
Motion Control of Redundant Robots under Joint Constraints:

Saturation in the Null Space

Fabrizio Flacco∗ Alessandro De Luca∗ Oussama Khatib∗∗

Abstract— We present a novel efficient method addressing the
inverse differential kinematics problem for redundant manip-
ulators in the presence of different hard bounds (joint range,
velocity, and acceleration limits) on the joint space motion. The
proposed SNS (Saturation in the Null Space) iterative algorithm
proceeds by successively discarding the use of joints that would
exceed their motion bounds when using the minimum norm
solution and reintroducing them at a saturated level by means
of a projection in a suitable null space. The method is first
defined at the velocity level and then moved to the acceleration
level, so as to avoid joint velocity discontinuities due to the
switching of saturated joints. Moreover, the algorithm includes
an optimal task scaling in case the desired task trajectory is
unfeasible under the given joint bounds. We also propose the
integration of obstacle avoidance in the Cartesian space by
properly modifying on line the joint bounds. Simulation and
experimental results reported for the 7-dof lightweight KUKA
LWR IV robot illustrate the properties and computational
efficiency of the method.

I. INTRODUCTION

Inversion of first-order (velocity level) or second-order (ac-

celeration level) differential kinematics is the standard way to

execute a desired Cartesian motion of redundant robots [1].

Control methods typically use a generalized inverse (most

often, the pseudoinverse) of the manipulator Jacobian in

order to convert velocity or acceleration commands from the

task space to the joint space, where actuation takes place.

Kinematic redundancy is exploited for collision avoidance,

for joint motion optimization, or by augmenting the primary

task with multiple additional ones, possibly prioritized [2].

These approaches can be casted as the selection of suitable

joint commands in the null space of the Jacobian matrix.

An important problem of all the above methods in their

simplest form is that constraints in the joint space (e.g.,

bounds on the joint range, velocity, acceleration, or even

torque) are not taken explicitly into account. The underlying

assumption is that either the joint motion and/or the actuator

capabilities can be considered unlimited in practice, or that

the robot task has been smoothly tailored in space and

scaled in time so as to fit to the robot limitations. However,

for sensor-driven robotic tasks in dynamic environments, in

particular during physical human-robot interaction (pHRI),

it is not unlikely that large instantaneous task velocities

or accelerations are suddenly requested in response to an

unexpected situation. These may lead to nominal commands

∗Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Uni-
versità di Roma “La Sapienza”, Via Ariosto 25, 00185 Rome, Italy
({fflacco,deluca}@dis.uniroma1.it). ∗∗ Artificial Intelligence Laboratory,
Stanford University, Stanford, CA 94305, USA (khatib@cs.stanford.edu).

in the joint space exceeding some bounds, with an as-

sociated saturation that makes the resulting robot motion

unpredictable. Simple scaling of the task commands recovers

motion feasibility but may no longer satisfy the primary

intention, e.g., avoid a collision with a fast moving human.

Before doing so, it would be useful to verify whether there

exist alternative joint motions satisfying the hard bounds in

the joint space and still executing the original task command.

Stated in this way, the problem is intrinsically local to the

current robot state, i.e., needs to be solved on line with no

future information.

A common on-line approach to deal with limited joint

ranges is to convert these hard bounds into soft ones,

resolving redundancy by optimization (e.g., based on the

Projected Gradient algorithm) of an objective function that

keeps the joints closer to the center of their ranges (see [3],

[4]). However, since the Cartesian task has always the

highest priority, satisfaction of joint limits is not guaranteed.

A method that enhances the capability of avoiding joint

limits by using a suitably weighted pseudoinverse has been

proposed in [5]. Other similar solutions for handling the

presence of joint ranges have been proposed in the context

of visual servoing tasks (e.g., [6], [7]).

In the presence of joint velocity or joint acceleration

bounds, simple software saturation of the joint-space com-

mand results in the lack of execution of the desired motion in

the task space. In [8], a redundancy resolution method was

proposed that minimizes the infinity-norm (i.e., the maxi-

mum absolute value of the components) of the command

vector in the joint space, with the norm being weighted by

the available actuation ranges. Nonetheless, satisfaction of

the original hard bounds is again not guaranteed. In [9], the

velocity term in the one-dimensional null space of a 7-dof

robot is scaled so as to satisfy the joint velocity bounds,

if at all possible. On the other hand, task relaxation by

time scaling can be used for satisfying joint velocity [10]

and/or acceleration [11] bounds. This approach has been

extended to the redundant case, specifically in [12] to a

team of mobile robots executing multiple tasks with priority.

Lower-priority task velocity commands are scaled in the null

space of higher-priority Jacobians so that the hierarchy of

task priorities is preserved despite actuator saturations.

It should be mentioned that the considered problem

fits into the framework of constrained minimization of

a quadratic objective function under linear equality and

inequality constraints, possibly having different priorities.

Once the problem is properly formulated, the use of a

general-purpose optimization algorithm is suggested in [13].

