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Abstract 

While the performance of flight simulator motion system hardware has advanced 

substantially, the development of the motion cueing algorithm, the software that 

transforms simulated aircraft dynamics into realizable motion commands, has not kept 

pace.  Prior research identified viable features from two algorithms: the nonlinear 

“adaptive algorithm”, and the “optimal algorithm” that incorporates human vestibular 

models.  A novel approach to motion cueing, the “nonlinear algorithm” is introduced that 

combines features from both approaches.  This algorithm is formulated by optimal 

control, and incorporates a new integrated perception model that includes both visual and 

vestibular sensation and the interaction between the stimuli.  Using a time-varying 

control law, the matrix Riccati equation is updated in real time by a neurocomputing 

approach. 

Preliminary pilot testing resulted in the optimal algorithm incorporating a new 

otolith model, producing improved motion cues.  The nonlinear algorithm vertical mode 

produced a motion cue with a time-varying washout, sustaining small cues for longer 

durations and washing out large cues more quickly compared to the optimal algorithm.  

The inclusion of the integrated perception model improved the responses to longitudinal 

and lateral cues.  False cues observed with the NASA adaptive algorithm were absent.  

The neurocomputing approach was crucial in that the number of presentations of an input 

vector could be reduced to meet the real time requirement without degrading the quality 

of the motion cues. 



 iv

The new cueing algorithms are implemented on the NASA Langley Visual 

Motion Simulator (VMS), and will ultimately be implemented on the new Cockpit 

Motion Facility (CMF) currently being erected at NASA Langley. 
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1. Introduction 

1.1. Effect of Simulator Motion on Human Performance  

The objective of a motion system, when used in conjunction with a visual system, 

is to stimulate the pilot so that he or she can perceive the required motion and force 

information (i.e., cues) necessary to fly the simulator within the same performance and 

control activity as the actual aircraft.  An example of a motion system is the six-degree-

of-freedom hexapod shown in Figure 1.1. 

 

Figure 1.1.  Six-Degree-of-Freedom Hexapod Motion System.  Delft University, The 

Netherlands. 

 

Buckingham [1] reported that the inclusion of motion cues allows the pilot to 

become aware of the aircraft response before visual cues are detected, noting that without 

motion cues, the pilot’s perception of motion is degraded and the aircraft feels slower in 

responding.  Buckingham noted that in extreme cases, the pilot might be unable to control 

the aircraft when the absence of motion cues introduces a 90-degree phase lag into the 

control loop.  Buckingham cited one case in which the motion system was disabled while 
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unbeknown to the pilot; the pilot described the simulation as inferior to the previous 

configuration with motion, as it took longer to respond to control inputs. 

Gundry [2] reported that Douvillier, et al., Fedderson, Mathney, Perry and Naish, 

and Tremblay, et al. observed that when motion cues were provided, there was an 

increase in high-frequency, low-amplitude control movements that appeared more like 

movements observed during flight as compared to activity in a fixed-base simulator. 

Gundry noted that Perry and Naish compared pilot control activity of both fixed-base and 

moving-base simulation of a flight through heavy turbulence, and observed a 

considerable reduction in the simulated aircraft roll angle with motion present.  The 

presence of motion produced pilot responses with more rapid and accurate control.  These 

results show that when an aircraft is subjected to turbulence in flight, the pilot uses roll 

and pitch motion as information to correct the aircraft attitude.  It was observed that 

platform motion in response to external disturbances and maneuvering allowed the 

operator to control the simulator using sensory cues similar to those used in flight. 

Gundry also reported that Dinsdale, Meiry, Shirley, and Stapleford investigated 

the effects of roll motion upon compensatory tracking error.  In these investigations, the 

presence of motion was observed to reduce the phase lag of the simulated aircraft roll 

angle relative to the command input, increase mid-frequency gain and crossover 

frequency, and reduce the size of the remnant.  This showed that the presence of roll 

motion cues provide the operator with lead information that is used to track the 

disturbance input more accurately, especially at frequencies greater than 0.5 Hz (as noted 

by Shirley).  
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Scanlon [3] conducted a piloted simulation study on the NASA Langley Visual 

Motion System to determine the effects of motion cues during the performance of 

complex curved approach and landing tasks in the signal environment of the Microwave 

Landing System (MLS).  Comparisons of pilot tracking performance and workload were 

made on approach tasks of low, medium, and high complexity conducted with and 

without motion, with and without turbulence, and with three different wind models.  With 

motion cues, smaller lateral tracking errors resulted for the most complex approach in the 

presence of wind and turbulence.  The effect of motion was insignificant for lateral 

tracking errors for low and medium complexity approaches, and for vertical tracking 

error for all levels of complexity.  Motion cues, most noticeably with turbulence, yielded 

a higher physical workload as measured by pilot control activity, with higher column and 

wheel input rates measured for all levels of task complexity.  All pilots indicated a 

preference for motion over no motion, commenting that flying was easier and more 

realistic with the addition of motion. 

Schroeder [4] conducted an evaluation on the NASA Ames Vertical Motion 

System with experienced test pilots performing single-axis vertical and directional (yaw) 

maneuvers of a hovering helicopter with varying degrees of fidelity in the motion cueing 

algorithm, i.e., from nearly full motion to fixed-base.  For the vertical maneuver full-

motion case, Schroeder reported that “well-damped, accurate bob-ups are achieved with 

the vertical velocity staying within 10 ft/s”, but for the fixed-base case, the pilot had to 

adjust his compensation with the remaining cues, recovering over time, but taking longer 

to achieve final repositioning.  Schroeder noted that the pilots were “stunned” by the total 

loss of motion, reporting that motion cues were “certainly perceived” by all pilots for all 
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test conditions with motion cues, but not with the fixed-base configuration.  Schroeder 

commented, “Until the value of motion was demonstrated, pilot subjective impression 

was that the vertical task was primarily visual”.  Schroeder reported for the directional 

maneuver, no performance degradation was noticed for the fixed-base case, noting that 

visual yaw cues, depending on the visual scene, may be very compelling in inducing 

motion perception, possibly overwhelming the yaw motion stimulus. 

Hall [5] noted that platform motion remains the only currently available 

technology that can provide motion cueing of both direction and magnitude without 

requiring additional learning, because the pilot’s proprioceptive sensors are stimulated in 

the short term in the same manner as in flight.  The presence of motion will allow the 

pilot to achieve a task closer to that seen in the aircraft since he uses a similar set of 

sensory cues, especially when forced to operate in a high gain manner.  Hall then 

summarizes that motion becomes less important when the vehicle is easy to fly, the task 

can be performed with low pilot workload and gain, and disturbance motion is either 

absent or does not require corrective action.  Platform motion becomes increasingly 

important as task difficulty and pilot control gain increase, and are essential in the 

absence of good, wide field of view visual cues (e.g., flying in clouds, at night), and 

necessary for high gain tasks even with strong visual cues.  Hall concluded that motion 

cueing is essential when a pilot must either react quickly in response to an unexpected 

disturbance, or when the pilot must control a vehicle with low stability. 

1.2. Vehicle Simulation Structure 

The vehicle simulation structure for a motion system is shown in Figure 1.2.  The 

operator control inputs drive a mathematical model of the vehicle dynamics, generating 
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the vehicle states.  Passing the vehicle states through the motion cueing algorithm 

produces the desired motion cues and platform states.  The desired platform states are 

then transformed from degree-of-freedom space to actuator space, generating the realized 

commands to the six actuators.  The actuator motion commands serve as input to the 

platform dynamics, resulting in the actual simulator motion. 

Vehicle States

Desired

Platform States

Actuator Extension

Commands

Simulator

Control Input

Vehicle Dynamics

Model

Motion Cueing

Algorithm

Kinematic

Transformation

Platform

Dynamics

Platform

Motion

 

Figure 1.2.  Vehicle Simulation Structure. 

 

The motion cueing algorithm generates the desired motion cues that are 

constrained within the physical limits of the motion system.  Figure 1.3 shows a typical 

motion cueing algorithm implementation.  Vehicle states are transformed from a body 

reference frame to an inertial reference frame.  Scaling and limiting the vehicle states 

reduces the magnitude of the motion cues.  The duration of the cues are limited by the 

physical dimensions of the motion system.  A method to overcome this limitation is a 
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technique known as “washout”.  Washout involves returning the platform state to a 

neutral position following the initial, or “onset” portion of a motion cue, thus “washing 

out” the resulting cue at levels below the pilot’s perceptual threshold.  This is 

accomplished by passing the vehicle state through a high-pass filter, removing long-

duration (low-frequency) motion components.  Figure 1.4 shows the response of a high-

pass washout filter to an acceleration ramp to step input.   

Figure 1.3.  Motion Cueing Algorithm Implementation. 

 

The otolith organs in the human vestibular system sense both acceleration and 

tilting of the pilot’s head with respect to the gravity vector.  Since the otoliths cannot 

discriminate between acceleration and tilt, this phenomenon, known as tilt coordination, 

can be used to advantage in motion simulation.  For long-term specific force simulation, 

tilting the motion platform at a rate below the pilot’s perceptual threshold augments the 

short-duration acceleration cues produced by high-pass washout filters.  This additional 

cue results from passing the vehicle acceleration through a low-pass filter to produce the 

desired long-duration tilt cue.  Tilt coordination is implemented in a motion cueing 
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algorithm by adding additional cross-feed channels with low-pass filters in the 

longitudinal (pitch/surge) and lateral (roll/sway) modes that produce the additional 

rotational cues as shown in Figure 1.3.  For this reason four separate modes are 

implemented in a motion cueing algorithm: longitudinal, lateral, yaw, and heave. 
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Figure 1.4.  Response of a High-Pass Washout Filter to a Ramp to Step Input. 

 

1.3. Scope of Research 

In recent years, the performance of the hardware used to create the sensation of 

motion in flight simulators has improved substantially.  However, development of the 

motion cueing algorithm, the software that transforms the simulated aircraft dynamics 

into realizable commands to the motion system hardware, has not kept pace with the 

hardware development.  Wu and Cardullo [6] reported that early approaches to motion 

cueing using simple (first- and second-order) linear washout filters, for which the ratio of 

onset to washout duration was fixed, resulted in poor motion cues.  This was a 

consequence of the ratios of onset to washout duration and magnitude being fixed, 
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thereby limiting the duration of low-magnitude cues to that of the maximum cue.  In 

addition, most existing algorithms are oriented towards minimizing the state error 

between the aircraft and simulator rather than the perceptual error between the aircraft 

and simulator pilot.  Wu and Cardullo [6] identified the two most viable approaches to 

motion cueing, the nonlinear “adaptive algorithm”, for which the ratios of onset to 

washout duration and magnitude vary with time, and the linear, human-centered “optimal 

algorithm”. 

The coordinated adaptive washout algorithm, or “adaptive algorithm” was 

developed at NASA [7].  The objective of this algorithm is to adjust the motion platform 

response based upon its current motion states by adjusting filter gains through a process 

of minimizing a cost function in real time.  The cost function is minimized by 

continuously adjusting a set of adaptive parameters by the method of steepest descent.  

This technique has at its basis the minimization of state error between the aircraft and 

simulator.  This algorithm is described in further detail in Section 2.7.   

The “optimal algorithm” was developed by Sivan, et al. [8], and later 

implemented at the University of Toronto Institute of Aerospace Studies (UTIAS) [9, 10].  

This algorithm uses higher-order linear filters that are developed, prior to real time 

implementation, using optimal control methods.  This method incorporates a 

mathematical model of the human vestibular system, constraining the pilot sensation 

error between the simulated aircraft and motion platform dynamics.  Wu and Cardullo [6] 

reported that the optimal algorithm showed the most potential for future research, 

although the time-varying feature of the adaptive algorithm was also desirable.   
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A primary component in motion simulator design is the determination of the 

motion information that is relevant to the task and has an impact on human performance.  

This requires knowledge of human motion perception that, when integrated in the cueing 

algorithm development can provide the most necessary and beneficial motion cues.  To 

that end, an integral part of this research involved the modeling of the human vestibular 

and perceptual systems.  Literature studies in motion sensation and the vestibular system 

have been conducted to develop vestibular system sensation models that are most 

consistent with both experimental and theoretical analyses.  New models of both the 

semicircular canals and the otoliths are proposed.  Literature studies of the characteristics 

of visually induced motion sensation and the visual-vestibular interaction have also been 

conducted.  A new integrated human perception model is proposed that includes both 

visual and vestibular sensation and incorporates the interaction between the stimuli. 

The new vestibular models are incorporated in an improved development of the 

linear optimal algorithm.  The development of this algorithm is presented along with 

results that demonstrate the effects of implementing the new vestibular models.  The 

nonlinear algorithm is a novel approach to motion cueing that combines features of the 

nonlinear adaptive and linear optimal algorithms.  This algorithm incorporates the human 

vestibular models along with the new integrated human perception model.  The algorithm 

is formulated as an optimal control problem with a nonlinear control law, resulting in a 

set of nonlinear cueing filters that are adjusted in real time based on the motion platform 

states.  A neurocomputing approach to solve the matrix Riccati equation in real time is 

discussed.  Responses to single degree-of-freedom aircraft inputs for the nonlinear 
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algorithm are presented in comparison with the NASA adaptive algorithm and the 

optimal algorithm. 
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2. Background Information 

2.1. NASA Langley Visual Motion Simulator (VMS) 

The NASA Langley Visual Motion Simulator (VMS), shown in Figure 2.1, is a 

general-purpose flight simulator consisting of a two-crewmember cockpit mounted on a 

60-inch stroke six-degree-of-freedom synergistic motion base [11], [12].   

 

Figure 2.1.  NASA Langley Visual Motion Simulator (VMS).   NASA Langley 

Research Center, Hampton, Virginia. 

 

Motion cues are provided in the simulator by the extension or retraction of the six 

hydraulic actuators of the motion base relative to the simulator neutral position.  The 

NASA adaptive algorithm and the new optimal and nonlinear algorithms were used to 

drive the motion base during the tuning of the new algorithms and the piloted test 

evaluation. 

The cockpit of the VMS, shown in Figure 2.2, is designed to accommodate a 

generic transport aircraft configuration on the left side and a generic fighter or rotorcraft 

configuration on the right side.  Both sides of the cockpit are outfitted with three heads-

down CRT displays (primary flight display, navigation/map display, and engine display), 

a number of small standard electromechanical circular instruments and a landing gear 

handle mounted in the instrument panel.  The left side contains a two-axis side stick 
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control loader, and the right side contains a control loaded two-axis center stick.  Both 

sides contain control loaded rudder systems.  The center aisle stand is outfitted with a 

control display unit, a four-lever throttle quadrant, a flap handle, a speed brake handle, 

and a slats handle.  The cockpit is outfitted with four collimated window display systems 

to provide an out-the-window visual scene.  During the piloted evaluations, the test 

subject flew from the left seat, while an observer/test conductor rode in the right seat. 

 

Figure 2.2.  Visual Motion Simulator Cockpit.   NASA Langley Research Center, 

Hampton, Virginia. 

 

The simulator includes a high fidelity, highly nonlinear mathematical model of a 

Boeing 757-200 aircraft, complete with landing gear dynamics, gust and wind models, 

flight management systems, and flight control computer systems.  For this study, the test 

subjects flew the simulated aircraft in the manual control mode (without the autopilot), 

and with manual throttle control (without the autothrottle). 

The out-the window visual scene is driven by an Evans and Sutherland ESIG 

3000/GT computer generated image system.  The visual database represented the 

Dallas/Fort Worth airport and its surrounding terrain.  The study utilized runways 18L 

and 18R for approach maneuvers and runway 18R for takeoff maneuvers.  The runways 

were equipped with approach lights, precision approach path indicator lights, runway 
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markings, and signage.  The database included all runways and taxiways, and all airport 

structures and buildings.  All tests were conducted in a daylight environment with full 

visibility. 

2.2. Reference Frames 

A series of reference frames are used in the definition of the motion cueing 

algorithms.   These reference frames are defined below and are shown in Figure 2.3. 

2.2.1. Aircraft Center of Gravity 

The aircraft center of gravity reference frame FrCG has its origin at the center of 

gravity of the aircraft.  Frame FrCG has an orientation for XCG, YCG, and ZCG that is parallel 

to reference frames FrS and FrA. 

