. Recently,
Scovanner et al. [4] applied sub-histograms to encode local temporal and spatial
information to generate a 3D version of SIFT [13] (3D SIFT), and Savarese et al.
[14] proposed so-called “spatial-temporal correlograms” to encode flexible long
range temporal information into the spatial-temporal motion features.

However, a common issue behind these interesting point detectors is that the
detected points sometimes are too few to sufficiently characterize the human
action behavior, and hence reduce the recognition performance. This issue has
been avoided in [6] by employing the separable linear filter method [3], rather
than such space-time interesting point detectors, to obtain the motion features
using a quadrature pair of 1D Gabor filters temporally.

Another way of using temporal information is to divide a video into smaller
groups of consecutive frames as the basic units and represent a human action as
a collection of the features extracted from these units. In [15], [5], every three
consecutive frames in each video were grouped together and integrated with
their graphical models as a node to learn the spatial-temporal relations among
these nodes. Also in [16], the authors took the average of a sequence of binary
silhouette images of a human action to create the “Average Motion Energy”
representation. Similarly, [17] proposed a concept of “Motion History Volumes”,
an extension of “Motion History Images” [18], to capture the motion information
from a sequence of video frames.

After the human action representations have been generated, both discrim-
inative approaches (e.g. kernel approaches [2]) and generative approaches (e.g.
pLSA [19], MRF [15], [5], semi-LDA [10], hierarchical graphical models [6]) can
be employed to recognize them.

3 Motion Context Representation

A motion context representation is generated based on the motion words which
are extracted from the motion images.

3.1 Motion Image

We believe that effective utilization of the temporal information is crucial for
human action recognition. In our approach, we adopt the strategy in [17], that
is, to group the consecutive frames of each video sequence according to their
temporal information.

More specifically, to generate a motion image (MI), first U ∗ V frames of
a video sequence are extracted, converted into gray scale and divided into non-
overlapping U groups, each with V consecutive frames. Then we calculate the
standard deviation (stdev) among the frames within a group pixel by pixel to
detect the motion information. Finally, putting the stdev values into the cor-
responding pixel positions, a MI is generated for each frame group. Fig.2 illus-
trates the MI generation process for a frame group. Motions usually cause strong
changes in the pixel intensity values at the corresponding positions among the
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Fig. 2. Illustration of the MI generation process for a frame group. The black dots
denote the pixel intensity values.

consecutive frames. Since stdev can measure the variances of the pixel intensity
values, it can definitely detect motions.

We would like to mention that the length of each group, V , should be long
enough to capture the motion information sufficiently but not too long. Fig.3
illustrates the effects of different V on the MIs of human running and walking.
If V = 5, the difference between the two actions is quite clear. With V increased
to 60, the motion information of both actions spreads in the MIs, making it
difficult to distinguish them. A further investigation of V will be essential in our
MC representation.
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Fig. 3. Illustration of effects of different lengths of frame groups on the MIs using
human running and walking

3.2 Motion Word

The concept of motion words (MWs) refers to that of visual words in the BOW
model. After generating the MIs, some image interesting point detectors are first
applied to locate the important patches in the MIs. Then image descriptors are
employed to map these patches into a high dimensional feature space to generate
local feature vectors for them. Next, using clustering approaches such as K-
means, these local feature vectors in the training data are clustered to generate
a so-called motion word dictionary where the centers of the clusters are treated
as the MWs.

3.3 Motion Context

For each MW, there is one important affiliated attribute, its location in the corre-
sponding MI. For human action recognition, the relative movements of different
parts of the body are quite useful. To capture the structures of these relative
movements, we introduce the concept of motion context (MC). This concept
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Fig. 4. Illustration of our MC representation (left) and its 3D descriptor (right). On
the left, P denotes a MW at an interesting point, O denotes the reference point, Θ and
S denote the relative angle and normalized distance between P and O in the support
region (the black rectangle), respectively, and the shaded sector (blue) denotes the
orientation of the whole representation. On the right, each MW is quantized into a
point to generate a 3D MC descriptor. This figure is best viewed in color.

is inspired by Shape Context (SC) [20], which has been widely used in object
recognition. The basic idea of SC is to locate the distribution of other shape
points over relative positions in a region around a pre-defined reference point.
Subsequently, 1D descriptors are generated to represent the shapes of objects.