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1404-6/12/$31.00 ©2012 IEEE 285

However, since the inequality constraints are here only in

the form of elementary bounds (box constraints) on the

commands at the joint level, the problem structure could be

further exploited so as to lead to a more efficient solution.

A method that explicitly handles joint velocity or acceler-

ation bounds in a n-dof redundant robot performing an m-

dimensional task (with m < n) has been introduced in [14].

The saturation of the whole set of s ≤ (n − m) joints that

exceed their bounds (called overdriven by the authors) in

the unconstrained solution is simultaneously compensated

by using the remaining joints, which still have motion

capabilities. The method works by selecting columns from

the Jacobian null-space projection matrix and proceeds by

pseudoinversion of the resulting non-square s × n matrix.

The associated redistribution of joint motion may however

lead to further saturations, in which case computations need

to be repeated.

In this paper, we propose an improved method, leading

to the SNS algorithm (Saturation in the Null Space), based

on a concept similar to [14]. However, the SNS algorithm

is computationally more efficient, integrates the minimum

task scaling (including no scaling) needed to accomplish

the Cartesian task with the given constraints, and considers

in a unified framework all joint motion constraints (joint

range limits, velocity and acceleration bounds). The basic

idea is to disable only one joint at a time (the most critical

one, according to some criterion) out of the set for which

the requested motion would exceed the capabilities, and to

reintroduce the saturated contribution of this joint in the null

space of a suitable Jacobian matrix. When designed at the

velocity level, the final outcome is a feasible joint command

that can be put in the standard form

q̇ = J#(q) sẋ +
(

I − J#(q)J(q)
)

q̇N , (1)

with the pseudoinverse of the task Jacobian, and both a task

scaling factor s ∈ (0, 1] and a null-space velocity vector q̇N

that are provided by the SNS algorithm. The combination of

the two final choices s and q̇N guarantees the satisfaction

of all joint constraints. If possible, s is kept to 1 (full task

preservation), otherwise it is reduced as least as possible

to recover feasibility. Moreover, at each iterative step of

our method, pseudoinversion of only of a m × (n − s)
submatrix of the original Jacobian is required. Moreover, this

is a rank one modification of the pseudoinverse computed

at the previous step, so that the updated matrix is efficiently

obtained without a new full SVD operation. When compared

to [14], the proposed method leads in general to a reduced

number of saturated joint commands. This is a relevant

property, since the more are the saturation events, the less

smooth is the resulting robot motion.

The paper is organized as follows. The handling of sat-

uration of the joint commands by our method is illustrated

through a simple motivating example in Sect. II. In Sec. III

the SNS algorithm is proposed and analyzed at the level

of velocity commands. The extension of the method at the

acceleration level is presented in Sec. IV. Furthermore, in

Sec. V we show how to include the additional presence of

Cartesian constraints, e.g., coming from obstacle avoidance

requirements, with a suitable local modification of the joint

bounds. The effectiveness of the various versions of the

SNS algorithm is shown by MatlabTM simulations and by

experiments on a 7-dof KUKA LWR IV robot (Sect. VI).

II. ILLUSTRATIVE EXAMPLE

Consider a planar 4R manipulator with equal links of

unitary length performing a task specified by a desired end-

effector linear velocity ẋ ∈ R
2 (i.e., m = 2) and commanded

by the joint velocity q̇ ∈ R
4 (i.e., n = 4). The degree of

robot redundancy for this task is n − m = 2. Suppose that

the joint velocities are bounded as |q̇i| ≤ Vi, i = 1, . . . , 4,

with V1 = V2 = 2, V3 = V4 = 4 [rad/s].

The 2×4 Jacobian J(q) in the differential map ẋ = J(q)q̇

evaluated at q =
(

π/2 −π/2 π/2 −π/2
)T

is

J =
(

J1 J2 J3 J4

)

=

(

−2 −1 −1 0
2 2 1 1

)

.

(2)

For a desired task velocity ẋ =
(

−4 −1.5
)T

, the

minimum norm joint velocity solution is

q̇PS = J#ẋ =
(

2.4545 −2.1364 1.2273 −3.3636
)T

(3)

which exceeds the bounds on the first and second joint. Note

that the ratio |q̇i|/Vi is larger for joint i = 1.

A natural solution that tries to preserve the original task

velocity would bring back the exceeding joint values at their

closest saturation level, i.e., q̇1 = V1 = 2, q̇2 = −V2 = −2,

and redefine the remaining joint velocities so as to still satisfy

the task, if possible. From

ẋ′ = ẋ − J1V1 + J2V2 =
(

J3 J4

)

(

q̇3

q̇4

)

, (4)

we see that a solution can be found since the square Jacobian

sub-matrix
(

J3 J4

)

is nonsingular. We obtain

q̇′ =
(

V1 −V2

(

J3 J4

)−1
ẋ′

)

=
(

2 −2 2 −3.5
)T

,
(5)

which satisfies in this case the bounds on all joints. This

feasible solution, which is also the outcome of the algorithm

presented in [14], has norm ‖q̇′‖ = 4.9244.