2.2.2. Simulator 

The simulator reference frame FrS has its origin at the centroid of the simulator 

payload platform, i.e. the centroid of the upper bearing attachment points.  The origin is 

fixed with respect to the simulator payload platform.  XS points forward and ZS points 

downward with respect to the simulator cockpit, and YS points toward the pilot's right 

hand side.  The x-y plane is parallel to the floor of the cockpit.   

2.2.3. Aircraft 

The aircraft reference frame FrA has its origin at the same relative cockpit location 

as the simulator reference frame FrS.  FrA has the same orientation for XA, YA, and ZA 

with respect to the cockpit as the simulator frame FrS. 
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2.2.4. Inertial 

The inertial reference frame FrI is earth-fixed with ZI aligned with the gravity 

vector g.  Its origin is located at the center of the fixed platform motion base.  XI points 

forward and YI points to the right hand side with respect to the simulator pilot. 

2.2.5. Reference Frame Locations 

In  Figure 2.3 are four vectors that define the relative location of the reference 

frames.  RI defines the location of FrS with respect to FrI.  RS defines the location of FrPS 

with respect to FrS.  Similarly, RA defines the location of FrPA with respect to FrA, where 

RA = RS.  RCG defines the location of FrA with respect to FrCG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.  Reference Frame Locations.  Adapted from Wu [13]. 
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2.3. Coordinate Transformations 

The orientation between the body-fixed simulator reference frame FrS and the 

inertial reference frame FrI can be specified by three Euler angles: T[     ]=β φ θ ψ  that 

define a sequence of rotations that carry FrS into FrI.  A vector V expressed in the two 

frames can be related by the transformation matrix LIS (FrI to FrS) or LSI (FrS to FrI), with 

S I

ISV = L V  and I S

SIV = L V , where -1 T

IS SI SIL = L = L , and 

cos cos sin sin cos cos sin cos sin cos sin sin

cos sin sin sin sin cos cos cos sin sin sin cos .

sin sin cos cos cos

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

− + 
 = + − 
 − 

SIL      (2.1) 

The angular velocity of FrS with respect to FrI can be related to the Euler angle 

rates βɺ  by the following expression.  Let S

Sω  represent the components of this angular 

velocity in frame FrS, then S

S Sβ = T  ωɺ , where 

 

1 sin tan cos tan

0 cos sin ,

0 sin sec cos sec

φ θ φ θ

φ φ

φ θ φ θ

 
 = − 
  

ST  (2.2)  

and S -1

S Sω = T  βɺ , where 

 

1 0 sin

0 cos sin cos .

0 sin cos cos

θ

φ φ θ

φ φ θ

−

− 
 =  
 − 

1

ST  (2.3) 

Note that in this example, the body-fixed aircraft reference frame FrA can replace the 

body-fixed simulator reference frame FrS. 
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2.4. Actuator Geometry 

The geometry of a six-degree-of-freedom synergistic motion system is given in 

Figure 2.4.  The relevant vectors relating the locations of the upper and lower bearings of 

the j-th actuator are shown below in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.  Geometry of a Six-Degree-of-Freedom Motion System.  Adapted from 

Wu [13]. 
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Figure 2.5.  Vectors for the j-th Actuator. 

 

In  Figure 2.5, OS and OI are the centroids of the motion platform and fixed 

platform respectively, and are also respectively the origins for FrS and FrI.  It can be seen 

that the relation among those vectors is 

 .l+ = = +I I

I j j j jR A R B   (2.4) 

The actuator length vector can then be found from 

 .l = + −I I

j j I jA R B   (2.5) 

The expression of lj  in the inertial reference frame FrI is desired: 

 
 = +

    = + ,

l −

−

I I I

j j I j

S I

SI j I j

A R B

L A R B
     (2.6) 

where S

jA  are the coordinates of the upper bearing attachment point of the j-th actuator in 

FrS and I

jB  are the coordinates of the lower bearing attachment point of the j-th actuator 

in FrI.  The actuator extensions can then be found from 

 
( ) ( )

( ) ( )( ) ( ) ( )( )

0

.

l l t l∆ = −

= − + −

I I I

j j j

S

SI SI j I IL t L 0 A R t R 0
 (2.7) 
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Usually the actuator extension is computed from a neutral platform position, where 

=SIL (0) I  ( I is the identity matrix), and =IR 0 , therefore l∆ = + ∆I S

j SI j IL A R . 

2.5. Nonlinear Input Scaling 

Limiting and scaling are applied to both aircraft translational input signals A

Aa  and 

rotational input signals A

Aω .  Limiting and scaling modify the amplitude of the input 

uniformly across all frequencies.  Limiting is a nonlinear process that clips the signal so 

that it is limited to be less than a given magnitude.  Limiting and scaling can be used to 

reduce the motion response of a flight simulator.  A third-order polynomial scaling was 

developed [13] and has been implemented in the new simulator motion cueing 

algorithms. 

When the magnitude of input to the simulator motion system is small, the gain is 

desired to be relatively high, or the output may be below the pilot’s perception threshold.  

When the magnitude of input is high, the gain is desired to be relatively low or the 

simulator may attempt to go beyond its hardware limits.  Let us define the input as x and 

the output as y.  Now define maxx as the expected maximum input and maxy  as the 

maximum output, and 0s and 1s  as the slopes at x = 0 and x = maxx respectively.  Four 

desired characteristics for the nonlinear scaling are expressed as: 

max

max max

00

1

(1) 0 0,

(2) ,

(3) ,

(4) ,

 
x

 
x x

   x =   y =

   x = x   y = y

  y = s

  y = s

=

=

⇒

⇒

′

′

 

A third-order polynomial is then employed to provide functions with all the 

desired characteristics.  This polynomial will be of the form  
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 3 2

3 2 1 0y c x c x c x c= + + + , (2.8)  

where 

( )

( )

0

1 0

2

2 max max 0 max 1 max

3

3 max 0 max max 1 max

0,

,

3 2 ,

2 .

c

c s

c x y s x s x

c x s x y s x

−

−

=

=

= − −

= − +

 

One example of this polynomial gain is shown in Figure 2.6, with parameters set as 

maxx = 10, maxy = 6, 0s = 1.0, 1s = 0.1. 
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Figure 2.6.  Nonlinear Input Scaling. 

 

2.6. Specific Force at the Pilot’s Head 

The purpose of the motion cueing algorithm is to create a specific force vector 

and an angular velocity vector at the pilot's location in the simulator that approximates 

the stimulus that the pilot would experience in an actual aircraft.  The relation between 

the specific force acting on the simulator pilot and the specific force at the origin of the 

simulator reference frame can be found from 
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       = ( )

      = ( ).

= −

+ × + × × −

+ × + × ×

S S S

PS PS

S S S S S

S S S S S S

S S S S

S S S S S S

f a g

a ω R ω ω R g

f ω R ω ω R

ɺ

ɺ

    (2.9) 

Both S

PSf and S

Sω  are used to compute sensed responses using the vestibular models 

discussed in Chapter 3.  Similar expressions can be obtained for the specific force and 

angular velocity at the aircraft pilot’s head. 

2.7. Coordinated Adaptive Washout Algorithm 

The intent of the NASA adaptive algorithm [7] is to adjust the response of the 

simulator washout filters in real time according to the current state of the simulator.  The 

block diagram for this algorithm is shown in Figure 2.7.  There are separate filtering 

channels for the translational and rotational degrees of freedom with a cross-feed path to 

provide the steady-state tilt coordination cues. 

 

Figure 2.7.  Coordinated Adaptive Washout (NASA Adaptive) Algorithm. 
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 The aircraft acceleration vector A

Aa  is first transformed from the center of gravity 

of the aircraft to the motion base centroid.  After nonlinear scaling and limiting, the 

gravity vector is subtracted to produce a simulator frame specific force vector.  The 

simulator specific force is transformed from the simulator frame FrS into the inertial 

frame FrI, resulting in the inertial specific force command I

Af .  The specific force 

command I

Af  is passed through a translational channel with a time-varying gain λ  to 

produce a simulator translational acceleration command I
Sɺɺ . This acceleration is 

integrated to produce the velocity I
Sɺ , which is then integrated to produce the simulator 

translational position command I
S .  Both the velocity and position commands are 

employed as feedback. 

 The aircraft angular velocity vector A

Aω  is limited and scaled similar to the 

translational channel, with the resulting vector being transformed to the Euler angular 

rate vector Aβ
ɺ .  This vector is passed through the rotational channel with a time-varying 

gain δ  to produce the vector SRβ
ɺ .  The tilt coordination rate STβ

ɺ  is formed from the 

acceleration I

Aa  being passed through the cross-feed channel with a fixed gain γ.  The 

summation of STβ
ɺ  and SRβ

ɺ  will yield Sβ
ɺ , which is then integrated to generate Sβ , the 

simulator angular position command. 

 LSI and TS are formed by Eqs. (2.1) and (2.2).  The simulator translational 

position I
S  and the angular position Sβ  are used to transform the simulator motion from 

degree-of-freedom space to actuator space as given in Eqs. (2.6) and (2.7), generating the 

actuator commands required to achieve the desired platform motion. 
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 The control law for the longitudinal mode is given by the following expressions: 

 
,

I I I I

x x Ax x x x x

I

S x Ax x A

S f d S e S

f

λ

θ γ δ θ

= − −

= +

ɺɺ ɺ

ɺ ɺ
 (2.10) 

where xd , xe , and xγ  are fixed parameters, and xλ  and xδ  are the time-varying 

parameters that are continuously adjusted in an attempt to minimize the instantaneous 

value of the cost function.  The cost function is defined as 

 ( ) ( ) ( ) ( )
2 2 221

,
2 2 2 2

I I I Ix xX
x Ax x A S x x

b CW
J f S S Sθ θ= − + − + +ɺɺ ɺ ɺ ɺ  (2.11) 

where XW , xb , and xC  are constant weights that penalize the difference in response 

between the aircraft and simulator, as well as restraining the translational velocity and 

displacement in the simulator. 

 The time-varying parameters xλ  and xδ  are adjusted by steepest descent as given 

by 
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∂
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 (2.12) 

where 
x

Kλ , 
xiK λ , 

x
Kδ , and 

xiK δ  are constants.  The first right-hand side term of each 

equation defines the change of the time-varying parameter is to be toward a minimum, 

and together with the second term defines the rate of change.  The second term also 

restrains the deviation of either xλ  or xδ  respectively from their original values. 
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3. Vestibular System Modeling  

This chapter discusses the development of vestibular system sensation models that 

are most consistent with both experimental and theoretical analyses and can be readily 

implemented into a motion cueing algorithm.  These results are based on the literature 

presented by several researchers who investigated the physiology of the semicircular 

canals and the otolith organs, and also studied rotational and linear motion sensation.  

The development of the semicircular canals sensation model follows a previous 

presentation [13].  In addition, research on motion thresholds was surveyed in order to 

produce values to be used in the motion cueing algorithm development. 

The vestibular system is located in the inner ear and consists of the semicircular 

canals and otolith organs that sense angular and linear motion respectively.  The location 

and orientation of the vestibular system in the head is shown in Figure 3.1.   

 

Figure 3.1.  Location and Orientation of the Semicircular Canals.  Reproduced with 

Permission from Purves, et al. [14].      
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3.1. Semicircular Canals 

3.1.1. Physiological Description 

The semicircular canals consist of two sets of three elliptical cavities or canals 

that are filled with a fluid known as endolymph.  The orientation of the canals in the head 

is shown in Figure 3.1.  With the head in its normal erect position, the plane through the 

diameter of each horizontal canal is inclined about thirty degrees above an earth-

horizontal plane.  The posterior vertical canal lies in an almost vertical plane, forming a 

45-degree angle with the frontal plane of the head.  The anterior canal is also at a 45-

degree angle with the frontal plane, forming a right angle with the posterior canal. 

At one point on each canal, the canal cavity swells to form a bulbous expansion 

called the ampulla that contains the sensory ephithelium or crista.  The crista contains 

bundles of sensory hair cells that extend into a gelatinous mass called the cupula as 

shown in Figure 3.2.  The cupula bridges the width of the ampulla cavity, forming a seal 

through which endolymph cannot circulate.  When the head turns in the plane of one of 

the canals, the inertia of the endolymph produces a force across the cupula, deflecting it 

in the opposite direction of head movement and causing a displacement of the hair 

bundles in each hair cell.  Each hair cell has about 70 stereocilia and one kinocilium [15], 

with the stereocilia graded in length towards the kinocilium.  Within one cupula, each 

kinocilium is on the same side as its stereocilia, forming a direction of polarization.  

When the cupula deflection is in the direction of the kinocilium, the hair cells will be 

maximally excited; whereas when the deflection is in the opposite direction the cells will 

be maximally inhibited. 
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Figure 3.2.  Physiology of the Semicircular Canals Cupula.  Reproduced with 

Permission from [14]. 

 

There are two types of sensory cells located in the cupula.  The type I cells are 

contained in a nerve chalice and are innervated by fibers with a large diameter.  The type 

II cells are cylindrical and are innervated by fibers with a small diameter.  Both types of 

cells have a series of small hairs that penetrate into the cupula mass. 

3.1.2. Mathematical Model 

Zacharias [16] reported that Steinhausen first developed a linear second-order 

model of canal dynamics to explain the observed characteristics of vestibular-induced eye 

movements in fish (pike).  This model was further refined by the “torsion-pendulum” 

model of Van Egmond, et al., [17], and was later developed from a systems approach by 

Mayne [18].  The transfer function for this overdamped system is 
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Further studies showed that the torsion-pendulum model does not completely 

represent rotational sensation.  Young and Oman [19] formulated an adaptation operator 

and cascaded it with the torsion-pendulum model to resolve the conflicts between the 
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response predicted by the torsion-pendulum model and the perceptual responses 

measured in experiments.  The addition of the adaptation operator resulted in the 

following transfer function: 
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where the gain KSCC noted by Zacharias [16] is proportional to τ1τ2.   

Zacharias [16] reported several experiments suggesting an additional lead 

component.  With the addition of this component, a model representing both the 

semicircular canal dynamics and the neural transduction dynamics was established: 
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Parameters for man are difficult to measure because direct measurement of the 

afferent response of the semicircular canals cannot be obtained.  Therefore, most early 

experiments to determine the torsion-pendulum model parameters were based on 

subjective responses.  Van Egmond [17] reported that the long time constant τ1 and short 

time constant τ2 had values of about 10 seconds and 0.1 seconds respectively.  The values 

were based on the verbal response of humans subjected to various motion inputs in both a 

rotating chair and a torsion swing.  Zacharias [16] noted that Meiry, measuring detection 

latency as a function of angular acceleration step size, obtained a 7-second long time 

constant for roll-axis rotation about the earth-vertical axis, and that Guedry, using a short 

period rotational stimulus consisting of an acceleration pulse doublet, and a response 

measure of apparent displacement, found values of 16 seconds for yaw-axis rotation and 

7 seconds pitch-axis rotation about the earth-vertical axis.  Zacharias [16] then reported 
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that Malcolm and Melvill-Jones investigated the response to earth-vertical rotation about 

all three axes by using a velocity step as the stimulus, and measured the elapsed time to 

zero perceptual response.  They obtained values of 6.1 seconds for the roll axis, 5.3 

seconds for pitch, and 10.2 seconds for yaw. 

Goldberg and Fernandez [20] determined average parameters for the semicircular 

canals of the squirrel monkey by direct measurement of the afferent nerves due to various 

angular acceleration inputs of different amplitudes and frequencies.  Their transfer 

function related the afferent firing rate of the vestibular nerve to the angular acceleration 

input: 

 
( )

( ) ( )
( )

( )( )
1 0.04980

3.44 .
1 80 1 5.7 1 0.003

AFR s ss

s s s sα

   +
=    

+ + +   
       (3.4) 

The model parameters were estimated with the exception of the short time 

constant τ2, which was determined analytically based on the physiology of the 

endolymph.  Goldberg and Fernandez [20] noted that the short time constant τ2 is 

estimated to be 0.005 seconds for humans. 

It can be inferred that the long time constant τ1 measured by Van Egmond, et al., 

Meiry, Guedry and Malcolm and Melvill-Jones, as reported by Zacharias [16], does not 

actually represent the semicircular canal parameter in the model, but is an overall 

dynamics parameter representing the rotational sensation response to an angular velocity 

input.  Zacharias [16] suggested that each axis of rotation has an equivalent “body axis” 

canal pair with a distinct time constant.  The psychophysical results show each of the 

three axes having a distinct value for τ1..  However, physiological results based on 

afferent responses by Goldberg and Fernandez show the same value for τ1 for the three 
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canal pairs.  Zacharias [16] suggested the differences shown in the psychophysical results 

could occur at a central origin at the perceptual level. 