In our representation, we utilize the polar coordinate system to capture the
relative angles and distances between the MWs and the reference point (the
pole of the polar coordinate system) for each action in the MIs, similar to SC.
This reference point is defined as the geometric center of the human motion, and
the relative distances are normalized by the maximum distance in the support
region, which makes the MC insensitive to changes in scale of the action. Here,
the support region is defined as the area which covers the human action in the
MI. Fig.4 (left) illustrates our MC representation. Suppose that the angular
coordinate is divided into M equal bins, the radial coordinate is divided into
N equal bins and there are K MWs in the dictionary, then each MW can be
put into one of the M*N bins to generate a 3D MC descriptor for each MC
representation, as illustrated in Fig.4 (right). To represent a human action in
each video sequence, we sum up all the MC descriptors of this action to generate
one 3D descriptor with the same dimensions.

When generating MC representations, another factor should also be consid-
ered, that is, the direction of the action, because the same action may occur in
different directions. E.g. a person may be running in one direction or the oppo-
site direction. In such cases, the distributions of the interesting points in the two
corresponding MIs should be roughly symmetric about the y-axis. Combining
the two distributions for the same action will reduce the discriminability of our
representation. To avoid this, we define the orientation of each MC representa-
tion as the sector where most interesting points are detected, e.g. the shaded
one (blue) in Fig. 4 (left). This sector can be considered to represent the main
characteristics of the motion in one direction. For the same action but in the
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Fig. 5. Illustration of aligning an inconsistent MC representation of an action in the
opposite direction. The pre-defined orientation of the actions is the left side of y-axis.

opposite direction, we then align all the orientations to the pre-defined side by
flipping the MC representations horizontally around the y-axis. Thus our repre-
sentation is symmetry-invariant. Fig.5 illustrates this process. Notice that this
process is done automatically without the need to know the action direction.

The entire process of modeling human actions using the MC representation
is summarized in Table 1.

Table 1. The main steps of modeling the human actions using the MC representation

Step 1 Obtain the MIs from the video sequences.
Step 2 Generate the MC representation for each human action in the MIs.
Step 3 Generate the 3D MC descriptor for each MC representation.
Step 4 Sum up all the 3D MC descriptors of an action to generate one 3D descriptor

to represent this action.

4 Action Recognition Approaches

We apply 3 different approaches to recognize the human actions based on the
MWs or the 3D MC descriptors: pLSA, w3-pLSA and SVM.

4.1 pLSA

pLSA aims to introduce an aspect model, which builds an association between
documents and words through the latent aspects by probability. Here, we follow
the terminology of text classification where pLSA was used first. The graphical
model of pLSA is illustrated in Fig.6 (a).

Suppose D = {d1, . . . , dI}, W = {w1, . . . , wJ} and Z = {z1, . . . , zK} denote a
document set, a word set and a latent topic set, respectively. pLSA models the
joint probability of documents and words as:

P (di, wj) =
∑

k

P (di, wj , zk) =
∑

k

P (wj |zk)P (zk|di)P (di) (1)
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Fig. 6. Graphical models of pLSA (a) and our w3-pLSA (b)

where P (di, wj , zk) denotes the joint probability of document di, topic zk and
word wj , P (wj |zk) denotes the probability of wj occurring in zk, P (zk|di) denotes
the probability of di classified into zk, and P (di) denotes the prior probability
of di modeled as a multinomial distribution.

Furthermore, pLSA tries to maximize the L function below:

L =
∑

i

∑

j

n(di, wj) log P (di, wj) (2)

where n(di, wj) denotes the document-word co-occurrence table, where the num-
ber of co-occurrences of di and wj is recorded in each cell.