However, a better solution can be found by applying our

SNS algorithm, as described in full in Sect. III. We saturate

only the most violating velocity, in this case q̇1 = V1 = 2,

and redefine the remaining three joint velocities from

ẋSNS = ẋ − J1V1 =
(

J2 J3 J4

)





q̇2

q̇3

q̇4





obtaining

q̇SNS =
(

V1

(

J2 J3 J4

)#
ẋ′

SNS

)

=
(

2 −1.8333 1.8333 −3.6667
)T

(6)

286

by pseudoinversion. As before, all bounds are satisfied by

this alternative feasible solution, which uses less saturated

joints and has also a norm ‖q̇′
SNS‖ = 4.9160 that is smaller

than in the previous case —perhaps not surprisingly.

Suppose now that the bound on the second joint velocity is

reduced to V2 = 1 [rad/s], with all other operative conditions

remaining the same. Saturating the two overdriven joints 1

and 2 of the pseudoinverse solution (3) and solving again as

in (4) provides in this case

q̇′ =
(

2 −1 1 −4.5
)T

, (7)

which has now the fourth velocity out of bound. The

algorithm in [14] ends at this stage, since saturating also

joint 4 would leave a single velocity (of joint 3) available

for satisfying the two-dimensional task, which is clearly

insufficient. Note that the same result (7) is obtained also

when saturating one of the overdriven joints at the time

(in any priority order) and then repeating the procedure as

needed (i.e., twice). As a result, a task scaling procedure is

certainly needed to recover feasibility of the joint velocity

commands under the reduced joint velocity bound.

If we scale the original task velocity so as to recover a

feasible joint velocity (with at least one saturated component)

using just Jacobian pseudoinversion as in (3), we compute

a downscaling factor as small as s = 0.4681 and need to

reduce ẋ to sẋ. Accordingly, we obtain from (3)

q̇s = s q̇ =
(

1.1489 −1 0.5745 −1.5745
)T

.

On the other hand, if we scale the outcome of the saturated

joint velocity (7), a larger task scaling value s′ = 0.8889 is

found and the solution is

q̇′
s = s′q̇′ =

(

1.7778 −0.8889 0.8889 −4
)T

,

where again only one joint velocity component is left at its

saturated level (the fourth one in this case). Instead, by using

our SNS algorithm, we obtain the largest possible reducing

factor sSNS = 0.9091 (with less than a 10% reduction of

the original task speed ẋ) and the globally optimal solution

q̇SNS,s =
(

2 −1 0.6364 −4
)T

.

Note that this joint velocity command has three saturated

values and can be rewritten in the form (1) with s = sSNS

and q̇N =
(

−0.4913 0.8537 −0.6093 −0.9007
)T

.

III. VELOCITY-LEVEL CONTROL

We introduce here our SNS method at the velocity level.

We show first how to shape the joint velocity bounds so as

to take into account also joint range limits and acceleration

bounds (Sect. III-A). Then we present the general SNS algo-

rithm, including task scaling, at the velocity level (Sect. III-

B), followed by simulation results on the 7-dof KUKA LWR

IV robot (Sect. . A discussion of the properties of the method

and on computational issues concludes this section (Sect. III-

D).

A. Shaping the joint velocity bounds

We assume that the following bounds exists on the joint

ranges, joint velocities, and joint accelerations:

Qmin,i ≤ qi ≤ Qmax,i

−Vmax,i ≤ q̇i ≤ Vmax,i

−Amax,i ≤ q̈i ≤ Amax,i

i = 1, . . . , n. (8)

Note that the joint ranges need not to be symmetric, while the

differential bounds typically are. By Qmin, Qmax, V max,

and Amax we denote the vectors containing the above

scalar limits. In the control implementation, the joint velocity

command q̇ is kept constant at the computed value q̇k =
q̇(tk) for a sampling time of duration T , where tk = kT .

Suppose that at t = tk the current joint position q = qk is

feasible.The next position qk+1 ≃ qk + q̇kT needs still to

be within the joint range limits, and thus

Qmin − qk

T
≤ q̇k ≤ Qmax − qk

T
. (9)

The acceleration bounds in (8) can be similarly transferred to

limits for q̇k, by approximating q̇k ≃ q̇k−1 + q̈kT , leading

to

−AmaxT + q̇k−1 ≤ q̇k ≤ AmaxT + q̇k−1.

However, the term on the left-hand side in this chain of

inequalities can be either positive or negative, leading to a

more complex design of a task scaling scheme when this is

needed (in fact, a sufficiently reduced task velocity would

not automatically guarantee the satisfaction of all constraints

in this case). Therefore, we prefer to resort to a different

idea for including acceleration bounds at the velocity level.

Suppose that we would need to stop the robot motion in the

fastest possible way, namely by maximally decelerating a

joint i which is moving at q̇i > 0 (or maximally accelerating

it if q̇i < 0) so as to stay within the available joint range.