From subjective pilot measurements of angular acceleration thresholds on a 

moving base platform, Hosman and Van der Vaart [21] obtained the following 

semicircular canals transfer function, neglecting gain sensitivity and adaptation: 

 ( )
( )( )
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s
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     (3.5) 

These results are based upon roll and pitch acceleration thresholds; yaw 

thresholds were not measured.  The value for τ1 agrees well with the value obtained by 

Goldberg and Fernandez [20].  The value obtained for τL compares to a value of 0.06 

seconds that Zacharias [16] reported that Benson and Ormsby obtained in experiments 

measuring nystagmus or involuntary eye movement due to motion. 

Zacharias [16] assumed that the angular velocity ω̂  from the semicircular canals 

that is sensed by human subjects is proportional to the cupula deflection φc, and is 

expressed by the transfer function 
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where Zacharias [16] noted that the sensitivity gain is equal to the magnitude of the long 

time constant τ1.  Goldberg and Fernandez [20] obtained gain sensitivity between the 

input stimulus and the afferent firing rate that was estimated at 3.44 spikes/sec per 

deg/sec
2
.  Zacharias [16] noted that Ormsby suggested that the sensed angular velocity ω̂  

is proportional to the afferent firing rate.  While no one to date has experimentally 

obtained this parameter, Zacharias [16] reported that Curry, et al. provided an estimate of 
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the overall gain between perceived and input angular velocity based on angular 

acceleration thresholds. 

From this research, a transfer function that can best relate the sensed angular 

velocity to the acceleration stimulus is employed in the motion cueing algorithm 

development: 
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The frequency response of the transfer function given in Eq. (3.7) is shown in 

Figure 3.3.  Both the torsion-pendulum model and the complete model with the lead and 

adaptation mechanisms included are shown. 
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Figure 3.3.  Frequency Response of Semicircular Canals Transfer Function. 

 

The sensory function of the semicircular canals can be described by observing the 

frequency response of the torsion-pendulum model.  In the range of normal head 

movement from 0.1 to 1.0 Hz [22], the gain response decreases by 20 dB/decade with the 
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phase close to minus 90 degrees.  In this frequency range, the semicircular canals 

function as “integrating accelerometers” or angular velocity transducers.  At very low 

frequencies less than 0.01 Hz, the phase approaches zero degrees, thus functioning as an 

accelerometer.  At very high frequencies greater than 100 Hz, the phase approaches 

minus 180 degrees, thus functioning as an angular displacement transducer.  The effects 

of adaptation and lead on rotational sensation are apparent; adaptation influences the 

afferent response at low frequencies below 0.01 Hz while the lead component influences 

high frequencies greater than 10 Hz. 

For implementation into the optimal cueing algorithm, angular velocity is 

employed as a stimulus, requiring the following transfer function: 
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In addition, numerical stability problems may result when integrating the transfer 

function due to the small magnitude of the short time constant τ2 in the denominator 

relative to the simulation time step.  Solely neglecting the short time constant would 

result in an unrealizable transfer function, but the lead time constant τL in the numerator 

could also be neglected since its order of magnitude is the same as the cueing algorithm 

time step.  For numerical integration, the step size should be at least ten times smaller 

than the smallest time constant.   The effect of both τ2 and τL is also well above the range 

of normal head movements.  For these reasons a reduced-order transfer function can be 

utilized: 

 
( )
( ) ( )( )

ˆ 80
5.73

1 80 1 5.73

s s

s s s

ω

ω
=

+ +
         (3.9) 



 31

3.1.3. Physiological Interpretation 

Wu [13] presented a physiological interpretation of the behavior of the 

semicircular canals.  He noted that the cupula-endolymph system first transforms an 

acceleration input to the head into a displacement of the cupula.  This displacement then 

becomes an afferent response through a “mechano-neural” transduction system consisting 

of sensory hair cells and both efferent and afferent nerves. 

Many researchers have shown that an overdamped torsion-pendulum model could 

represent the cupula-endolymph system.  Wu [13] reported that the remaining terms 

represent an adaptation-lead mechanism, noting the controversy over whether its origins 

lie in either the cupula-endolymph or the mechano-neural system.  Wu reported that 

Goldberg and Fernandez [20] assumed that the origin of the adaptation mechanism might 

be centered on the physiology of the hair cells and/or the afferent neurons.  Wu then 

noted that Goldberg and Fernandez suggested the lead mechanism may originate from 

sensory hair cells that are sensitive to both cupula displacement and velocity, which is 

reflected in the time constant τL.  Wu [13] presented an interpretation by Schmid, et al. in 

which the lead mechanism is represented by efferent pathways that modify the feed-

forward afferent dynamics by means of a negative feedback.  Wu [13] demonstrated that 

this approach would justify the difference in order-of-magnitude of the adaptation time 

constant τA and the lead time constant τL. 

3.2. Otoliths 

3.2.1. Introduction 

The otolith organs are the elements of the vestibular system that provide linear 

motion sensation in humans and mammals.  These organs are responsive to specific 
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force, responding to both linear acceleration and tilting of the head with respect to the 

gravity vector.  However, the otoliths cannot discriminate between acceleration and tilt, 

requiring additional sensory information to resolve this ambiguity.  There are two otolith 

organs, the utricle and saccule, in each inner ear.  The utricle primarily senses motion in 

the horizontal plane, while the saccule primarily senses motion in the vertical plane.  The 

otolith organs are inclined by about 20 to 30 degrees above the earth-horizontal plane as 

shown in Figure 3.1. 

3.2.2. Physiological Description 

The otolith organs consist of a two-layer structure known as the otolithic 

membrane that is attached to a base containing sensory cells.  The otolithic membrane is 

composed of an upper layer, the otoconial layer, and a lower layer, the gelatinous layer. 

The endolymph fluid is in contact with the upper surface of the otoconial layer.  The 

otoconial layer consists of calcium carbonate crystals embedded in a gelatinous material 

that rests on a less dense and extremely deformable gelatinous layer.  This gelatinous 

layer is in turn attached to the sensory cell base known as the macula that is incorporated 

into the membranous tissue walls of the inner ear.  The macula is rigidly attached to the 

skull and therefore moves with the head. 

There are two types of sensory cells located in the macula.  The Type I cells are 

enclosed in a nerve chalice and are innervated by fibers with a large diameter.  The Type 

II cells are cylindrical and are innervated by fibers with a small diameter.  Fernandez and 

Goldberg [23] reported that cells in the outer (peripheral) otolith region are primarily 

Type II cells, and in the central (striolar) region cells are primarily Type I.  Both types of 

cells have a series of small hairs that penetrate the lower portion of the gelatinous layer.  
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Each hair cell has about 70 stereocilia and one kinocilium [15], with the stereocilia 

graded in length toward the kinocilium. 

The resulting displacement of the otolithic membrane due to forward linear 

acceleration is illustrated in Figure 3.4.  The arrow in the figure shows the direction of the 

specific force acting upon the head.  With a forward acceleration or backward tilting of 

the head, the denser otoliths tend to lag behind the macula, with the relative motion 

resulting in deformation of the gelatinous and otoconial layers in shear.  When the shear 

deformation is in the direction of the kinocilium, the cell will be excited, whereas when 

the deformation is in the opposite direction, the cell will be inhibited.  The directions of 

the maximum excitation and inhibition of a hair cell are defined by its polarization axis.  

In each macula, the central parting known as the striola separates oppositely polarized 

regions.  For each position due to translational movement, some cells will be maximally 

excited, while others will be maximally inhibited. 

 

Figure 3.4.  Displacement of the Otolithic Membrane due to Forward Acceleration.   

Reproduced with Permission from Purves, et al. [14]. 

 

Fernandez and Goldberg [24] identified two types of neurons that are 

characterized by their variance or regularity of discharge, hereafter referred to as regular 

and irregular units.  From a sample population of units, they identified a ratio of regular 



 34

to irregular units to be approximately three to one.  The response of a neuron is the 

afferent firing rate (AFR). 

3.2.3. Mathematical Modeling 

Zacharias [16] reported that Meiry first investigated subjective responses to linear 

motion by using a cart to produce longitudinal sinusoidal motion. By measuring the 

subjective indication of direction, he obtained a transfer function relating perceived 

velocity v̂  to stimulus velocity v: 
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where the long time constant τ1 and short time constant τ2 are 10 and 0.66 seconds 

respectively, and the gain KOTO is undetermined since amplitude measurements were not 

taken.  Zacharias [16] then noted that Peters suggested the subjective response measured 

by Meiry was perceived acceleration and not perceived velocity, since in response to an 

acceleration step, the model predicted a perceived response that decays to zero with a 

time constant of 10 seconds. 

Young and Meiry [25] noted that the model proposed by Meiry correctly 

predicted the phase of perceived velocity for lateral oscillation and time to detect motion 

under constant acceleration, but failed to predict the otoliths’ response to sustained tilt 

angle as indicated by behavioral and physiological data.  They noted that the model 

agreed with dynamic counter-rolling data (of the eye) at high frequencies, but 

experimental counter-rolling at zero frequency showed a static component of otolith 

output with no phase lag (the model assumed no static output and at zero frequency 

approached 90 degrees of lead).  They proposed the following revised model of specific 

force sensation: 
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which, when rearranged in terms of the time constants, yields 
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With a smaller long time constant (5.33 seconds) and an additional lead term, they 

modeled both perceived tilt and acceleration in response to acceleration input.  They 

noted that the model acts as a velocity transducer over the frequency range of 0.19 to 1.5 

rad/s, with the transfer function from specific force to perceived tilt or lateral acceleration 

having a static sensitivity of 0.4.  This model presumes the equivalence of linear 

acceleration sensation with that of tilt. 

Zacharias [16] noted that a lumped parameter model of otolith motion could be 

used to represent the two lag time constants, similar to the torsion-pendulum model for 

the semicircular canals.  Ormsby [26] first developed this model, and Grant, et al. [27-30] 

later refined the model as part of their theoretical analysis of the otolithic membrane. 

Grant and Best [30] obtained the following transfer function for the model: 
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where x is the relative displacement of the otoconial layer with respect to the head, ρe is 

the density of the endolymph, ρo is the density of the otoconial membrane, with ρo > ρe. 

For the otoliths, we again have an overdamped system with τ1 >> τ2. 

In determining the value of the short time constant τ2, Grant and Best [30] first 

examined the maximum displacement of the otoconial layer in response to a step change 
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in linear velocity.  The acceleration for a linear velocity step U is ( )xa U tδ= − , with gx = 

0, where ( )tδ  is the unit impulse function.  The transient response to Eq. (3.13) is then 
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t t
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e

x t U e e
τ τρ

τ
ρ

− − 
= − − 

 
   (3.14) 

By assuming that the short exponential term in Eq. (3.14) has reached zero and 

the long exponential term remains close to unity, the maximum displacement of the 

otoconial layer xmax can be approximated as 
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τ
ρ

 
≅ − 

 
 (3.15) 

The theoretical continuum mechanics analysis performed by Grant and Best [29] 

first indicated that this short time constant τ2 is 0.002 seconds or less.  They later 

demonstrate that this value turns out to be too large when reasonable values of the 

maximum otolith displacement are considered.  For ρo = 2.0 and U = 25 cm/sec (a 

reasonable value for normal head velocity), Eq. (3.15) becomes xmax = 12.5τ2.  For τ2 = 

0.002 sec, the maximum displacement of the otolithic membrane resulted in xmax = 250 

µm.  It was assumed for shear deformation the maximum displacement should not exceed 

the thickness of the otoconial layer (25 µm), indicating the short time constant should be 

one order of magnitude smaller, τ2 = 0.0002 sec.  This indicated that more damping was 

needed in the lumped parameter model.  Grant and Best [30] showed that additional 

damping could be introduced by the inclusion of a viscoelastic gelatinous layer in the 

continuum mechanics model. 

Ormsby [26] neglected the short time constant τ2 in Eq. (3.15), and after 

rearranging terms, approximated the otolith mechanical dynamics by 
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and then proposed a model for the response of the otolith afferent dynamics: 
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where AFR is the change in afferent firing rate from the resting discharge, and the 

constants A, B, and C are undetermined.  This model assumes that higher centers process 

the afferent response optimally to estimate the perceived specific force f̂  as shown in 

Figure 3.5. 
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Figure 3.5.  Model of Otolith Specific force Sensation.  Adapted from Ormsby [26]. 

 

The steady-state optimal processor H(s) is then determined by solving the 

associated Wiener-Hopf equation [31], yielding a solution of the form 
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where F, G, and M are nonlinear functions of the independent variables A, B, and C in 

Eq. (3.17).  H(s) is then cascaded with the otolith afferent dynamics to estimate the 

perceptual dynamics associated with the otoliths: 
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which is equivalent to the Young-Meiry [25] model given in Eq. (3.11).  Ormsby [26] 

noted that Fernandez, Goldberg, and Abend found an average steady-state change in 

afferent firing rate from the utricle due to a 1-g step to be 45 impulses per second (ips), 

resulting in the condition that B + C = 45.  Setting Eq. (3.19) equal to Eq. (3.11) and 

including this constraint results in the following model for the afferent response: 
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This transfer function, when rearranged in terms of its time constants, becomes 
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Ormsby [26] noted the following about this model: 

The approach taken here can yield a model which accounts reasonably 

well for the available subjective data, the known physiological structure of 

the sensor and makes reasonable predictions concerning the afferent 

processes and the associated central processing. 

 

Fernandez and Goldberg [23] studied the discharge of peripheral otolith neurons 

in response to sinusoidal force variations in the squirrel monkey.  Both regularly and 

irregularly discharging neurons were measured.  The gain curves for the regular units 

were flat, with a small phase lead at low frequencies and a larger phase lag at higher 

frequencies.  The irregular units showed a larger gain enhancement and phase lead at 

high frequencies, which could not be represented by a first-order lead operator.  They 

noted on average, there is an increase by a factor of eighteen in gain enhancement in 

irregular units but only an increase of a factor of two for regular units. 
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The frequency responses of regular and irregular units resulted in a transfer 

function of the form 
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In Eq. (3.22), the term Hv is a velocity-sensitive operator with a fractional exponent (kv < 

1) and provides most of the gain enhancement and phase lead found in the irregular units.  

The value of kv reflects the effectiveness of the lead operator and is closely related to the 

slope of the gain curve. The term HA is an adaptation operator that contributes to low 

frequency phase leads and increases of gain from static or zero frequency to 0.006 Hz.  

The term HM is a first-order lag operator that Fernandez and Goldberg [23] noted might 

reflect the mechanics of otolith motion.  This lag term accounts for the high frequency 

phase lags observed in regular units and for high frequency phase leads in irregular units 

being smaller than would be predicted solely by a fractional lead operator.  The term KOTO 

defines the static sensitivity in terms of afferent firing rate per unit of acceleration, i.e., in 

units of impulses per second per g (ips/g). 

Fernandez and Goldberg [23] estimated parameters for the transfer function, 

obtaining nearly equal results for various values of τv.  The median parameters for both 

regular and irregular units for τv = 40 seconds are given in Table 3.1. 

Table 3.1.  Median Parameters for Regular and Irregular Units. 

 kv kA τA τM KOTO 

Regular 0.188 1.12 69 sec 16 msec 25.6 ips / g 

Irregular 0.440 1.90 101 sec 9 msec 20.5 ips / g 

 

Because of the fractional exponent in the transfer function of Eq. (3.22), an 

elementary solution to its response cannot be readily obtained.  However, an approximate 
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solution to the response can be derived through the application of fractional calculus [32].  

The derivation to obtain a response to a transfer function with fractional exponents is 

given in Appendix A.  Applying this derivation with the regular unit parameters given in 

Table 3.1 results in the response to a unit step: 
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where Γ is the gamma function. 

Eq. (3.23) is an infinite series.  For ν equal to zero, Eq. (3.23) will reduce to the 

Taylor series expansion of the exponential function. When ν is not equal to zero, 

( ),tE aν  is a transcendental function that can only be approximated.  A recursion 

formula was derived, where the solution to the function ( ),tE aν  is given as 
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Similarly, the unit step response for the irregular unit parameters is derived: 
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Hosman [33] noted that the fractional exponent models are not easy to implement 

in motion cueing algorithms due to the fractional exponent in the lead term.  He reported 

a simplified model of the same form developed by both Ormsby [26] and Grant and Best 

[29]: 
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Note that the gain terms for the Fernandez-Goldberg model [23] from Table 3.1 

are about one half that of the gain value used by Ormsby [26] to develop his model.  