To learn the probability distributions involved, pLSA employs the Expecta-
tion Maximization (EM) algorithm shown in Table 2 and records P (wj |zk) for
recognition, which is learned from the training data.

Table 2. The EM algorithm for pLSA

E-step:
P (zk|di, wj) ∝ P (wj |zk)P (zk|di)P (di)

M-step:
P (wj |zk) ∝

∑
i
n(di, wj)P (zk|di, wj)

P (zk|di) ∝
∑

j
n(di, wj)P (zk|di, wj)

P (di) ∝
∑

j
n(di, wj)

4.2 w
3-pLSA

To bridge the gap between the human actions and our MC descriptors, we extend
pLSA to develop a new graphical model, called w3-pLSA. See Fig.6 (b), where d

denotes human actions, z denotes latent topics, w, θ and s denote motion words,
and the indexes in the angular and radial coordinates in the polar coordinate
system, respectively.

Referring to pLSA, we model the joint probability of human actions, motion
words and their corresponding indices in the angular and radial coordinates as

P (di, wj , θm, sr) =
∑

k

P (di, wj , θm, sr, zk) =
∑

k

P (di)P (zk|di)P (wj , θm, sr|zk)

(3)
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and maximize the L̂ function below.

L̂ =
∑

i

∑

j

∑

m

∑

r

n(di, wj , θm, sr) log P (di, wj , θm, sr) (4)

Similarly, to learn the probability distributions involved, w3-pLSA employs
the Expectation Maximization (EM) algorithm shown in Table 3 and records
P (wj , θm, sr|zk) for recognition, which is learned from the training data.

Table 3. The EM algorithm for w3-pLSA

E-step:
P (zk|di, wj , θm, sr) ∝ P (wj , θm, sr|zk)P (zk|di)P (di)

M-step:
P (wj , θm, sr|zk) ∝

∑
i
n(di, wj , θm, sr)P (zk|di, wj , θm, sr)

P (zk|di) ∝
∑

j,m,r
n(di, wj , θm, sr)P (zk|di, wj , θm, sr)

P (di) ∝
∑

j,m,r
n(di, wj , θm, sr)

4.3 Support Vector Machine

A support vector machine (SVM) [8] is a powerful tool for binary classification
tasks. First it maps the input vectors into a higher dimensional feature space,
then it conducts a separating hyperplane to separate the input data, finally on
each side of this hyperplane two parallel hyperplanes are conducted. SVM tries
to find the separating hyperplane which maximizes the distance between the
two parallel hyperplanes. Notice that in a SVM, there is an assumption that
the larger the distance between the two parallel hyperplanes the smaller the
generalization error of the classifier will be.

Specifically, suppose the input data is {(x1, y1), (x2, y2), · · · , (xn, yn)} where
xi(i = 1, 2, · · · , n) denotes the input vector and the corresponding yi(i = 1, 2,

· · · , n) denotes the class label (positive “1” and negative “-1”). Then the sepa-
rating hyperplane is defined as w · x + b = 0 and the two corresponding parallel
hyperplanes are w · x + b = 1 for the positive class and w · x + b = −1 for the
negative class, where w is the vector perpendicular to the separating hyperplane
and b is a scalar. If a test vector xt satisfies w ·xt + b > 0, it will be classified as
a positive instance. Otherwise, if it satisfies w ·xt + b < 0, it will be classified as
a negative instance. A SVM tries to find the optimal w and b to maximize the
distance between the two parallel hyperplanes.