For a generic t ≥ tk, we have for the ith joint position

and velocity subject to −Amax,i (the following reasoning is

specular for the case of maximum acceleration)

qi(t) = qk,i + q̇k,i(t − tk) − Amax.i

2
(t − tk)2

q̇i(t) = q̇k,i − Amax.i(t − tk).

The most critical situation is when we reach the upper limit

Qmax,i at some t = t∗i > tk with the joint velocity being

q̇i(t
∗
i) = 0 —the joint stops right at the boundary of its range.

It is then easy to check that the largest positive velocity of

joint i that we can tolerate at t = tk is upper bounded as

q̇k,i ≤
√

2Amax,i (Qmax,i − qk,i), (10)

and similarly for the largest negative velocity which is lower

bounded as

−
√

2Amax,i (qk,i − Qmin,i) ≤ q̇k,i. (11)

Putting together all the constraints given by the second set

of inequalities in (8), by (9), as well as by (10) and (11) for

287

i = 1, . . . , n, we finally obtain the following box constraint

for the command q̇ at time t = tk

Q̇min(tk) ≤ q̇ ≤ Q̇max(tk) (12)

where, for i = 1, . . . , n,

Q̇min,i = max
n

Qmin,i−qk,i
T

,−Vmax,i,−
√

2Amax,i(qk,i−Qmin,i)
o

is negative and

Q̇max,i = min
n

Qmax,i−qk,i
T

,Vmax,i,
√

2Amax,i(Qmax,i−qk,i)
o

is positive.

B. The SNS algorithm at the velocity level

Consider a manipulator with n joints performing a m-

dimensional desired velocity task ẋ, with m < n. At a given

q, the SNS algorithm for realizing the task at the velocity

level under the box constraints (12) is presented below in

pseudocode form.

Algorithm 1 (SNS at the velocity level)

W = I , q̇N = 0, s = 1, s∗ = 0

repeat

limit exceeded = FALSE

q̇SNS = q̇N + (JW)
#

(sẋ − Jq̇N)

if ∃ i ∈ [1 :n] : q̇i < Q̇min,i .OR. q̇i > Q̇max,i then

limit exceeded = TRUE

call Algorithm 2

if {task scaling factor} > s∗ then

s∗ = {task scaling factor}
W ∗ = W , q̇∗

N = q̇N

end if

j = {the most critical joint}
Wjj = 0

q̇N,j =

{

Q̇max,j if q̇j > Q̇max,j

Q̇min,j if q̇j < Qmin,j

if rank(JW) < m then

s = s∗, W = W ∗, q̇N = q̇∗
N

q̇SNS = q̇N + (JW)
#

(sẋ − Jq̇N)

limit exceeded = FALSE (∗outputs solution∗)

end if

end if

until limit exceeded = TRUE

The n × n matrix W = diag{Wii} with 0/1 elements

is used to specify which joints are currently enabled or

disabled: if Wii = 0, then the velocity of joint i is set

at its saturation level and the joint is disabled (for norm

minimization purposes). The algorithm is initialized with

W = I (the identity matrix), a null-space vector q̇N = 0,

and two scaling factors s = 1 and s∗ = 0. The joint velocity

command is computed using the SNS projection equation

q̇SNS = q̇N + (JW)
#

(sẋ − Jq̇N) . (13)

Note that (13) collapses to the usual pseudoinverse (mini-

mum norm) solution J#ẋ with the given algorithm initial-

ization.

We check first if the original (s = 1) task can be

performed with the joint velocity (13) being within the box

constraints (12). If not, Algorithm 2 is called to evaluate the

minimum positive task scaling factor, say s, only among the

enabled joints (i.e., those corresponding to Wii = 1). If s is

larger than the current factor s∗, we store current W ∗ = W

and q̇∗
N = q̇N and set s∗ = s. These values provide the

closest task velocity that can be executed so far along the

original desired direction. If the jth joint is the most critical

for task execution, i.e., its velocity needs the smallest task

scaling to stay within the bounds, we saturate the velocity

of joint j by setting Wjj = 0. If the task cannot be executed

with this new parameters, If now the rank of JW is strictly

less than m, the algorithm stops with the best parameters that

have been found (W = W ∗, q̇N = q̇∗
N , and s = s∗), and

the joint velocity command is provided as output by (13).

Otherwise, the joint velocity is recomputed with the current

parameters using again (13) and the process is repeated.

An important aspect in the proposed method is the inte-

grated use of a task scaling factor, as given by Algorithm 2

presented in pseudocode form below.

Algorithm 2 (Task scaling factor at the velocity level)

a = (JW)
#

ẋ

b = q̇N − (JW)
#

Jq̇N

for i = 1 → n do

Smin,i =
(

Q̇min,i − bi

)

/ai

Smax,i =
(

Q̇max,i − bi

)

/ai

if Smin,i > Smax,i then

{switch Smin,i and Smax,i}
end if

end for

smax = mini {Smax,i}
smin = maxi {Smin,i}
if smin > smax .OR. smax < 0 .OR. smin > 1 then

task scaling factor = 0
else

task scaling factor = min{smax, 1}
end if

As illustrated by the simple example in Sect. II, there is

a basic difference between task velocity and joint velocity

scaling. In the standard case they are equivalent, but this

correspondence is no longer valid in the presence of the

saturated velocity components in q̇N . As a matter of fact,

in the SNS algorithm the projection of q̇N in a suitable null

space allows a greater task scaling factor (possibly 1).