Hosman [33] proposed a gain term of less magnitude than that used by Ormsby [26] that 

may provide an improved approximation to the Fernandez-Goldberg responses.  Due to 

the adaptation mechanism in the Fernandez-Goldberg model [23], these gains will require 

a long duration step input to be realized in steady state.  Hosman [33] chose the short 

time constant τ2 to be equal to the otolith mechanics time constant τM reported by 

Fernandez and Goldberg [23] for the regular units.  No basis, however, was given for the 

values selected for the long time constant τ1 and the lead time constant τL, which are one 

order of magnitude less than those resulting from the model developed by Ormsby [26]. 

By using the long and lead time constants reported by Ormsby [26] in Eq. (3.21), 

and selecting the short time constant and gain reported by Hosman [33] in Eq. (3.26), the 

following transfer function results for the afferent otolith dynamics: 
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The response to a step input of 1-g magnitude (9.81 m/s
2
) will now be examined 

for the Fernandez-Goldberg model [23] with both the regular and irregular unit 

parameters.  Figure 3.6 compares the step responses to the response for the proposed 

afferent dynamics model given in Eq. (3.27) for both 1-second and 30-second durations.  

Note that the onset for the proposed model is faster than the regular unit, but slower than 

the irregular unit.  There is no large overshoot as observed with the irregular unit 

response.  The steady-state response for the proposed model is less than the irregular unit 
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response but greater than the regular unit response, and approaches the regular unit 

response for the given time duration.  Both the regular and irregular unit response will 

slowly approach their respective gain values, and beyond about 80 seconds the irregular 

unit response will decrease below that of the proposed model.  The model more closely 

represents the population-dominant regular units with a faster onset and higher magnitude 

steady state effects that occur in the less prevalent irregular units.   
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Figure 3.6.  Comparison of Otolith Models Response to a 1-g Step Input. 

 

 From this research, a transfer function that can best relate the sensed response to 

the specific force stimulus is proposed: 

 
( )

( )( )1 2

ˆ 1
,

1 1

L

OTO

sf
K

f s s

τ

τ τ

+
=

+ +
 (3.28) 

with KOTO = 0.4, τ1 = 5 sec, τ2 = 0.016 sec, and τL = 10 sec.  For implementation into the 

motion cueing algorithms, Eq. (3.28) can be rewritten as 

 
( )

( )( )
0

0 1

ˆ
,OTO

s Af
K

f s B s B

+
′=

+ +
 (3.29) 



 43

where A0 = 1/τL, B0 = 1/τ1, B1 = 1/τ2, and 1 2 / .OTO OTO LK K τ τ τ′ =  

The frequency response of the proposed transfer function in Eq. (3.28) compared 

to the Young-Meiry model [25] of Eq. (3.11) is shown in Figure 3.7.  Note that the gain 

and phase lag for the Young-Meiry model [25] occur at a much lower frequency as 

compared to the proposed model.  This is due to the magnitude of the short time constant 

τ2 for the Young-Meiry model [25] being an order of magnitude larger than the value 

used in the proposed model that was obtained by Fernandez and Goldberg [23].  In the 

range of normal head movements from 0.1 to 1.0 Hz [22], the gain for the proposed 

model remains constant, with the phase close to zero degrees.  In this frequency range, 

the otolith functions as a specific force transducer. 
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Figure 3.7.  Frequency Response of Proposed and Young-Meiry Otolith Models. 

 

3.2.4. Physiological Interpretation 

Modern theories of the operation of the otolith receptors are based on the 

assumption that the afferent responses are generated by the deflection of hairs in the 
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sensory cells as a result of the otolith displacement.  A specific force input, in the form of 

either linear acceleration or tilt, is transformed by the otolith-endolymph system into a 

displacement of the otolith.  This displacement is further transformed into an afferent 

response by the mechano-neural transduction system consisting of sensory hair cells and 

both efferent and afferent nerves. 

Many researchers have shown that the otolith-endolymph system could be 

represented by an overdamped mass-spring-damper system. Grant and Best [29] reported 

that the magnitude of the long time constant τ1 is considered correct by most investigators 

because the overall system (otolith organ, neural transmission, central nervous system 

processing, and involuntary eye motion) could easily follow such a slow time constant.  

The value Grant and Best [29] obtained for the short time constant τ2 is a two order-of-

magnitude decrease in time constant as compared to the value obtained from the ocular 

torsion responses measured by Young and Meiry [25].  This value is also a one order-of-

magnitude decrease as compared to the value of τM that Fernandez and Goldberg [23] 

attribute to the afferent dynamics. The fast dynamic response of the otolith will decrease 

to the slower ocular torsion response due to losses in neural transmission and central 

nervous system processing. 

Young and Meiry [25] first noted that the origin of the lead term could be 

neurological, either in central processing of the otolith displacement signals or through 

the presence of two types of hair cells in the macula.  One type of hair cell would respond 

to displacement and the other would respond to the rate of change of otolith 

displacement.  These hair cells could produce the lead term if they were of the slowly 

adapting type postulated by several researchers.  Fernandez and Goldberg [23] later show 
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that the degree of sensitivity to the otolith velocity is a function of the fractional 

derivative in the lead operator, i.e., irregular units are more velocity-sensitive than regular 

units. They noted that this difference in sensitivity might be due to discrepancies that are 

more noticeable in irregular units. 

Fernandez and Goldberg [23] suggested that the difference between the expected 

otolith displacement and afferent firing rate for both regular and irregular units may be 

attributed to the mechanical linkages between the sensory hair bundles and the gelatinous 

layer.  They reported that these sensory hair bundles are not rigidly embedded in the 

membrane, but are enclosed in a fluid-filled meshwork between the membrane and the 

sensory epithelium.  Motion could be transferred to the hairs either by directly contacting 

the meshwork or indirectly by viscous coupling with the fluid.  They also noted that the 

irregular units correspond to thick afferents that stimulate the Type I hair cells in the 

striola.  Grant and Best [30] also suggested that the nonlinear stiffness of the gelatinous 

layer could also contribute to these differences as well. 

3.3. Motion Thresholds 

Zacharias [16] reported that Clark reviewed twenty-five earlier studies that 

attempted to define an absolute threshold for angular acceleration.  Clark noted the wide 

range in rotational devices, stimuli waveforms, psychophysical methods, and threshold 

definitions employed by various researchers.  The threshold measurements reported 

showed a two order-of-magnitude range for yaw-axis earth-vertical rotation.  Zacharias 

also noted that of the twenty-five studies that Clark reviewed, only one study was 

reported for pitch and one for roll rotation. 
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Clark and Stewart [34] later conducted a study with angular acceleration step 

input stimuli.  Using fifty-three test subjects, they found a mean threshold for the 

perception of the yaw-axis earth-vertical rotation to be 0.41 deg/sec
2
.    In a separate 

study, Clark and Stewart [35] studied thresholds about all three earth-vertical axes for 

eighteen subjects.  The mean threshold for yaw and roll was about the same (0.41 

deg/sec
2
), and was found to be larger for pitch (0.67 deg/sec

2
). 

Zacharias [16] reported that Mulder first recognized that the product of 

acceleration magnitude with detection or latency time (Mulder product) is approximately 

a constant, thus suggesting the existence of an angular velocity threshold.  Zacharias [16] 

noted that Van Egmond demonstrated that the Mulder product could be derived from the 

torsion-pendulum model, resulting in an estimated value of about 2 deg/sec.  Meiry [36] 

employed a step-response technique to measure latency time of subjects in a motion 

simulator.  For yaw-axis earth-vertical rotation, Meiry [36] obtained a value of 2.6 

deg/sec.  For roll-axis earth-vertical rotation, a value of 3.0 deg/sec was obtained. 

Zacharias [16] then demonstrated that given an infinite detection time 

corresponding to acceleration below an absolute threshold, the velocity threshold is equal 

to the acceleration threshold multiplied by the semicircular canals long time constant.  He 

then showed that multiplying the measured accelerations obtained by Clark and Stewart 

[35] by the long time constants for the corresponding axis obtained by Melvill-Jones, et 

al. resulted in estimated angular velocity thresholds for each earth-vertical body axis.  

Zacharias noted that these values were in general agreement with those obtained by 

Meiry [36]. 
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Benson, et al. [37] reported that threshold measurements were never made with an 

angular motion stimulus having a trajectory similar to that of a natural head movement.  

To address this, they performed threshold experiments on a turntable driven by a 

precision torque motor that generated rotational stimuli about an earth-vertical axis, 

carrying either a seat with the subject seated upright, or a stretcher that allowed the 

subject to lay either supine or on their right side.  The following results in Table 3.2 were 

obtained for all three earth-vertical axes, and are compared to the thresholds reported by 

Reid and Nahon [9] that include the roll and yaw thresholds reported by Meiry [36] and 

the pitch threshold Zacharias [16] estimated from the acceleration thresholds obtained by 

Clark and Stewart [35]. 

Table 3.2.  Comparison of Body Axis Angular Velocity Thresholds in deg/sec. 

Reference Roll Pitch Yaw 

Reid and Nahon 3.0 3.6 2.6 

Benson, et al. 2.0 2.0 1.6 

 

Zacharias [16] reported a review of linear acceleration threshold studies by Peters, 

in which Peters noted a one order-of-magnitude range in measured threshold (0.002 to 

0.02 g).  Possible contributions to this variation included the variability between subjects, 

the type of stimulus used (e.g., sinusoidal vs. step), the definition of threshold, and the 

head axis orientation with respect to the stimulus.  Zacharias [16] noted that only one of 

the reviewed studies used a linear acceleration stimulus in the earth-vertical direction, in 

which Mach obtained an acceleration threshold of 0.012 g.  Subsequent vertical motion 

threshold measurements reported by Zacharias [16] show almost a one order-of-

magnitude difference, from 0.0085 g to 0.005 g. 
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Zacharias [16] also reported threshold measurements with a linear acceleration 

stimulus in the horizontal plane with subjects lying supine, noting that similar thresholds 

to vertical motion are expected since this geometry implies an alignment of the stimulus 

acceleration vector with the vertical body axis.  Zacharias [16] noted that these results are 

confirmed by an estimate of 0.01g obtained by Meiry [36] (using a linear motion cart and 

acceleration step inputs).  However, Zacharias [16] then noted that the most common test 

protocol for threshold measurements of horizontal stimuli has been with subjects seated 

upright.  Meiry [36] noted that with the utricle inclined at about 30 degrees above the 

horizontal head plane, horizontal thresholds might be expected to be lower than vertical 

thresholds by a factor of cos 30/sin 30, or about a factor of 1.7. 

Benson, et al. [38] performed threshold experiments with a test stimulus 

consisting of a single discrete movement having an acceleration trajectory that 

approximated a sine wave.  This stimulus is similar to the trajectory used by Benson, et 

al. [37] in determining rotational thresholds.  Motion stimuli were generated by a 

horizontal linear oscillator guided by externally pressurized aerostatic bearings, 

supporting a seat assembly that could be adjusted so that the stimuli axis was parallel to 

the axis of motion of the carriage.  Benson, et al. [38] obtained thresholds for the x-, y-, 

and z-axes that are noted in Table 3.3, and are compared to thresholds reported by Reid 

and Nahon [9].  Reid and Nahon [9] reported acceleration threshold values that were 

based on the studies reported by Zacharias [16].  The z-axis threshold is about the same 

as that Zacharias [16] reported was obtained from the Mach study reported by Peters.  

The x- and y-axis acceleration is about a factor of 1.7 less than that noted for the z-axis, 

which is consistent with the observation noted by Meiry [36].  Benson, et al. [38] noted 
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that these thresholds are within the ranges reported in other studies; in particular the 

results obtained by Meiry [36], who employed a step acceleration stimulus.  The 

significantly higher threshold for the z-axis was noted by Benson, et al. to be consistent 

with the findings of studies employing sustained oscillatory or step acceleration stimuli. 

Table 3.3.  Body Axis Linear Acceleration Thresholds in m/sec
2
. 

Reference X-Axis Y-Axis Z-Axis 

Benson, et al. 0.0625 0.0569 0.154 

Reid and Nahon 0.17 0.17 0.28 

 

The linear and angular motion thresholds presented in Tables 3.2 and 3.3 

respectively are effective, or “indifference” thresholds that are more appropriate for the 

pilot-vehicle environment than absolute thresholds that result from the detection of a 

single task in an ideal laboratory environment.  Zacharias [16] noted that higher 

indifference thresholds during active tracking are justified because of less attention given 

to motion cues due to workload.  Gundry [2] showed an increase of 40% when the 

subject is loaded with an arithmetic task.  Hosman and Van der Vaart [21] observed a 

similar increase in roll and pitch thresholds when their subjects were loaded with either a 

control task or an auditory discrimination task. 

Zacharias [16] noted that a latency dependence on angular acceleration is 

observed, and a velocity threshold model similar to angular motion can be proposed.  

Meiry [36] measured detection latencies as a function of linear acceleration step size.  

This model assumed a velocity threshold exists such that acceleration thresholds required 

T seconds to be detected.  In response to a velocity ramp input, the model predicted a 

perceived velocity.  For subjects seated upright, the model resulted in a linear velocity 

threshold of 0.02 g-sec or about 0.2 m/sec for longitudinal motion.  Zacharias [16] noted 
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that Melvill-Jones and Young used a similar analysis of detection time and acceleration 

from both their own experiments and those of Meiry [36].  Based on Meiry’s data, they 

proposed a value of 0.22 m/sec for both longitudinal and vertical motion. 

The angular velocity and linear acceleration thresholds given in Tables 3.2 and 

3.3 are used in the development of the linear optimal algorithm discussed in Chapter 4.  

The linear velocity thresholds mentioned in the last paragraph are incorporated in the 

integrated human perception model discussed in Chapter 5 and implemented in the 

nonlinear motion cueing algorithm developed in Chapter 6.  The integrated perception 

model also includes the angular velocity thresholds of Table 3.2. 
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4.  Linear Optimal Motion Cueing Algorithm 

4.1. Problem Description 

In developing a set of linear washout filters, the problem is to determine a transfer 

function matrix W(s) that relates the desired simulator motion input to the aircraft input 

such that a cost function constraining the pilot sensation error (between simulator and 

aircraft) is minimized.  The structure of this problem is illustrated in Figure 4.1. 

Vestibular

System

Platform

Dynamics

Vestibular

System
W(s)

Aircraft

States u
A

Simulator

States u
S

Sensation

Error e

Aircraft Pilot

Simulator Pilot  

Figure 4.1.  Linear Optimal Algorithm Problem Structure. 

 

A mathematical model of the human vestibular system is used in the filter 

development.  The optimal algorithm generates the desired transfer functions W(s) by an 

off-line program, which are then implemented on-line.  W(s) will relate the simulator 

motion states to the aircraft states by uS = W(s) × uA.  The simulator states uS are then 

used to generate the desired motion platform commands. 

In the original development, the washout filters were applied in the pilot head 

reference frame.  Reid and Nahon [9] noted that this frame selection was chosen to 

eliminate sensation cross-couplings that made the development of W(s) more 

complicated.  Wu [13] demonstrated that this location of the center of rotation at the 

pilot’s head resulted in excessively large actuator extensions in some input cases.  He 
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suggested that the optimal algorithm be reformulated in the simulator reference frame 

with the center of rotation located at the centroid of the simulator motion-base. 

The question has arisen as to what aircraft and simulator control inputs are the 

most appropriate for the optimal algorithm.  The previous developments suggested a 

control input for either the longitudinal or lateral mode with linear acceleration and 

angular displacement as control inputs. Wu [13] developed an approach using linear 

acceleration and angular acceleration for the longitudinal mode.  This approach showed 

advantages in controlling additional modes that were not available in the original 

development.  In addition, since the semicircular canals behave as a transducer for 

angular velocity input in the range of normal head movements, an approach using angular 

velocity as an input is desired.  In this research an optimal algorithm based on simulated 

aircraft angular velocity inputs is developed. 

4.2. Algorithm Development 

4.2.1. Longitudinal Mode 

The algorithm development with angular velocity input for the longitudinal 

(pitch/surge) mode is given below.  The input u is formulated as 

 
1

2

,
x

u

ua

θ   
= =   

  
u

ɺ

 (4.1) 

where ɺθ  is angular velocity, and ax is the translational acceleration, with each term 

respectively set equal to 1u  and 2u .   