5 Experiments

Our approach has been tested on two human action video datasets from KTH
[2] and Weizmann Institute of Science (WIS) [9]. The KTH dataset is one of
the largest datasets for human action recognition containing six types of human
actions: boxing, handclapping, handwaving, jogging, running, and walking. For
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each type, there are 99 or 100 video sequences of 25 different persons in 4 differ-
ent scenarios: outdoors (S1), outdoors with scale variation (S2), outdoors with
different clothes (S3) and indoors (S4), as illustrated in Fig.7 (left). In the WIS
dataset, there are altogether 10 types of human actions: walk, run, jump, gallop
sideways, bend, one-hand wave, two-hands wave, jump in place, jumping jack,
and skip. For each type, there are 9 or 10 video sequences of 9 different persons
with the similar background, as shown in Fig.7 (right).
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Fig. 7. Some sample frames from the KTH dataset (left) and the WIS dataset (right)

5.1 Implementation

To generate MC representations for human actions, we need to locate the ref-
erence points and the support regions first. Some techniques in body tracking
(e.g. [21]) can be applied to locate the areas and the geometric centers of the
human bodies in each frame group of a video sequence. The integration of the
areas of a person can be defined as its support region and the mean of its centers
can be defined as the reference point for this action in the MI. However, this
issue is beyond the purpose of this paper. So considering that in our datasets
each video sequence only contains one person, we simply assume that in each MI
the support region of each human action covers the whole MI, and we adopted a
simple method to roughly locate the reference points. First, we generated one MI
from every 5-frame group of each video sequence empirically. Then a Gaussian
filter was applied to denoise these MIs so that the motion information from the
background was suppressed. Next, we used the Canny edge detector to locate
the edges in each MI, and finally took the geometric center of the edge points as
the reference point for the action.

After locating the reference points, we followed the steps in Table 1 to generate
the MC representations for human actions. The detector and descriptor involved
in Step 2 are the Harris-Hessian-Laplace detector [22] and the SIFT descriptor
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Table 4. Comparison (%) between our approach and others on the KTH dataset

Rec.Con. Tra.Str. boxing hand-c hand-w jogging running walking average

MW+pLSA SDE 85.2 91.9 91.7 71.2 73.6 82.1 82.62
LOO 82.0 90.9 91.0 82.0 79.0 83.0 84.65

MW+SVM SDE 90.4 84.8 82.8 65.1 76.1 82.0 80.20
LOO 85.0 82.8 82.0 62.0 70.0 87.0 78.14

MC+w3-pLSA SDE 98.4 90.8 93.9 79.3 77.9 91.7 88.67
LOO 95.0 97.0 93.0 88.0 84.0 91.0 91.33

MC+SVM SDE 91.7 91.6 88.1 78.0 84.7 90.4 87.42
LOO 88.0 93.9 91.0 77.0 85.0 90.0 87.49

Savarese et al. [14] LOO 97.0 91.0 93.0 64.0 83.0 93.0 86.83

Wang et al. [10] LOO 96.0 97.0 100.0 54.0 64.0 99.0 85.00

Niebles et al. [19] LOO 100.0 77.0 93.0 52.0 88.0 79.0 81.50

Dollár et al. [3] LOO 93.0 77.0 85.0 57.0 85.0 90.0 81.17

Schuldt et al. [2] SDE 97.9 59.7 73.6 60.4 54.9 83.8 71.72

Ke et al. [24] SDE 69.4 55.6 91.7 36.1 44.4 80.6 62.96

Wong et al. [25] SDE 96.0 92.0 83.0 79.0 54.0 100.0 84.00

[13], and the clustering method used here is K-means. Then based on the MWs
and the MC descriptors of the training data, we trained pLSA, w3-pLSA and
SVM for each type of actions separately, and a test video sequence was classified
to the type of actions with the maximum likelihood.

5.2 Experimental Results

To show the efficiency of our MC representation and the discriminability of the
MWs,wedesigned4different recognition configurations:MW+pLSA,MW+SVM,
MC+w3-pLSA, and MC+SVM. Here we used libsvm [23] with the linear kernel. To
utilize the MWs, we employed the BOW model to represent each human action as
a histogram of the MWs without the M*N spatial bins.