C. Simulation results

The method has been tested in simulation using a kine-

matic model of the KUKA LWR IV robot. From the

data sheet, joint range limits are all symmetric (Qmin,i =

288

−Qmax,i) and Qmax = (170, 120, 170, 120, 170, 120, 170)
[deg]. The maximum joint velocities are V max =
(100, 110, 100, 130, 130, 180, 180) [deg/s]. To shape the joint

velocity bounds, we have considered a maximum accelera-

tion of 300 [deg/s2] for all joints1, with a simulation sampling

time T = 1 [ms].

Fig. 1. Execution of a multi-point task at constant Cartesian speed with the
KUKA LWR IV. The results refer to the ideal case of q̇ = J#(q)ẋ without
joint constraints (first row) and in the presence of constraints (second row),
possibly followed by joint velocity scaling (third row), compared to the
SNS algorithm (fourth row). Each simulation test is repeated at the four
desired task speeds V = 0.5, 1.0, 2.0, and 4.0 [m/s]. Task completion
times are also displayed for each realization

We present the case of a task specified by moving the

robot end-effector through six desired Cartesian positions

with linear paths at constant speed V . For the generic next

position xr, the task velocity is given by

ẋ = V
xr − x

‖xr − x‖ .

The robot starts at q(0) = (0, 45, 45, 45, 0, 0, 0) [deg].

Figure 1 shows the results obtained with four different

redundancy resolution methods at four different constant

speeds. The first row represents the ideal case, using Jacobian

pseudoinversion and discarding the joint constraints. In the

second row, the simulation includes all joint constraints but

the control law does not consider them (standard approach).

The third control row is again the pseudoinverse solution,

followed by task velocity scaling to recover feasibility (this is

equivalent to joint scaling here). Finally, the results obtained

with the proposed SNS algorithm are shown in the last row.

1In the simulations at velocity level we do not consider explicitly bounds
on the joint acceleration.

The task completion times are displayed for each realization.

It can be noticed that the standard approach is generally

slower than SNS for a low task speed. When the task

speed increases, the completion time is slightly faster, but

at the expense of a highly deformed trajectory due to joint

velocity saturations, as opposed to the SNS case. On the

other hand, task velocity scaling to recover feasibility with

a pseudoinverse solution preserves the desired task path but

the completion time is longer than with our method.

D. Properties and computational issues

We provide some comments on the structure of the pro-

jection equation (13) which leads to further properties of the

SNS method. From the definition of W , it follows that the

ith column of matrix JW is zero, so that the ith row of

(JW)
#

will be zero as well and (13) will not update the

joint velocity q̇i after Algorithm 1 has saturated its value. At

a generic iteration of the algorithm, let ns be the number of

velocity commands that are in saturation (or disabled) while

the remaining ne = n − ns ≥ m are enabled (and yet to be

defined). Possibly after relabeling/reordering the joints, we

can partition q̇, and accordingly the task Jacobian J and the

matrix W , as

q̇ =

(

q̇e

q̇s

)

, J =
(

Je Js

)

, W =

(

Ine

Ons

)

with blocks of suitable dimensions. The vector q̇s ∈ R
ns

contains the saturated joint velocities. Thus, we have

JW =
(

Je O
)

, q̇N =

(

0

q̇s

)

and equation (13) can be re-expressed as

q̇SNS =

(

0

q̇s

)

+

(

J#
e

O

)

(sẋ − Jsq̇s) . (14)

It is easy to show that the computed q̇e in (14) is the mini-

mum norm solution of the following optimization problem

min
1

2
q̇T Wq̇, s.t. Jq̇ = sẋ,

which is in fact equivalent to

min
1

2
q̇T

e q̇e, s.t. Jeq̇e = sẋ − Jsq̇s, (15)

for a given set of saturated joints q̇s. Indeed, we can also

rewrite (13) in a form containing explicitly a projection

matrix, and then proceed as above:

q̇SNS = (JW)
#

sẋ +
(

I − (JW)
#

J
)

q̇N (16)

=

(

J#
e

O

)

sẋ +

(

−J#
e Js

Ins

)

q̇s. (17)

One possible computational drawback of the presented

approach, as opposed to [14], is the need to recompute

(JW)# (actually J#
e , as just seen) each time a new joint

is saturated (and W is modified) during the iterations of the

SNS algorithm. However, since only one element at a time

is modified in the diagonal of W and thus only one column

is zeroed in the next JW , the new pseudoinverse (JW)#

289

can be obtained as a rank-one variation of the previous

matrix. Simple formulas are given in [15] to compute the

new pseudoinverse without an additional SVD operation.