The sensed rotational motion 
ˆθɺ  is related to u1 by the semicircular canals model 

of Eq. (3.8): 
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where the semicircular canals time constants τ1, τ2, τa, and τL are given in Eq. (3.8), and 

GSCC is the angular velocity threshold that scales the response to threshold units.  Eq. (4.2) 

can be rewritten as 
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where 
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and can be defined in state space notation as 
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= +
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where in observer canonical form, 

 [ ] [ ]
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The sensed specific force ˆ
xf  is related to the stimulus specific force fx by the 

otolith model of Eq. (3.29): 

 ( )
( )

( )( )
( )0

0 1

ˆ ,x OTO OTO x

s A
f s G K f s

s B s B

+
′=

+ +
     (4.5) 

where A0, B0, B1, and OTOK ′ are computed parameters of the otolith model as given in Eq. 

(3.29), and OTOG  is the linear acceleration threshold that scales the response to threshold 

units.   
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For the center of rotation at the centroid of the motion platform, the specific force 

is 

 ,x x Szf a g Rθ θ= + − ɺɺ  (4.6) 

where SzR  is the radius from the motion platform centroid to the pilot’s head.  In terms of 

1u and 2u , Eq. (4.6) is transformed into the Laplace domain, where 

 ( ) ( ) ( )2 1

1
.x Szf s u s g R s u s

s

 
= + − 

 
 (4.7) 

Substituting (4.7) into (4.5) results in 
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 (4.8) 

Note that in Eq. (4.8) the system equation becomes realizable with the inclusion 

of the otolith break frequency 1B , which was neglected by both Reid and Nahon [9] and 

Wu [13] in their respective optimal algorithm formulations.  Rearranging and taking 

derivatives results in the differential equation 
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( ) ( )
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     (4.9) 

which can be rewritten as 

 1 1 1 2 2
ˆ ˆ ˆ ,x x xf a f b f cu du e u dt f u gu+ + = + + + +∫
ɺɺ ɺ

ɺ ɺ    (4.10) 

and can then be defined in state space notation as 
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where 
OTO

x are the otoliths states, and 
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The representations in Eqs. (4.4) and (4.11) can be combined to form a single 

representation for the human vestibular model: 
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   (4.12) 

where Vx and ˆ
Vy  are, respectively, the combined states and sensed responses, and AV, 

BV, CV, and DV  represent the vestibular models  as one set of state equations: 
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It is assumed that the same sensation model can be applied to both the pilot in the 

aircraft and the pilot in the simulator as shown in Figure 4.1.  We then define the 

vestibular state error xe  =  xS − xA (where xS and xA are the respective vestibular states for 

the simulator and aircraft), and the pilot sensation error e, resulting in 

 
,

= + −

= + −

e V e V S V A

V e V S V A

x A x B u B u

e C x D u D u

ɺ

 (4.13) 

where uS and uA represent the simulator and aircraft inputs as given in Eq. (4.1). 



 56

In order to constrain the simulator motion, it is necessary for the control algorithm 

to explicitly access states such as the linear velocity and displacement of the simulator 

that will appear in the cost function.  For this purpose, additional terms are included in 

the state equations: 

 ,=d d d d Sx A x + B uɺ  (4.14) 

where xd represents the additional simulator states: 

 3 2 ,x x xa dt a dt a dt θ =  ∫∫∫ ∫∫ ∫
T

dx  

and is related to the simulator input uS by 
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The aircraft input uA consists of filtered white noise, and can be expressed as 
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where xn are the filtered white noise states, w represents white noise, with An and Bn 

given as 
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where 1γ  and 2γ  are the first-order filter break frequencies for each degree-of-freedom. 

The state equations given in Eqs. (4.13), (4.14), and (4.15) can be combined to form the 

desired system equation 

 
[ ] ,

= + +

= = +

S

T

d S

x Αx Bu Hw

y e x Cx Du

ɺ

 (4.16) 
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where y is the desired output, and [ ]=
T

e d nx x x x  represents the combined states. 

The combined system matrices A, B, C, D, and H are then given by 

 , , , , .

     
        = = = =         
             

V V V

V V V

d d

n n

A 0 -B B 0
C 0 -D D

A 0 A 0 B B H 0 C D =
0 I 0 0

0 0 A 0 B

 

A cost function J is then defined as 

 ( ){ }1

0

,
t

t
J E dt= + +∫

T T T

d d d S Se Qe x R x u Ru    (4.17) 

where E{ } is the mathematical mean of statistical variable, Q and Rd are positive semi-

definite matrices, and R is a positive definite matrix.  Eq. (4.17) implies that three 

variables are to be constrained in the cost function: the sensation error e along with the 

additional terms xd and uS which together define the linear and angular motion of the 

platform.  The cost function constrains both the sensation error and the platform motion. 

The system equation and cost function can be transformed to the standard optimal 

control form as shown in Kawkernaak and Sivan [39] and noted in Reid and Nahon [9] 

by the following equations: 
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where 
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The cost function of Eq. (4.18) is minimized when 

 ,′ = − -1 T

2u R B Px    (4.19) 

where P is the solution of the algebraic Riccati equation 
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 .′ ′ ′− + + =-1 T T
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Substituting Eq. (4.19) into Eq. (4.18) and solving for Su , 

 ( ) , = − + 
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S 2 12u R B P R x  (4.21) 

and defining a matrix K, where =Su Kx , results in ( ).= -1 T T

2 12K R B P + R  

K can be partitioned corresponding to the partition of x in Eq. (4.16): 
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Noting that xn = uA, remove the states corresponding to the xn partition from Eq. (4.22): 
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and substituting Eq. (4.22) into Eq. (4.23) results in 
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After observing the state space form of Eqs. (4.24) and (4.13), the following equations 

are obtained in the Laplace domain: 

 ( ) ( ) ( ),= ×S Au s W s u s    (4.25) 

where  
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W(s) is a matrix of the optimized open-loop transfer functions linking the 

simulator inputs Su  to the aircraft inputs Au .  The block diagram for the on-line optimal 
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algorithm implementation is shown in Figure 4.2.  Similar to the NASA adaptive 

algorithm [7], there are separate filtering channels for the translational and rotational 

degrees of freedom with the cross-feed path providing the tilt coordination cues.   

The aircraft acceleration input vector is first transformed from the aircraft body 

frame FrA to the inertial frame FrI using Eq. (2.1).  Nonlinear scaling in combination with 

limiting as described in Section 2.5 is then applied to scale the aircraft inputs.  The scaled 

inertial acceleration I

Aa  is then filtered through the translational filter W22 to produce a 

simulator translational acceleration command ISɺɺ .  This acceleration is integrated twice to 

produce the simulator translational position command IS . 

The aircraft angular velocity input A

Aω  is transformed to the Euler angular rate 

vector Aβ
ɺ using Eq. (2.2), and is limited and scaled similar to the translational channel.  

This input is then passed through the rotational filter W11 to produce the vector SRβ
ɺ .  The 

tilt coordination rate STβ
ɺ  is formed from the acceleration I

Aa  being passed through the tilt 

coordination filter W12.  The summation of STβ
ɺ  and SRβ

ɺ  yields Sβ
ɺ , which is then 

integrated to generate Sβ , the simulator angular position command. 

The simulator translational position I
S  and the angular position Sβ  are then used 

to transform the simulator motion from degree-of-freedom space to actuator space as 

given in Eqs. (2.6) and (2.7), generating the actuator commands required to achieve the 

desired platform motion. 
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Figure 4.2.  Optimal Algorithm Implementation for Longitudinal Mode. 

 

The desired motion cueing filter matrix W(s) is computed using a set of 

MATLAB scripts.  The weighting matrices Q, R, and Rd given in the cost function of 

Eq. (4.17) are selected and adjusted to produce the desired motion platform commands.  

From these weights and the vestibular models the standard optimal control matrices of 

Eq. (4.18) are computed.  The algebraic Riccati equation of Eq. (4.20) is solved with a 

MATLAB function that uses a generalized eigenproblem formulation with a Newton-

type refinement presented by Arnold and Laub [40].  The solution for W(s) is then 

computed.  Common poles and zeros are cancelled in each transfer function, yielding a 

set of seventh-order filters for the longitudinal mode.  These filters are then used in a 

SIMULINK model that generates the linear acceleration and angular velocity 

responses.  If the solution to W(s) is unsatisfactory, this procedure is repeated by 

adjusting the elements of the weighting matrices Q, R, and Rd until the desired results are 

obtained.  The procedure for computing the solution to W(s) is illustrated in Figure 4.3. 
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Figure 4.3.  Linear Motion Cueing Filter Solution Procedure. 

 

4.2.2. Lateral Mode 

For the lateral (roll/sway) mode, the algorithm development is analogous to the 

longitudinal mode.  In Eq. (4.1), the inputs θɺ  and ax are replaced by φɺ  and ay 

respectively.  The sensed rotational motion 
ˆθɺ  in Eq. (4.2) is replaced by 

ˆφɺ .  The specific 

force xf  and sensed specific force ˆ
xf  become yf  and ˆ

yf  respectively, with Eq. (4.6) 

now computed as 

 .y y Szf a g Rφ φ= − − ɺɺ  (4.26) 

These changes thus result in the differential equation given in Eq. (4.9) becoming 



 62

 
( )

( ) ( )

0 1 0 1

0 0 1 1 0 1 1 0 1 2 0 2

ˆ ˆ ˆ

,

y y y

OTO OTO Sz Sz

f B B f B B f

G K R A B B u g R B B u gA u dt u A u

+ + + =

 ′ − − − + − + + ∫

ɺɺ ɺ

ɺ ɺ

  (4.27) 

which when rewritten as Eq. (4.10) , will produce the state equation representation for the 

otolith model similar to Eq. (4.11), with the same system matrices except 

[ ]0OTO OTO SzG K r′=OTOD .  The state equation representation for the vestibular model of 

the form of Eq. (4.13) ultimately results.  For this mode the additional platform states 

given in Eq. (4.14) are now 3 2

y y ya dt a dt a dt φ =  ∫∫∫ ∫∫ ∫
T

dx . 

The remaining development is identical in form to Eqs. (4.15) to (4.25), resulting 

in a matrix of seventh-order transfer functions W(s) for the lateral mode.  The on-line 

implementation of this mode is identical to Figure 4.2. 

4.2.3. Vertical Mode     

For the vertical, or heave mode, the single degree-of-freedom input u = az, with 

the specific force fz = az − g.  The otolith model given in Eq. (4.5) then becomes  
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and can then be defined in state space notation as 
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where OTOxɺ  are the otolith states for this mode, and 
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Since this mode consists of a single translational degree-of-freedom, the formulation does 

not include the semicircular canals model, therefore AV = AOTO, BV = BOTO, and CV = 

COTO.  This results in a sensation model of the same form as Eq. (4.13): 

 
.

= + −

=

e V e V S V A

V e

x A x B u B u

e C x

ɺ

   (4.30) 

Similar to the longitudinal mode, additional motion platform states are included in the 

state equations: 

 ,=d d d d Sx A x + B uɺ    (4.31) 

where xd represents the additional motion platform states: 

 3 2 ,z z za dt a dt a dt =  ∫∫∫ ∫∫ ∫dx  

and Ad and Bd now become 

 

0 1 0 0

0 0 1 , 0 .

0 0 0 1
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The aircraft input uA now consists of a single channel of filtered white noise with break 

frequency γ, and can be expressed as 
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γ γ= − +

=

n n

A n

x x w

u x
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 (4.32) 

The state equations given in Eqs. (4.30), (4.31), and (4.32) can then be combined 

to form the desired system equation of the same form as Eq. (4.16), where y is the desired 

output, and [ ]=
T

e d nx x x x  represents the combined states.  The remaining 

development is identical in form to Eqs. (4.16) to (4.25), resulting in a single fourth-order 
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transfer function W22 for the vertical mode.  The block diagram of the on-line 

implementation of this mode is shown in  Figure 4.4. 

 

 

 Figure 4.4.  Optimal Algorithm Implementation for Vertical Mode. 

 

4.2.4. Yaw Mode 

For the yaw mode, the single degree-of-freedom input is u = ψɺ .  The state space 

representation is the same as Eq. (4.4) with output ψ̂ɺ  replacing 
ˆθɺ : 
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   (4.33) 

Since this mode consists of a single rotational input, the formulation does include the 

otolith model, therefore AV = ASCC, BV = BSCC, CV = CSCC, and DV = DSCC.  This results in a 

sensation model of the same form as Eq. (4.13): 
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   (4.34) 

Similar to the longitudinal mode, additional motion platform states are included in the 

state equations 

 ,=d d d d Sx A x + B uɺ  (4.35) 

where xd represents the additional motion platform states ,dtψ ψ =  ∫dx  and Ad and 

Bd now become 
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The aircraft input Au  now consists of a single channel of filtered white noise with break 

frequency γ, and can be expressed as 
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 (4.36) 

The state equations given in Eqs. (4.34),  (4.35), and (4.36) can then be combined 

to form the desired system equation of the same form as Eq. (4.16), where y is the desired 

output, and [ ]=
T

e d nx x x x  represents the combined states.  The remaining 

development is identical in form to Eqs. (4.16) to (4.25), resulting in a single fourth-order 

transfer function W11 for the yaw mode.  The block diagram for the on-line 

implementation for this mode is shown in Figure 4.5. 

Figure 4.5.  Optimal Algorithm Implementation for Yaw Mode. 

 

4.3. Pilot Tuning of the Algorithm 

A set of motion cueing filters for the longitudinal, lateral, vertical, and yaw modes 

was developed using the solution procedure given in Figure 4.3.  The new semicircular 

canals model given in Eq. (3.8) was implemented, along with the Young-Meiry otolith 

model from Eq. (3.11) that was previously implemented [13], [9].  Filtered white noise 

break frequencies were initially set at 1 rad/sec for each degree-of-freedom.  In some 

instances, the MATLAB error message “cannot order eigenvalues; spectrum too near 
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imaginary axis” resulted from the motion cueing filter development.  This error occurs 

when the Hamiltonian matrix for the Riccati equation has eigenvalues on or very near the 

imaginary axis.  To resolve this, a small change to any of the weights was needed to 

obtain a successful solution to the Riccati equation as suggested by Brogan [41].  

Nonlinear scaling coefficients for each degree-of-freedom were based upon those chosen 

by Wu [13].   

In order to determine the nonlinear gain coefficients for each degree-of-freedom 

that resulted in the most desired pilot performance, a trained simulator pilot executed a 

series of pilot controlled maneuvers with the optimal algorithm on the NASA Langley 

Visual Motion Simulator (VMS) described in Section 2.1.  A series of maneuvers were 

first executed with the coefficients determined prior to testing.  Coefficients for each 

degree-of-freedom were then adjusted until the simulator pilot subjectively felt the 

desired perception and performance were reached, while ensuring that the simulator 

motion platform limits were not exceeded.  The following maneuvers were executed for 

the algorithm: 

  Straight Approach and Landing (with varying wind from head to tail) 

  Offset Approach and Landing (with and without turbulence) 

  Pitch, Roll, and Yaw Doublets 

  Throttle Increase and Decrease 

  Coordinated Turn  

  Ground Maneuvers (taxiing, effect of aircraft brakes) 

  Takeoff from Full Stop. 

 

The optimal algorithm resulted in motion cues with which the simulator pilot 

commented he had more control and confidence as compared to the NASA adaptive 

algorithm.  For both pitch and roll doublets, a fast response was observed when changing 

directions.  On takeoffs, the optimal algorithm was found to be easier to pitch up to the 
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desired attitude and control the aircraft.  A noticeably large side force was observed with 

the coordinated turn maneuver.  By reducing the gains for the roll degree-of-freedom, this 

side force was reduced to a minimal sensation.  The pitch gains were decreased to reduce 

the likelihood of entering the braking region or exceeding the actuator limits.  Reducing 

the gains for both roll and pitch degrees-of-freedom still yielded desirable motion cues. 

The severe turbulence effects that were included with the offset approach and 

landing maneuver were hardly noticeable.    An increase of the vertical gain coefficients 

resulted in increased cues, but still less than satisfactory.  This increase in the vertical 

gains (coupled with an increase of the surge gains) resulted in forward surge cues that are 

more coordinated with the pitch cues, and a larger aft surge cue (initially, the aft cue was 

noticeably smaller than the forward cue). 