First, we tested our approach on the KTH dataset. We adopted two different
training strategies: split-data-equally (SDE) and leave-one-out (LOO). The SDE
strategy means that the video collection is divided into two equal sets randomly:
one as the training data (50 video sequences) and the other as the test data for
each type of actions, and we repeated this experiment for 15 times. In the LOO
strategy, for each type of actions, only the video sequences of one person are
selected as the test data and the rest as the training data, and when applying
this strategy to the KTH dataset, for each run we randomly selected one person
for each type of actions as the test data and repeated this experiment for 15
times. Empirically, in our model, the number of MWs is 100, and the numbers
of the quantization bins in the angular and radial dimensions are 10 and 2,
respectively. The number of latent topics in both graphical models is 40.

Table 4 shows our average recognition rate for each type of actions and the
comparison with others on the KTH dataset under different training strate-
gies and recognition configurations. From this table, we can draw the following
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Table 5. Comparison (%) between our approach and others on the WIS dataset. Notice
that “✕” denotes that this type of actions was not involved in their experiments.

Rec.Con. bend jack jump pjump run side skip walk wave1 wave2 ave.

MW+pLSA 77.8 100.0 88.9 88.9 70.0 100.0 60.0 100.0 66.7 88.9 84.1

MW+SVM 100.0 100.0 100.0 77.8 30.0 77.8 40.0 100.0 100.0 100.0 81.44

MC+w3-pLSA 66.7 100.0 77.8 66.7 80.0 88.9 100.0 100.0 100.0 100.0 88.0

MC+SVM 100.0 100.0 100.0 88.9 80.0 100.0 80.0 80.0 100.0 100.0 92.89

Wang et al. [16] 100.0 100.0 89.0 100.0 100.0 100.0 89.0 100.0 89.0 100.0 96.7

Ali et al. [26] 100.0 100.0 55.6 100.0 88.9 88.9 ✕ 100.0 100.0 100.0 92.6

Scovanner [4] 100.0 100.0 67.0 100.0 80.0 100.0 50.0 89.0 78.0 78.0 84.2

Niebles et al. [6] 100.0 100.0 100.0 44.0 67.0 78.0 ✕ 56.0 56.0 56.0 72.8

conclusions: (1) MWs without any spatial information are not discriminative
enough to recognize the actions. MW+pLSA returns the best performance
(84.65%) using MWs, which is lower than the state of the art. (2) MC repre-
sentation usually achieves better performances than MWs, which demonstrates
that the distributions of the MWs are quite important for action recognition.
MC+w3-pLSA returns the best performance (91.33%) among all the approaches.

Unlike the KTH dataset, the WIS dataset only has 9 or 10 videos for each
type of human actions, which may result in underfit when training the graphical
models. To utilize this dataset sufficiently, we only used the LOO training strat-
egy to learn the models for human actions and tested on all the video sequences.
We compare our average recognition rates with others in Table 5. The experi-
mental configuration of the MC representation is kept the same as that used on
the KTH dataset, while the number of MWs used in the BOW model is modified
empirically to 300. The number of latent topics is unchanged. From this table,
we can see that MC+SVM still returns the best performance (92.89%) among
the different configurations, which is comparable to other approaches and higher
than the best performance (84.1%) using MW. These results demonstrate that
our MC presentation can model the human actions properly with the distribu-
tions of the MWs.

6 Conclusion

We have demonstrated that our Motion Context (MC) representation, which
is insensitive to changes in the scales and directions of the human actions, can
model the human actions in the motion images (MIs) effectively by capturing the
distribution of the motion words (MWs) over relative locations in a local region
around the reference point and thus summarize the local motion information
in a rich 3D descriptor. To evaluate this novel representation, we adopt two
training strategies (split-data-equally (SDE) and leave-one-out (LOO)), design
4 different recognition configurations (MW+pLSA, MW+SVM, MC+w3-pLSA,
and MC+SVM) and test them on two human action video datasets from KTH
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and Weizmann Institute of Science (WIS). The performances are promising. For
the KTH dataset, all configurations using MC outperform existing approaches
where the best performances are obtained using w3-pLSA (88.67% for SDE and
91.33% for LOO). For the WIS dataset, our MC+SVM returns the comparable
performance (92.89%) using the LOO strategy.
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