A more critical problem is the presence of discontinuities

in the obtained joint velocity command, even if the desired

task trajectory has no discontinuities in space and time.

This behavior is generated in the SNS algorithm by the

enable/disable switching of joints in the presence of task

scaling. Consider for instance a linear point-to-point motion

for the KUKA LWR IV robot between the initial point

x0 = (−0.3712, 0.3015, 1.1235) [m] and the final point

x1 = (−0.7,−0.15, 0.2) [m], with a constant desired speed

V = 0.1 [m/s]. The only discontinuity of the desired task

velocity occurs at t = 0. The joint velocity q̇ obtained with

the SNS algorithm at the velocity level is shown in Fig. 2.

Beside the expected discontinuity at t = 0, the resulting joint

velocity commands have also an undesired jump at t = 0.1.

This discontinuity at the joint velocity level would not be

feasible for the real robot, due to its limited acceleration

capabilities, and would result in a task trajectory error.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

2

1

0

1

2

3

Time (s)

J
o
in

t
V

e
lo

c
it
y
 (

ra
d
/s

)

q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

Fig. 2. Joint velocity q̇ of the KUKA LWR IV robot obtained with the
SNS algorithm for a point-to-point task

IV. ACCELERATION-LEVEL CONTROL

Discontinuities in the joint velocity command are caused

by the switching of saturated joints possibly required by the

algorithm during robot motion. Even though this problem

can be reduced by suitably choosing the order in which

the joints are disabled, the natural solution is to move

the SNS algorithm at the acceleration level so as to yield

continuous joint velocity profiles. Moreover, at the second-

order level the actual joint acceleration bounds are directly

considered and the norm of the acceleration of the enabled

joints will be minimized. As a result, a smoother joint

motion is obtained which is also closer to the real dynamic

characteristics of the robot.

A. Shaping the joint acceleration bounds

Consider again the bounds (8) of Sect. III-A. In the control

implementation, the joint acceleration command q̈ is now

kept constant at the computed value q̈k = q̈(tk) for a

sampling time of duration T . Suppose that at t = tk = kT
the current joint position q = qk and velocity q̇ = q̇k are

both feasible. The next joint velocity and position

q̇k+1 ≃ q̇k + q̈kT, qk+1 ≃ qk + q̇kT +
1

2
q̈kT 2

need still to be kept within their bounds. Thus, we obtain

−V max + q̇k

T
≤ q̈k ≤ V max − q̇k

T
(18)

and

2 (Qmin − qk − q̇kT)

T 2
≤ q̈k ≤ Qmax − qk

T 2
. (19)

Similarly to (12), combining the constraints given by the

third set of inequalities in (8), by (18) and (19), we obtain the

following box constraint for the command q̈ at time t = tk

Q̈min(tk) ≤ q̈ ≤ Q̈max(tk) (20)

where, for i = 1, . . . , n,

Q̈min,i = max
(

2(Qmin,i−qk,i−q̇k,iT)
T2 ,−

Vmax,i+q̇k,i
T

,−Amax,i

)

and

Q̈max,i = min
(

2(Qmax,i−qk,i−q̇k,iT)
T2 ,

Vmax,i−q̇k,i
T

,Amax,i

)

.

However, additional caution should be used here. In fact, for

Q̈min,i < 0 to hold, it should be q̇k,i ≥ (Qmin,i − qk,i) /T ,

i.e., the value of the ith joint velocity is not too large

negative (the term on the right of the inequality is negative

by assumption). Similarly, for Q̈max,i > 0 to hold, the

inequality q̇k,i ≤ (Qmax,i − qk,i) /T should be satisfied, i.e.,

q̇k,i is not too large positive. To avoid that one of these

conditions is violated, the bounds in (18) can be suitably

modified.

B. The SNS algorithm at the acceleration level

The transposition of the SNS algorithm at the acceleration

is easily obtained using still Algorithm 1. From the direct

and inverse relations on acceleration

ẍ = J(q)q̈ + J̇(q)q̇, q̈ = J#(q)
(

ẍ − J̇(q)q̇
)

(21)

the SNS projection equation becomes

q̈SNS = q̈N + (JW)
#

(

sẍd − J̇ q̇ − Jq̈N

)

. (22)

The SNS algorithm at the acceleration level is obtained

by replacing velocity with acceleration and using (22) in

Algorithm 1. Similarly, the task scaling factor is obtained

with Algorithm 2 using acceleration in place of velocity and

redefining b = q̈N − (JW)
#

(

J̇ q̇ + Jq̈N

)

. Note that the

affine nature of the second-order differentials map in (21),

due to the presence of J̇ q̇, implies that a scaling of joint

acceleration does not produce a task scaling by the same

factor.

C. Simulation results

We consider the same point-to-point task presented in

Sec. III-D. The desired task acceleration ẍ is simply obtained

from the desired velocity as

ẍ =
1

T

(

V
x1 − x0

‖x1 − x0‖
− ẋ

)

.