The effect of the otolith model upon the vertical filter characteristics was 

investigated.  Figure 4.6 compares the frequency response of the original heave filter 

using the Young-Meiry model with the response using the proposed otolith model given 

in Eq. (3.29).  Note that the original filter results in a gain decrease starting at about 5 

rad/sec, while the proposed model filter shows the gain unchanged for the same high 

frequencies.  For the original filter, the filtered white noise break frequency γ was 

increased to 4π rad/sec (2 Hz) to remove a right-half plane zero that resulted in a large 

false cue at both the onset and end of the pulse.  For the revised filter with the proposed 

otolith model, this break frequency was reduced to 1 rad/sec, resulting in the specific 

force cue shown in Figure 4.7.  The proposed model filter results in a faster onset cue that 

approaches the aircraft step input, and a faster washout that reduces the maximum 

simulator displacement while sustaining the peak onset magnitude.       
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Figure 4.6.  Vertical Filter Frequency Responses with Young-Meiry and Proposed 

Otolith Models. 
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Figure 4.7.  Specific Force Responses with Young-Meiry and Proposed Vertical 

Filters. 
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A filter matrix W(s) is then generated for the pitch/surge mode using the proposed 

otolith model.  In order to eliminate a singular response, both the lead time constant τL 

and the short time constant τ2 are removed from the semicircular canals model 

implemented in the motion cueing algorithm: 
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Eq. (4.37) can be rewritten as 
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where T0 and T1 become  
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and can be defined in state space notation as 
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where in observer canonical form, 
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There is one less state as compared to Eq. (4.4), which in turn results in a matrix 

of sixth-order filters for W(s).   The translational break frequency γ2 was increased from 1 

to 4π rad/sec for the original filters, eliminating a false specific force cue at onset.  For 

the proposed model filters, γ2 is reduced to π rad/sec to produce a faster onset cue.  The 

semicircular canals threshold GSCC was reduced to 2.0 deg/sec, the value obtained by 

Benson, et al. [37], to reduce the magnitude of the tilt coordination rate.  Figure 4.8 
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compares the responses to a ramp to step input for both filters.  Using the proposed 

otolith model in the filter development results in a faster onset ramp for the specific force 

response, with a faster onset and reduced magnitude for the tilt coordination rate.  For 

both the original and revised filters, the weight component Q(2,2) needed to be increased 

from 1 to 10 to produce the magnitude of the specific force cues shown in Figure 4.8. 
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Figure 4.8.  Responses to a Surge Ramp to Step Input with Original and Revised 

Longitudinal Filters. 
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Figure 4.9 compares responses to a lateral (sway) half sine input for both the 

original and revised filters.  Since the algorithm development is similar to the 

longitudinal mode, the effect of the change of otolith models upon the motion cues is 

expected to be the same as the longitudinal mode.  Note that the revised filter has a faster 

onset ramp with a larger specific force cue. 
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Figure 4.9.  Responses to a Sway Half Sine Input with Original and Revised Lateral 

Filters. 

 

A summary of the optimal algorithm parameters for each of the four modes 

(longitudinal, lateral, vertical, and yaw) is given in Appendix B, Table B.1. The filter 

characteristics for both the original and revised linear motion cueing filters W(s) are also 

given in Appendix B, in Tables B.2 and B.3 respectively. 
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5.  Integrated Human Perception Model 

The purpose of this study is to develop a model of human motion perception that 

can be readily implemented into the nonlinear motion cueing algorithm discussed in the 

next chapter.  This integrated human perception model includes both vestibular and 

visual motion stimuli and incorporates the interaction between the vestibular and visual 

stimuli.  This study is based on the literature presented by several researchers who 

investigated both the characteristics of visually induced motion sensation and the visual-

vestibular interaction. 

5.1. Visually Induced Self-motion 

The visually induced effect on self-motion perception is commonly known as 

vection.  Circularvection refers to visually induced rotational motion, in particular yaw, 

but also visually induced pitch and roll.  Linearvection refers to visually induced 

translational motion.  One common experience of linearvection is the illusion of moving 

backwards when seated in a stationary train car as the adjacent train in the station begins 

to slowly move forward.  The self-motion response to a full visual field surround rotating 

about a vertical axis has been described by Young [42]: 

The response to a full field surround which suddenly begins to move at 

constant velocity is rather startling, although quite repeatable.  At first, the 

veridical motion is sensed – the surround appears to be moving and the 

subject feels himself stationary.  After a period of typically two to five 

seconds, the visual field appears to slow down, often to a stop, and the 

subject perceives himself as rotating in the opposite direction.  The 

sensation of rotation builds to a maximum over a period of three to ten 

seconds, rising approximately as an exponential. 

 

Young [42] then noted that in order to achieve a complete “saturation” of this 

effect, in which the visual field is perceived to be entirely stationary, it is useful to have a 

wide, compelling field of view in the periphery, moving uniformly at speeds less than 60 
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degrees per second.  Young then noted that if the visual surround is allowed to accelerate 

smoothly to its final velocity, at accelerations comparable to the acceleration thresholds 

of the semicircular canals, then the self-motion is more likely to be perceived as a 

smooth, continuous development of circularvection. 

Visually induced self-motion has been explored for rotations about both the earth-

horizontal and earth-vertical axes, and along all three linear axes.  The general 

characteristics of visually induced self-motion in the absence of confirming vestibular 

stimuli have been reported by Young [43] and supported by other researchers.  Young 

noted two distinct classes of visual cues for flight simulation: the foveal cues, the high 

acuity, high information-dense central field cues that must be “read” to be interpreted, 

and the peripheral cues, the wide-field, lower acuity, rapidly moving cues that generate 

non-cognitive motion perception.  These cues correspond respectively to the high static 

acuity, cone-filled fovea, and the high dynamic sensitivity, rod-filled periphery of the 

retina.   

 Brandt, et al. [44] demonstrated that the peripheral visual field was of primary 

importance in stimulating self-motion over the central visual field.  They observed that 

when the central visual field is masked up to 120 degrees in diameter, circularvection 

diminished very little. Conversely, if peripheral vision was precluded, stimulation of the 

central field of up to 60 degrees in diameter produced an almost exclusive exocentric 

perception of the moving visual surround and a very weak self-motion perception.  They 

also found that when equal stimulus areas are presented either foveally or peripherally, 

that stimulation of the peripheral visual field is more favorable to stimulate self-motion 

perception. 
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Brandt, et al. [45] demonstrated that for circularvection, background stimulation 

is dominant over foreground stimulation.  They showed that movement in the background 

induced the apparent self-motion, while if the foreground moved the stationary 

background inhibited circularvection.  They showed that if a stationary pattern is attached 

to the background, the circularvection latencies are increased significantly, thus 

indicating an inhibitory effect of circularvection due to the presence of stationary 

contrasts in the background.  Howard and Howard [46] later demonstrated that the 

presence of stationary objects in the foreground significantly increases circularvection 

and reduces the latency of onset to circularvection. 

The spatial frequency of the scene determines its effectiveness in generating self-

motion.  Held, et al. [47] demonstrated this by quantifying the visual border placement 

and velocity necessary to achieve a visually induced roll.  In their experiment the 

observer viewed a circular disc through a monocular color-corrected lens, effectively 

producing an extended visual field.  The disc was covered with a random pattern of spots 

with areas that were masked off, producing a set of ring-shaped displays.  They found 

that, in general, the magnitude of visually induced tilt increased with field size, with the 

use of a large number of rings subtending small solid angles in the peripheral areas being 

more effective than the same for central areas.  Young [43] commented that the 

peripheral field display should also have a sufficient number of borders such as stars, 

clouds, or ground features to induce the perceived self-motion. 

The visual field velocity determines the magnitude of the self-motion up to a 

saturation velocity that most likely corresponds to the blurring of the visual field 

associated with increased dynamic acuity [43].  Saturation of vection occurs when the 
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field appears stationary in space and all motion is perceived self-motion or egocentric. 

Brandt, et al. [45] observed that the velocity of apparent yaw self-motion matches the 

stimulus speeds up to 90 to 120 degrees per second.  Young and Oman [48] observed for 

a pitch stimulus, the visually induced pitch increases with field speed up to a stimulus of 

about 40 to 60 degrees per second.  They also observed a limit of about 40 to 60 degrees 

per second for visually induced roll that was confirmed by Held, et al. [47].  Young [43] 

noted that saturation occurs for linearvection up to 1 meter per second, which was the 

maximum stimulus velocity tested Berthoz, et al., [49]. 

Young [43] found that the approximate frequency response for both 

circularvection and linearvection is flat from static inputs up to a frequency of 0.1 Hz, 

beyond which it decreases at least as rapidly as a first-order filter.  Berthoz, et al. [49] 

confirmed these results for forward linearvection, with similar results obtained for 

visually induced pitch [50] and for yaw circularvection [51]. 

5.2. Latency of Onset to Vection 

Young [43] noted that the onset delay, or the latency, of visually induced motion 

is highly variable among individuals.  Repeated exposures will reduce this latency, as 

does the development of the appropriate mental set, thus allowing for the development of 

vection.  The latency of onset to either circularvection or linearvection has an impact on 

the perception of motion in flight simulation.  Several experimenters have quantified this 

phenomenon. 

Brandt, et al. [44] conducted experiments using a rotating chair located in the 

center of a closed cylindrical drum 1.5 meters in diameter, whose inner walls were 

painted with alternating vertical black and white stripes subtending 7 degrees of visual 
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angle.  To stabilize the direction of the chair, the subjects were asked to fixate on a one-

degree luminous spot mounted on the chair and presented in a position straight ahead of 

the subject.  The yaw stimuli consisted of drum rotations moving at either constant 

velocity (10 to 180 deg/sec) or at constant acceleration (1 deg/sec
2
).   The latency of 

onset was measured using a stopwatch from the sudden onset of optokinetic stimulation 

(lights on) to the beginning of circularvection. Following the stimulus onset, 

circularvection began after a latency of about 3 to 4 seconds.  The latencies were found to 

be independent of the stimulus velocities tested. 

Young and Oman [48] carried out experiments in one of the differential 

maneuvering simulators (DMS) at the NASA Langley Research Center.  Each simulator 

consisted of a jet cockpit mounted on a fixed-base platform inside of a forty-foot 

diameter projection sphere. Visual scenes were projected on the interior of the sphere 

wall by a computer controlled projection system that consisted of two servo-driven 

transparent plastic hemispheres on which the scenes to be projected were painted.  A high 

intensity point light source mounted near the center of each hemisphere projected the 

scene onto the interior walls of the simulator sphere. The hemispheres projected a pattern 

of randomly spaced and oriented black rectangles of 2 to 3 degrees in subtended angle 

against a white background, with a black-white ratio of approximately 25%.  A series of 

constant velocity yaw stimuli were presented randomly left and right at speeds of 5 to 

120 deg/sec.  The latency of onset was recorded using a stopwatch.  A rapid decrease in 

time to onset of circularvection with increasing pattern speed (from 11 seconds at 5 

deg/sec to 6 to 2 seconds from 10 to 120 deg/sec) was observed. 
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Howard and Howard [46] performed tests using an apparatus consisting of a 

vertical cylinder of translucent plastic, with an inner surface covered with adhesive black 

vinyl and perforated with round holes randomly distributed over the surface.  The 

cylinder was illuminated from outside by diffuse tungsten light.  The visual field of the 

subject inside the cylinder was filled with a random array of white spots subtending 

approximately 0.5 and 1 degree respectively.  The cylinder rotated from left to right, from 

the subject’s point of view, about its mid-vertical axis.  Six stimulus field conditions were 

tested at angular velocities of 5, 10, and 25 deg/sec.  The field conditions consisted of a 

full field condition where subjects saw only a moving display without stationary objects, 

a set of conditions with two vertical rods placed symmetrically at central, intermediate, 

and peripheral locations in front of the moving display (each presented separately and all 

presented together), and a condition with a frame placed in front of the moving display 

similar to the “window bars” that frame the video monitors in a simulator cockpit.  Each 

field condition at each velocity was tested once with the subject looking straight ahead 

with relaxed gaze, and once with the gaze fixated on a stationary white spot projected 

from a laser and positioned at eye level straight ahead of the subject. The latency of 

vection was measured by having the subject press a switch at the first sign of vection. 

The results obtained by Howard and Howard [46] showed that latency is longer 

when there are no stationary objects in view.  They note that this effect is most evident at 

the lowest stimulus velocity, where subjects were usually unaware that the display was 

moving.  They reasoned that at this velocity the eyes reflexively pursue a moving display 

without the presence of stationary objects.  Fixation upon a small laser point was also 

sufficient to increase the vection magnitude significantly.  At 5 deg/sec, the presence of 
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the visual frame reduced latency for the full field condition from 48.4 seconds to 8 

seconds with no fixation.  With fixation, the presence of the visual frame reduced latency 

from 14.3 seconds to 5.4 seconds, with the latency relatively unchanged for this condition 

(5.2 sec) for 10 and 25 deg/sec.  The condition of central vertical rods without fixation 

also yielded results within the ranges reported by Young and Oman [48]; a latency of 9.4 

seconds was found for a stimulus of 5 deg/sec that decreased to 5.6 seconds for 25 

deg/sec. 

Berthoz, et al. [49] tested the latency to onset of forward linearvection.  The 

experimental apparatus they used allowed the projection of a moving 35-mm film loop of 

randomly distributed images on a screen that was fixed on a mobile cart.  The screen 

image was projected via two mirrors to produce two peripheral images parallel to the 

sagittal plane of the head.  The subject, whose head position was fixed by a chin rest, 

could view the moving images through a black box with side windows that limited the 

visual field between 20 and 70 degrees away from the sagittal plane on each side.  The 

sensation of self-motion experienced by the subject was measured by the method of 

magnitude estimation by adjusting a lever fixed to the cart that could rotate forward or 

backward starting from a zero position.  Both the lever rotation and the image velocity 

were recorded with a potentiometer. 

In the experiment, latencies of about 1 to 1.5 seconds were observed for velocities 

measured between 0.2 and 1 m/sec.  This significant difference in latency between 

linearvection and circularvection may be related to the differences in response dynamics 

associated with the otolith and semicircular canals respectively. 
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5.3. Visual-Vestibular Interaction Models 

Zacharias [52] reported that both psychophysical and neurophysiological studies 

support the theory that visual and vestibular cues are jointly processed to provide for a 

perceived sense of self-motion. The vestibular nucleus complex was identified as a 

possible interaction for the convergence of sensory inputs. Zacharias [52] then noted that 

experiments reported by Dichgans, et al. on the single unit recordings from the vestibular 

nuclei of goldfish indicated that the majority of cells respond to both vestibular and 

moving visual field inputs.  When both visual and vestibular stimuli were presented in 

opposing directions consistent with rotation in the presence of a physically stationary 

visual surround, the afferent firing rate was characterized by the faster response and 

greater sensitivity of vestibular stimulation combined with the non-adapting behavior of 

visual stimulation.  The result was a signal that accurately indicated the perceived angular 

velocity. 

A study by Young, et al. was also reported by Zacharias [52] in which subjective 

velocity and acceleration were measured in response to combined yaw-axis rotational 

cues. The study showed that the subjective velocity response was biased in the direction 

of the induced circularvection, but not to the extent of a simple summation of 

circularvection and expected vestibular response. These studies indicated that a simple 

linear summation of the visual and vestibular cues failed to predict the response when 

both cues are simultaneously presented. 

Visual motion cues dominate the perception of velocity and orientation in the 

steady state and at frequencies below 0.1 Hz [43].  At higher frequencies, the vestibular 

cues will tend to dominate.  Confirming vestibular cues, in the direction opposite to the 
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visual field, can produce a rapid onset of the visual self-motion that is sustained by vision 

after the vestibular cues have been washed out.  When visual and vestibular motion cues 

are in conflict, either due to the direction of motion or to a difference in magnitude, the 

vestibular cues will initially dominate.  Young [43] suggested that when both inputs are 

presented to a subject simultaneously, he or she would combine or “mix” the two cues in 

a nonlinear manner, favoring the visual input for confirming cues and the vestibular input 

for conflicting cues. 

Young [53] first proposed that visual and vestibular cues are independently 

processed to produce two estimates of motion that are compared with one another to 

provide some means of cue conflict.  For low conflict, such as when the cues confirm one 

another, the perceived motion is calculated from the weighted sum of the two estimates.  

This weighting is dependent on the sensory cue characteristics in the given situation and 

would be chosen to minimize the error in the combined cue estimate.  For high conflict, 

that is when the cues fail to confirm one another, the weighting is then shifted based upon 

the reliability of each cue. 