Figure 3 shows the Cartesian path of the robot end-effector

during task execution. T indeed, with the proposed algorithm

290

the robot goes straight to the final point, outperforming

a classical pseudoinversion at the acceleration level which

does not consider the presence of joint constraints. Also

the motion execution time is improved since the task is

completed in 1.27 s as opposed to 2.06 s.

0.6 0.55 0.5 0.45 0.4
0.10.0500.050.10.150.2

0

0.2

0.4

0.6

0.8

1

1.2

XY

Z

Fig. 3. End-effector trajectory for a point-to-point task. Using pseudoin-
version as in (21) (red), or the SNS algorithm at the acceleration level (blue)

Figure 4 shows the joint trajectories obtained in the point-

to-point task using the SNS algorithm at the acceleration

level. No discontinuities are present, not even at t = 0,

resulting in a fully feasible motion for the robot.

0 0.2 0.4 0.6 0.8 1 1.2
2

1.5

1

0.5

0

0.5

1

1.5

2

Time (s)

J
o
in

t
V

e
lo

c
it
y
 (

ra
d
/s

)

q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

Fig. 4. Joint velocity q̇ of the KUKA LWR IV robot obtained with the
SNS algorithm at the acceleration level for the point-to-point task of Fig. 3

V. INCORPORATING CARTESIAN CONSTRAINTS

We propose here a simple method for incorporating the

presence of constraints on robot motion from the Cartesian

space to the joint space and then using the SNS algorithm

to fulfill them. Let C =
(

xc yc zc

)T
be a control point

on the robot whose Cartesian displacement is limited, and

JC(q) be its associated Jacobian. For the sake of illustration,

consider a simple constraint of the form C ≥ CL, where CL

is a fixed Cartesian limit. When d = C(q) − CL ≥ 0, we

associate to the distance ‖d‖ ≥ 0 of C from the limit CL a

suitable function that goes rapidly to zero when this distance

is greater than a range γ, and approaches 1 when the distance

is close to zero. The sigmoid function

f(d) =
1

1 + e(‖d‖ 2
γ
−1)α

,

can be used to this purpose, being α > 0 is a shaping

factor. Define now the vector D = f(d)d/‖d‖, which can be

interpreted as a repulsive force from the Cartesian constraint

and convert it then in the joint space as

s = JT(q)D

The component si of s represents a “degree of influence”

of the Cartesian constraint on joint i. Its sign (or, more in

general, its value) can be used to reshape the velocity bounds

of this joint in order to fulfill the Cartesian constraint. For

this, we define

if si ≥ 0 Q̇max,i = Q̇max,i (1 − f(d))

else Q̇min,i = Q̇min,i (1 − f(d)) ,
(23)

for i = 1, . . . , n. In practice, joint motions that would be

in contrast with the Cartesian constraint are slowed down;

moreover, when the Cartesian limit is too close, joint motions

that are not compatible with this constraint will be denied.

Multiple Cartesian constraints can be taken into account by

considering, for each joint i, the minimum factor 1 − f(dj)

obtained from all the constraints to be applied in (23).

A. Simulation results

Consider the same point-to-point task of the previous

simulations. Additionally, we would like that the height zel

of the KUKA LWR robot elbow, i.e., the coordinate z of the

4-th link base, is always greater than a constant value zobs,

which emulates the presence of a horizontal obstacle (e.g., a

table). The distance is then d =
(

0 0 zel − zobs

)T
. The

end-effector trajectory and the elbow trajectories with and

without considering the Cartesian constraint are shown in

Fig. 5. These were obtained using the SNS algorithm at the

acceleration level, the parameters γ = 0.14 and α = 4, and

zobs = 0.4 [m].

0.6
0.5

0.4
0.3

0.2

0.7
0.6

0.5
0.4

0.3
0.2

0.1
0

0.1
0.2

0.3

0

0.2

0.4

0.6

0.8

1

1.2

X

Y

Z

Fig. 5. End-effector trajectory (black) and elbow trajectories with (red)
and without (blue) the Cartesian constraint zel ≥ 0.4 for a point-to-point
task commanded at the acceleration level with the SNS algorithm

In both cases the task is correctly executed, and the

Cartesian constraint is also satisfied when taken into account.

This is more evident in Fig. 6, where the trajectory of the

elbow height is shown in the two cases.

0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (s)

E
lb

o
w

 H
e
ig

h
t
(m

)

No Cartesian Constrain

With Cartesian Constrain

Fig. 6. Elbow height zel in the point-to-point task of Fig. 5, with
(red/continuous) and without (blue/dashed) the constraint zel ≥ 0.4

291

VI. EXPERIMENTAL RESULTS

A number of experiments have been realized with a 7-

dof KUKA LWR IV commanded at the velocity level.

The desired end-effector trajectory is a circular trajectory

centered at (0,−0.5, 0.32) [m] with radius is 0.3 [m], passing

thus very close to the robot supporting table: the minimum

nominal height of the end effector is only 2 cm. While a care-

ful trajectory planning is usually needed to accomplish this

kind of tasks, with our method the constraint is considered

directly in the kinematic controller. Figure 7 shows the result

of the experiment. The reader is referred to the accompanying

video clip for a better appreciation of the robot motion.

Fig. 7. Snapshots from an experiment with the KUKA LWR IV and plot
of the relevant trajectories: end-effector (black), wrist (blue), elbow (red)

The Cartesian constraints were mapped as minimum

height limits for the elbow and the wrist, respectively equal

to 0.15 [m] and 0.12 [m]. Their satisfaction is shown in detail

in Fig. 8, while the obtained modulation of the joint velocity

bounds during the experiment is illustrated in Fig. 9.

0 10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

Z
 [

m
]

Fig. 8. Elbow (red) and wrist (blue) trajectories in the experiment, with
dashed lines representing the associated limits

0 10 20 30 40 50 60 70
4

3

2

1

0

1

2

3

4

Time [s]

A
n

g
u

la
r

V
e

lo
c
it
y
 [

ra
d

/s
]

Fig. 9. Maximum (solid) and minimum (dashed) joint velocity bounds: q̇1

(blue), q̇2 (red), q̇3 (black), q̇4 (green), q̇5 (yellow), and q̇6 (magenta)

VII. CONCLUSIONS

We have presented a new redundancy resolution method

that algorithmically explores the possibility of redistributing

joint motion commands so as to: i) satisfy hard bounds

on joint range, joint velocity, and joint acceleration; ii)

guarantee task preservation, if at least one feasible solution

exists; iii) use a reduced number of saturated commands; iv)

achieve a minimum norm property for the remaining enabled

(unsaturated) joints; v) automatically introduce a minimum

task scaling, if and only if the original task is not feasible

with the given bounds. The simultaneous achievement of all

these requirements is a distinctive feature of the proposed

method, as opposed to all previously existing works.

ACKNOWLEDGEMENTS

This work is supported by the European Community,

within the FP7 ICT-287513 SAPHARI project.

REFERENCES

[1] S. Chiaverini, G. Oriolo, and I. Walker, “Kinematically redundant
manipulators,” in Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008, pp. 245–268.

[2] Y. Nakamura, Advanced Robotics: Redundancy and Optimization.
Reading, MA, USA: Addison-Wesley, 1991.

[3] A. Liegeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Trans. Syst., Man, Cybern.,
vol. 7, pp. 245–250, 1977.

[4] C. Samson, M. L. Borgne, and B. Espiau, Robot Control: The Task

Function Approach. Clarendon, Oxford, UK, 1991.
[5] T. Chanand and R. Dubey, “A weighted least-norm solution based

scheme for avoiding joint limits for redundant joint manipulators,”
IEEE Trans. on Robotics, vol. 11, no. 2, pp. 286–292, 1995.

[6] F. Chaumette and E. Marchand, “A new redundancy-based iterative
scheme for avoiding joint limits: Application to visual servoing,” in
Proc. IEEE Int. Conf. on Robotics and Automation, 2000, pp. 1720–
1725.

[7] N. Mansard and F. Chaumette, “Visual servoing sequencing able to
avoid obstacles,” in Proc. IEEE Int. Conf. on Robotics and Automation,
2005, pp. 3143 – 3148.

[8] A. S. Deo and I. D. Walker, “Minimum effort inverse kinematics for
redundant manipulators,” IEEE Trans. on Robotics and Automation,
vol. 13, no. 5, pp. 767–775, 1997.

[9] R. V. Dubey, J. A. Euler, and S. M. Babcock, “Real-time implementa-
tion of an optimization scheme for seven-degree-of freedom redundant
manipulators,” IEEE Trans. on Robotics and Automation, vol. 7, no. 5,
pp. 579–588, 1991.

[10] P. Chiacchio and S. Chiaverini, “Coping with joint velocity limits
in first-order inverse kinematics algorithms: Analysis and real-time
implementation,” Int. J. of Robotics Research, vol. 13, no. 5, pp. 515–
519, 1995.

[11] G. Antonelli, S. Chiaverini, and G. Fusco, “A new on-line algorithm
for inverse kinematics of robot manipulators ensuring path tracking
capability under joint limits,” IEEE Trans. on Robotics, vol. 19, no. 1,
pp. 162–167, 2003.

[12] F. Arrichiello, S. Chiaverini, G. Indiveri, and P. Pedone, “The null-
space-based behavioral control for mobile robots with velocity actuator
saturations,” Int. J. of Robotics Research, vol. 29, no. 10, pp. 1317–
1337, 2010.

[13] O. Khanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of
redundant manipulators: Generalizing the task-priority framework to
inequality task,” IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785–792,
2011.

[14] D. Omrcen, L. Zlajpah, and B. Nemec, “Compensation of velocity
and/or acceleration joint saturation applied to redundant manipulator,”
Robotics and Autonomous Systems, vol. 55, no. 4, pp. 337–344, 2007.

[15] C. D. Meyer, “Generalized inversion of modified matrices,” SIAM J.

of Applied Mathematics, vol. 24, no. 3, pp. 315–323, 1973.

292