Zacharias [52] developed a cue conflict model for yaw perception that was based 

on the switching concept first proposed by Young [53].  This model is illustrated in 

Figure 5.1.  For low conflict, that is when the visual and vestibular cues are confirming, 

the perceived motion is calculated from a weighted sum of the two estimates.  For high 

conflict, that is when the cues fail to confirm one another, the weighting on the visual 

input is reduced and that on the vestibular input is increased until the conflict is reduced. 
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Figure 5.1.  Visual-Vestibular Conflict Estimator Model.  (Zacharias, [52]) 

 

The visual cue is passed through an internal model of the vestibular dynamics (a 

reduced model with only the long time constant was used) to produce an “expected” 

vestibular signal that is then subtracted from the actual vestibular signal.  To allow for 

long-term resolution of steady-state conflict, the absolute value of this error is passed 

through an adaptation operator to generate the conflict signal.  The adaptation operator 

determines how long a steady state conflict is allowed to continue by washing out the 

conflict signal, ultimately allowing for an averaging of the two cues.  Zacharias [52] 

chose a value of 10 seconds for the adaptation time constant based on typical trainer 

acceleration latencies observed for a conflicting visual field. 

The weighting of each cue is governed by a gain K that is derived directly from 

the two cues, and varies between zero and one.  The gain K is computed from symmetric 

weighting functions that are applied to the vestibular and the washed out conflict signal 

ωerr.  Zacharias [52] noted that “for simplicity” a cosine bell operator was chosen for the 

weighting function.  A large conflict signal will drive the gain K to zero, gating out the 
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visual path, while a small conflict signal will drive K to a peak weighting value between 

0.5 and 1, depending on the amplitude of the vestibular signal.  In a low conflict situation 

the cues are either averaged or the visual cue is passed straight through and the vestibular 

cue is gated, depending on the magnitude of the vestibular cue.   Zacharias [52] then 

noted that the value of the conflict threshold ε was determined by appealing to past work 

in defining threshold behavior.  He presumed that the same type of behavior associated 

with the vestibular motion thresholds characterized cue conflict detection. 

A second approach to modeling the visual-vestibular interaction was developed 

by Borah, et al. [54].  This approach involves the implementation of an optimal estimator 

as a “central processor” representation for the central nervous system processing of 

sensory inputs.  Individual sensory dynamic models represent the visual and vestibular 

systems, and this concept can be extended to include proprioceptive and tactile models.  

The sensors respond to input stimuli and send signals to a central processor represented 

by a steady-state Kalman filter, which combines the sensory information to generate an 

estimate of the perceived motion.  In this model, a modified version of the cue conflict 

estimator proposed by Zacharias [52] was also implemented. 

Van der Steen [51] proposed a self-motion perception model in which vestibular 

and visual stimuli are combined to describe perceived self-motion.  This model is shown 

in Figure 5.2.  The model can describe perceived self-motion induced by either vestibular 

or visual stimuli alone, or a combination of both.  However, unlike the model proposed 

by Zacharias [52], cue conflict estimation is not considered in this model. 
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Figure 5.2.  Model for Self-Motion Perception with Visual Attractor.  (Van der 

Steen, [51]) 

 

Van der Steen [51] introduced the concept of a neural filter in the model.  The 

neural filter transfers the afferent response of either the visual or vestibular sensor to a 

perceptual physical variable.  In other words, the neural filter models the process of 

assigning a perceptual meaning to a sensory output signal.  Van der Steen then noted that, 

in general, neural filters are not explicitly described in the literature but are either 

represented as a constant that relates the afferent response to the perceived response, or 

are implicitly imbedded in the sensory dynamics.  For example, the vestibular transfer 

function HVEST cascaded with the vestibular neural filter NFVEST represents the perceived 

self-motion estimate from vestibular stimuli. 

Van der Steen [51] then noted that psychophysical experiments concerning 

vection showed that, depending on self-motion that the visual scene suggests, the visual 

estimate of self-motion “attracts” the vestibular estimate of self-motion.  He suggested 

that the self-motion perception model needs a component that handles this “attraction” 

towards the visual system’s estimate of self-motion.  This component was referred to as 

the “visual attractor”. 
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The visual attractor uses the visual and vestibular system’s estimates of perceived 

self-motion.  The difference between these cues is then filtered as shown in Figure 5.2, 

forming an optokinetic influence that is an estimate of perceived self-motion from visual 

stimuli.  Van der Steen [51] noted that the filter HOK represents the gradual build-up of 

perceived self-velocity when exposed to a constant visual scene velocity as observed in 

psychophysical experiments, and can be represented by a first-order low-pass filter of the 

form 

 
1

.
1

OK

OK

H
sτ

=
+

 (5.1) 

The perceived self-motion yielded by the model is then the sum of the optokinetic 

influence and the vestibular system’s estimates of perceived self-motion. 

 Van der Steen [51] determined values for the optokinetic time constant τOK from 

experiments conducted using an optokinetic drum.  The apparatus consisted of a rotating 

chair surrounded by a closed cylindrical drum, the inside of which contained alternating 

black and white stripes.  Each test subject was asked to fixate on a stripe edge near the 

middle of the drum to indicate left or right drum motion.  Two experiments were 

performed using this apparatus.  In experiment 1, six visual acceleration amplitudes were 

tested with the chair stationary, and fourteen inertial acceleration amplitudes were 

provided with three constant magnitude drum accelerations.  In experiment 2, the drum 

was accelerated for one second to a constant velocity of either 10 or 20 deg/sec, with the 

chair remaining stationary.  After 17 seconds, the drum decelerated for three seconds.  

Four acceleration amplitudes were tested.  In both experiments, the subject indicated 

perceived drum motion by pushing a button, with the elapsed time recorded 

electronically.  
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 Van der Steen [51] then performed a series of simulations of the self-motion 

perception model with the data from both experiments.  It was found that the model could 

be more accurately described with different optokinetic time constants for each 

experiment; the value for τOK was chosen smaller for experiment 1 (2 seconds) and larger 

for experiment 2 (10 seconds).  A smaller time constant for smaller drum accelerations 

also resulted.  Van der Steen concluded that the model dynamics using fixed parameters 

might not completely describe results for each combination of stimuli.      

5.4. Visual Sensory Dynamics Models 

Each visual-vestibular interaction model examined incorporates a model of the 

visual receptor dynamics that in turn produces a perceptual estimate of the visual scene 

motion.  Zacharias [52] did not model visual sensory dynamics due to the lack of 

experimental data for single channel visual response, and assumed that the visual system 

has a relatively wide-band response.  The negative sign in Figure 5.1 reflects the fact that 

the visual field motion is opposite in direction to the perceived self-motion, i.e., a visual 

field moving to the left induces self-motion of the subject to the right. 

Borah, et al. [54] modeled the dynamics of the visual sensor as unity, noting that 

the eye detects the visual field motion almost immediately after a short neural 

transmission delay.  Van der Steen [51] modeled the perceptual dynamics as a cascade of 

the visual receptor transfer function and neural filter with a unity gain and a delay τd: 

 .ds

VIS VISNF H e
τ= −  (5.2) 

Hosman and Van der Vaart [55] noted that τd is due to the delay of the visual 

receptors along with the delays due to both neural transmissions from the retina to the 

visual cortex and information processing during motion perception.  From experiments in 
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roll rate perception with visual displays only, Hosman and Van der Vaart found values 

for τd to be about 90 msec for peripheral visual field stimulation and about 150 msec for 

central visual field stimulation. 

5.5. Proposed Rotational Model 

A revised visual-vestibular interaction model will now be constructed for 

rotational motion.  This model can be used to estimate perceived motion for yaw, roll, 

and pitch stimuli.  As suggested by Borah, et al. [54], the visual motion cues considered 

will be limited to peripheral visual scenes provided by a flight simulator with a wide 

visual scene field.  These peripheral cues would be equivalent to the passage of stars or 

clouds in a wide field simulation.  The cues do not include any elements in the structure 

of the scene such as landmarks, orientation cues, or a visual horizon. 

A visual-vestibular interaction model for rotational motion is proposed and is 

shown in Figure 5.3.  The proposed semicircular canals model given in Eq. (3.9) is used.  

The vestibular model combines the afferent dynamics model with the neural filter gain 

proposed by Van der Steen [51], resulting in a model with a perceived response to 

vestibular stimuli.  Since the visual motion cues are assumed to be peripheral, the visual 

delay τd = 90 msec obtained by Hosman and Van der Vaart [55] is chosen.  The 

optokinetic influence proposed by Van der Steen [51] is also implemented. 
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Figure 5.3.  Proposed Visual-Vestibular Interaction Model for Rotational Motion. 

 

As first proposed by Zacharias [52], the model produces a washed out conflict 

signal ωerr.  The weighting of the optokinetic gain KOK is then computed by a modified 

cosine bell function suggested by Borah, et al. [54] as shown in Figure 5.4.  The gain KOK 

varies between zero and one.  A conflict signal greater than the threshold value ε (ωerr > 

ε), will drive the optokinetic gain to zero, whereas a signal below the threshold value 

(ωerr < ε) will drive the gain to a value between zero and one, approaching one as ωerr 

approaches zero.  For ωerr < 0, the gain remains at one.  As previously suggested by 

Borah, et al. [54], the vestibular path gain remains fixed at unity. 

The conflict threshold ε is chosen to equal the vestibular indifference motion 

threshold [52].  The angular velocity thresholds obtained by Benson, et al. [37], 1.6 

deg/sec for yaw stimuli, and 2.0 deg/sec for roll and pitch stimuli, will be used in the 

model. 
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Figure 5.4.  Modified Cosine Bell Operator for Optokinetic Gain. 

 

In order to examine model responses to various stimuli, a MATLAB/SIMULINK 

representation of the proposed rotational model shown in Figure 5.3 was developed.  

Time constants τOK = 2 seconds and τC = 5 seconds were chosen to produce the latencies 

noted in the literature.  In the model, the latency is defined as the amount of time to 

perceive motion above a visual indifference threshold of 3 deg/sec.  Model responses to 

yaw inputs with either visual cues alone or confirming visual and vestibular cues were 

examined.   

Figure 5.5 shows the responses to a visual field step input of 10 deg/sec.  Since 

there is no vestibular input, the rectified error is the magnitude of the visual input filtered 

through the internal model of the semicircular canals.  The adaptation operator then 

generates the washout error ωerr.  Due to the large value of ωerr, the cosine bell function 

will produce a gain of zero for nearly five seconds.  This results in a corresponding 

latency in the perceived angular velocity response.   
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Figure 5.5.  Rotational Perception Model Responses to Visual Step Input of 10 

deg/sec. 

 

Once ωerr decreases below the conflict threshold ε, the optokinetic gain will vary 

between zero and one, resulting in the onset of perceived motion or circularvection.  This 

gain will rapidly rise to a value of one once ωerr reaches zero.  As ωerr becomes negative, 

the gain KOK remains at one.  If a cosine bell operator were applied to this negative 

response, the gain would decrease back to zero, resulting in a large sag in the perceived 

response.  The perceived motion reaches its maximum value with a rise time of about ten 

seconds, as governed by the time constant τOK. 

Various magnitudes of angular velocity inputs were examined in order to compare 

latency responses with those obtained from psychophysical experiments in the literature.  

Figure 5.6 compares the model responses to visual step inputs of 5, 10, and 25 deg/sec. 
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Figure 5.6.  Rotational Model Responses to Visual Step Inputs of 5, 10, and 25 

deg/sec. 

 

Due to the conflict estimator, the responses in Figure 5.6 produce a “dead zone”, 

of which the duration increases with increasing step input.  Assuming this phenomenon 

as latency alone contradicts the experimental results obtained by Howard and Howard 

[48] and Young and Oman [46] that showed the latency decreases with increasing stimuli 

magnitudes.  However, assuming latency to onset occurs until an indifference threshold is 

reached reveals the latency decreasing with increasing step inputs. 

The latencies resulting for the proposed rotational model are shown in Table 5.1.  

The latencies obtained with a threshold of 3 deg/sec result in values that are near those 

obtained by Howard and Howard [46] (5.2 to 5.4 seconds) for the stationary visual frame 

condition with fixation.  As seen in Figure 5.6, increasing the visual threshold to 4 

deg/sec for a 5 deg/sec step input would result in a latency of 7 seconds, which 

approaches the value of 8 seconds obtained by Howard and Howard [46] for the same 

condition with no fixation.  
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Table 5.1.  Model Results for Latency to Onset of Circularvection. 

 Latency (sec) 

ωvis (deg/sec) Model Howard and Howard 

5 5.525 5.4 

10 5.0 5.2 

25 5.0 5.2 

 

Figure 5.7 shows the model responses to a confirming visual and vestibular step 

inputs of 10 deg/sec.  Due to the visual delay τd, a large value of ωerr results at the onset 

that is rapidly washed out in a fraction of a second, resulting in the optokinetic gain KOK 

increasing from zero to one during this instant and remaining at one for the duration of 

the response.  Due to the rapid onset of the semicircular canals, the visual delay will have 

a negligible effect on the perceived response.  After the vestibular cue decays, the 

optokinetic influence will gradually increase until the maximum response is achieved.   
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Figure 5.7.  Rotational Perception Model Responses to Confirming Step Inputs of 10 

deg/sec. 
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5.6. Proposed Translational Model 

A visual-vestibular interaction model was developed to estimate motion in all 

three translational axes.  The same assumptions applied to the rotational cues were 

considered.  The proposed visual-vestibular motion model for translational motion is 

shown in Figure 5.8.  The model structure is similar to the rotational model.  The same 

values for visual delay τd and optokinetic time constant τOK as proposed for the rotational 

model will be used.  In this model the washout error verr is used to estimate the 

optokinetic gain KOK.  Vestibular and optokinetic responses are combined to produce 

perceived linear velocity. 
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Figure 5.8.  Proposed Visual-Vestibular Interaction Model for Translational 

Motion. 

 

A MATLAB/SIMULINK representation of the model shown in Figure 5.8 

was developed.  Figure 5.9 shows responses to a visual field step input of 1 m/sec.  An 

adaptation time constant τC = 0.2 seconds was chosen to generate latencies close to those 
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obtained by Berthoz, et al. [49].  The rectified error is the magnitude of the visual 

velocity response filtered through the internal model of the otoliths.  As a result of this 

fast time constant, the washout error decays very quickly, resulting in a small latency of 

about 1.5 seconds.  The perceived linear velocity then reaches its maximum value in 

about ten seconds, as governed by the time constant τOK. 
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Figure 5.9.  Translational Perception Model Responses to Visual Field Step Input of 

1 m/sec. 

 

Various magnitudes of linear velocity inputs were examined in order to compare 

latency responses with those obtained from psychophysical experiments in the literature.  

The latencies for τC  = 0.2 seconds and ε = 0.2 m/sec result in values that fall within the 

range (1 to 2 m/sec) reported by Berthoz, et al. [49] for velocity inputs from 0.4 m/sec to 

1 m/sec.  As the input is reduced towards the 0.2 m/sec threshold, the latency increases 
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beyond the reported experimental range.  Table 5.2 lists the latencies the model generates 

for inputs from 0.2 to 1 m/sec. 

Table 5.2.  Model Results for Latency to Onset of Linearvection. 

vvis (m/sec) Latency (sec) 

0.4 1.75 

0.6 1.25 

0.8 1.05 

1.0 0.975 

 

Figure 5.10 shows the model responses to confirming visual and vestibular step 

pulse inputs of 1 m/s
2
 magnitude and 1-second duration, which produces a ramp to step 

velocity input of 1 m/s.  Due to the visual delay τd, a sub-threshold value of ωerr is 

generated at the onset that will result in the optokinetic gain KOK being slightly less than 

one for about one second.   
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Figure 5.10.  Translational Perception Model Responses to 100% Confirming Pulse 

Inputs of 1 m/sec Magnitude and 1 second Duration. 
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Due to the rapid onset of the otoliths, the visual delay will have a negligible effect 

on the perceived response.  After the initial otolith onset decays to its steady state value, 

the optokinetic influence then gradually increases until the maximum response is 

achieved. 
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6. Nonlinear Motion Cueing Algorithm 

6.1. Problem Description 

The motion perception process depends on the interaction between visual and 

vestibular sensation.  Based on this, the problem is to develop a set of motion cueing 

filters that minimize the pilot perceptual error.  A nonlinear approach is desired to further 

maximize the available motion cues within the hardware limitations of the motion 

system.  This algorithm must be efficient enough to update filter characteristics in real 

time.  Cardullo and Kosut [56] suggested this approach, and Ish-Shalom [57] also 

proposed a similar algorithm structure.  The structure of the proposed solution is 

illustrated in Figure 6.1. 
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Figure 6.1.  Proposed Solution for Nonlinear Motion Cueing Algorithm. 

 

The nonlinear algorithm incorporates models of the human vestibular sensation 

system, the new semicircular canals and otolith models, along with the new integrated 

visual-vestibular perception model.  A nonlinear control law is implemented to generate a 

scalar coefficient α that is a function of the motion platform states.  The matrix Riccati 
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equation is then solved in real time as a function of α, resulting in the feedback matrix 

needed to compute the desired motion cues.  This results in nonlinear filter characteristics 

that sustain small motion cues for longer durations, and generates faster washout of large 

platform motions.   

6.2. Algorithm Development 

6.2.1. Longitudinal Mode 

The algorithm development for the longitudinal (pitch/surge) mode is given 

below.  The input u is the same as given in Eq. (4.1) for the linear algorithm 

development: 

 
1

2

,
x

u

ua

θ   
= =   

  
u

ɺ

  (6.1) 

where ɺθ  is angular velocity, and xa  is the translational acceleration, with each term 

respectively set equal to 1u  and 2u .  The reduced-order semicircular canals model given 

in Eq. (4.38) is used: 
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where T0 and T1 become  
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τ τ τ τ
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where aτ  and 1τ  are the same as those used in the optimal algorithm and given in the 

semicircular canals model of Eq. (3.8).  GSCC  is the angular velocity threshold that scales 

the response to threshold units, using the threshold of 2.0 deg/sec obtained by Benson, et 

al. [37].  Eq. (6.2) is defined in state space notation as 
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where in observer canonical form, 
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In an attempt to produce the desired motion cues that most closely represent the 

perceptual behavior of the aircraft pilot, the confirming case of the integrated perceptual 

model (neglecting conflict estimation) will be incorporated into the perceptual channel.  

The visual delay was also neglected since it has only a small effect on the perceptual 

response.  

  For a simulator pilot, the perceptual input u = uS and for the aircraft pilot is u = 

uA. Therefore, u = uS − uA can be considered as input to the cueing algorithm.  For the 

perceptual error states xe = xS − xA, the input to the optokinetic influence of the integrated 

perception model given in Eq. (5.1) becomes 
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 (6.4) 

The output of the optokinetic influence given in Eq. (5.1) (for gain KOK = 1) becomes 
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where 2 1 OKT τ= .  This can be defined as an additional state space term x3: 
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Eq. (6.3) now becomes 
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with 
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The sensed velocity ˆ
xv  is related to the stimulus specific force fx by the otolith 

model of Eq. (3.29): 

 ( )
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 (6.8) 

where the break frequency B1 is neglected, and GOTO is the linear velocity threshold that 

scales the response to threshold units.  As with the linear algorithm, the specific force is 

 .x x Szf a g Rθ θ= + + ɺɺ  (6.9) 

In terms of 1u  and 2u , Eq. (6.9) is transformed into the Laplace domain, where 

 ( ) ( ) ( )2 1

1
.x Szf s u s g R s u s

s

 
= + − 

 
 (6.10) 

Note that the form of the transfer function of Eq. (6.8) is similar to the form of the otolith 

model given in Eq. (4.5), with v̂  replacing f̂  as output, and the integrator replacing the 

short time constant term ( )1s B+ .  Thus, Eq. (4.10) from the linear algorithm becomes 

 
( )

0

0 0 1 1 0 1 2 0 2

ˆ ˆ

,

x x

OTO OTO Sz

v B v

G K R B A u gu gA u dt u A u

+ =

 ′ − + + + + ∫

ɺɺ ɺ

ɺ ɺ

 (6.11) 
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and can be rewritten as 1 1 1 2 2
ˆ ˆ ,xv av cu du e u dt f u gu+ = + + + +∫ɺɺ ɺ  and is then defined in 

state space notation as 

 
ˆ ,xv

= +

= +

OTO OTO OTO OTO

OTO OTO OTO

x A x B u

C x D u

ɺ

 (6.12) 

with 

 

[ ] [ ]

0 1 0 0 0 0

0 1 0 0 0

, ,0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0

1 0 0 1 0 , 0 .OTO Sz

c

a d ac

e

f

a h a f

G r

   
   − −   
   = =
   
   
   − −   

= = −

OTO OTO

OTO OTO

A B

C D

 

The output of the optokinetic influence (for gain KOK equal to 1) becomes 

 2

2

ˆ1
ˆ ,

1

e
x eOK

OK

T v
v v

s s Tτ
= =

+ +
 (6.13) 

where 2 1 OKT τ= .  This can be defined as an additional state space term x9: 

 
( )9 2 9 2 4 7 1

2 4 2 7 2 9 2 1.

OTO OTO z

OTO OTO z

x T x T x x G K r u

T x T x T x T G K r u

′= − + − − +

′= − − − +

ɺ

 (6.14) 

Eq. (6.12) now becomes 

 
,xPEv

= +

= +

OTO OTO OTO OTO

OTO OTO OTO

x A x B u

C x D u

ɺ

 (6.15) 

with 

 

[ ] [ ]
22 2 2

00 1 0 0 0 0

00 1 0 0 0

00 0 0 0 0 0
, ,

00 0 0 0 1 0

00 0 0 0 0

00 0 0

1 0 0 1 0 1 , 0 .

OTO Sz

OTO OTO Sz

c

d aca

e

f

h afa

T G rT T T

G K r

  
   −−   
  

= =   
  
   −−
  

− − −      

′= = −

OTO OTO

OTO OTO

A B

C D
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The representations in Eqs. (6.7) and (6.15) can be combined to form a single 

representation for the human perceptual model: 

 
,

= +

= +

V V V V

PE V V V

x A x B u

y C x D u

ɺ

 (6.16) 

where Vx  and PEy  are, respectively, the combined states and perceived responses, and 

AV, BV, CV, and DV  represent the perceptual models  as one set of state equations: 

 , , , .
       

= = = =       
       

SCC SCC SCC SCC

V V V V

OTO OTO OTO OTO

A 0 B C 0 D
A B C D

0 A B 0 C D
 

It is assumed that the same perceptual model can be applied to both the pilot in 

the aircraft and the pilot in the simulator as shown in Figure 6.1.  We define the pilot 

perceptual error e, resulting in 

 
.

= + −

= + −

e V e V S V A

V e V S V A

x A x B u B u

e C x D u D u

ɺ

 (6.17) 

Additional motion platform states and filtered white noise states defined in the 

linear algorithm development in Eqs. (4.14) and (4.15) are again used.  The desired 

system equation given in Eq. (4.16) is then formed, with the cost function J given in Eq. 

(4.17).  The system equation and cost function are then transformed to the standard 

optimal control form given in Eq. (4.18).  The cost function is augmented with an 

additional term 2 t
e

α proposed by Anderson and Moore [58]: 

 ( ){ }1

0

2 ,
t

t

t
J E e dt

α′ ′ ′ ′= +∫
T T

1 2x R x u R u  (6.18) 

where ′
1R  is positive definite, 2R  is positive semi-definite, and the scalar coefficient α 

represents a minimum degree of stability in the closed-loop system where 0>α . 
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Anderson and Moore [58] showed that the system equation and cost function can 

be transformed to the standard optimal control form  [39]:  

 

( )

( ){ }1

0

,
t

t
J E dt

α′ ′= + +

′ ′= +∫
T T

1 2

x A + I x Bu H w

x R x u R u

ɺɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

 (6.19) 

where te=x xɶ
α  and te ′=u uɶ

α .  We now wish to compute the simulator control input Su  

that minimizes the cost function given in Eq. (6.19).  Anderson and Moore note that for 

this problem, ′ +A Iα  is positive definite, ( ),′ +A I Bα  is controllable and ( )1,′ ′A + I Rα  

is observable.  Under these conditions, the cost function is minimized when 

 ( ) ,α= −Su K x  (6.20) 

where ( ) ( )( )= +-1 T

2 12K R B P Rα α , and ( )P α  is the solution of the algebraic Riccati 

equation 

 ( ) ( ) ( )( ) ( ) ( ) .α α α α α α′ ′ ′+ + + − + =
T -1 T

2 1A I P P A I P BR B P R 0  (6.21) 

The feedback matrix ( )αK  is partitioned corresponding to the partition of x in 

Eq. (4.16) of the linear algorithm development: 

 ( ) ( ) ( ) ,α α α
 

= − −   
 

e

S 1 2 3 A

d

x
u K K Κ u

x
 (6.22) 

and the Riccati equation solution ( )αP  can be partitioned as 

 ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,

α α α

α α α α

α α α

 
 

=  
  

11 12 13

21 22 23

31 23 33

P P P

P P P P

P P P

 (6.23) 

where the partitions correspond to the partitions of the system matrix A.  Reid and Nahon  

[9] noted that when computing K, only a subset of the elements of P is needed.  
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Substituting Eq. (6.23) and the expression for R12 from Eq. (4.18) into the expression for 

K given in Eq. (6.20) results in 

 

( )

( )

( ) ,

α

α

α

 = + + 

 = + 

 = + 

-1 T T T

1 2 V 11 d 21 V V

-1 T T

2 2 V 12 d 22

-1 T T T

3 2 V 13 d 23 V V

K R B P B P D QC

K R B P B P

K R B P B P - D QC

 (6.24) 

where, by symmetry, T

12 21P = P . 

Noting that xn = uA, remove the states corresponding to the xn partition: 

 ,

 
      = +      
       

e

e V V V

d S

d d d

A

x
x A 0 -B B

x u
x 0 A 0 B

u

ɺ

ɺ
 (6.25) 

and substituting Eq.  (6.22) into Eq. (6.25)  results in 

 
( ) ( )

( ) ( )
( )( )

( )
.

αα α

α α α

     
= +      

        

V 3V V 1 V 2e e

A

d 1 d d 2d d d 3

-B I + KA - B K -B Kx x
u

-B K A - B Kx x -B K

ɺ

ɺ
 (6.26) 

A nonlinear control law is chosen to make α dependent upon the system states: 

 ,α = T

d 2 dx Q x  (6.27) 

where Q2 is a weighting matrix that is at least positive semi-definite.  As the system 

states increase in magnitude, i.e. with large commanded platform displacements and 

velocities, then α increases, resulting in faster control action to quickly wash out the 

platform to its neutral state.  For small commands there will be limited control action, 

resulting in motion cues being sustained for longer durations.  The feedback matrix 

( )αK  is then determined by solving the Riccati equation of Eq. (6.19) in real time as a 

function of α. 
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 The block diagram for the on-line nonlinear algorithm implementation is shown 

in   Figure 6.2.  Due to the tilt coordination limit of 5 deg/sec that is needed for responses 

to surge inputs, a separate set of state equations as given in Eq. (6.26) and Riccati solver 

for Eq. (6.21) are needed for the pitch cues.   

  Figure 6.2.  Nonlinear Algorithm Implementation for Longitudinal Mode. 

 

6.2.2. Lateral Mode 

For the lateral (roll/sway) mode, the algorithm development is analogous to the 

longitudinal mode.  The inputs are the same as given in Section 4.2.2 for the linear 

algorithm.  The specific force yf  is given in Eq. (4.26).  With ˆ
yvɺɺ  replacing ˆ

xvɺɺ , the 

differential equation given in Eq. (6.8) becomes 

 
( )

0

0 0 1 1 0 1 2 0 2

ˆ ˆ

,

y y

O Sz

v B v

G R A B u gu gA u dt u A u

+ =

 − − − + + ∫

ɺɺ ɺ

ɺ ɺ

 (6.28) 

which when rewritten as Eq. (6.11), will produce the state equation representation for the 

otolith model similar to Eq. (6.12), with the same system matrices except 
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[ ]0OTO SzG r=OTOD .  The state space representation for the vestibular model of the form 

of Eq. (6.13) ultimately results.  Similar to Eq. (6.14), the additional state resulting from 

the optokinetic influence becomes 

 
( )9 2 9 2 4 7 1

2 4 2 7 2 9 2 1.

OTO z

OTO z

x T x T x x G r u

T x T x T x T G r u

= − + − − −

= − − − −

ɺ

 (6.29) 

The perceptual model representation of the same form as Eqs. (6.16) and (6.17) 

will then result.  Additional motion platform states and filtered white noise states defined 

in Section 4.2.2 are again used.  The remaining development is identical in form to 

Eqs.(6.18) to (6.27), resulting in state equations with a nonlinear control law and a time-

varying feedback matrix dependent upon solution of the Riccati equation.  The on-line 

implementation for this mode is identical to   Figure 6.2. 

6.2.3. Vertical Mode 

For the vertical (heave) mode, the single degree-of-freedom input u = az, with the 

specific force fz = az − g.  The otolith model given in Eq. (6.8) then becomes 

 ( )
( )
( )

( )0

1

ˆ ,z OTO OTO z

s A
v s G K f s

s s B

+
′=

+
 (6.30) 

which can then be defined in state space notation as ,= +OTO OTO OTO OTOx A x B uɺ  where 

OTOxɺ  are the otolith states for this mode with 2
ˆ

zx v=ɺ , and 

 
( )0 0

, .
1 0

OTO O O

OTO

B G A B

G

− −  
= =   
   

OTO OTOA B  

Similar to Eq. (6.14), the additional state resulting from the optokinetic influence 

becomes 3 2 3 2x T x T u= − +ɺ .   The state space perceptual model now becomes: 
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,zPEv

= +

=

OTO OTO OTO OTO

OTO OTO

x A x B u

C x

ɺ

 (6.31) 

with 

 

( )
[ ]

0

2 2

0 0

1 0 0 , , 0 1 1 .

0 0

OTO O O

OTO

B G A B

G

T T

− −  
  = = =  
  − −   

OTO OTO OTOA B C  

Since this mode consists of a single translational degree-of-freedom, AV = AOTO, 

BV = BOTO, and CV = COTO.  This results in a perceptual model of the same form as Eq. 

(6.17).  Additional motion platform states and filtered white noise states defined in the 

linear algorithm development in Eqs. (4.31) and (4.32) are again used.  The remaining 

development is identical in form to Eqs. (6.18) to (6.27), resulting in state equations with 

a nonlinear control law and a time-varying feedback matrix dependent upon solution of 

the Riccati equation.  The block diagram for the on-line implementation for this mode is 

shown in Figure 6.3. 

Figure 6.3.  Nonlinear Algorithm Implementation for Vertical Mode. 

   

6.2.4. Yaw Mode 

  For the yaw mode, the single degree-of-freedom input is u = ψɺ .  The state 

equations given in Eq. (6.3) apply, with output ψ̂ɺ  replacing 
ˆθɺ .  The additional state 

resulting from the optokinetic influence follows a development similar to Eqs. (6.4) to 
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(6.7), with PEψɺ  replacing PEθɺ  as output.  Since this mode consists of a single rotational 

input, AV = ASCC, BV = BSCC, CV = CSCC, and DV = DSCC.  This results in a perceptual model 

of the same form as Eq. (6.17).  Additional motion platform states and filtered white 

noise states defined in the linear algorithm development in Eqs. (4.35) and (4.36) are 

again used.  The remaining development is identical in form to Eqs. (6.18) to (6.27), 

resulting in state equations with a nonlinear control law and a time-varying feedback 

matrix dependent upon solution of the Riccati equation.  The block diagram for the on-

line implementation for this mode is shown in Figure 6.4.   

Figure 6.4.  Nonlinear Algorithm Implementation for Yaw Mode. 

 

6.3. Real Time Solution of the Riccati Equation 

Solving the nonlinear Riccati equation in Eq. (6.21) is a computational challenge 

in real time as a new solution is required at each time step.  Since the solution to the 

preceding time step is available, it is advantageous to use this as an initial solution when 

computing the solution for the current time step.  This would result in a more refined 

computational solution that can be produced within the real time requirement, i.e., within 

a time step.  The initial Riccati equation solution to the linear optimal algorithm that is 

computed off-line in MATLAB is available and can be used as the initial solution for the 

first time step.  To this end we desire a technique that assumes the initial solution is 

“close” to the computational solution at a given time step.  Two techniques were 
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investigated: a Newton-Raphson method and a neurocomputing approach using a 

structured neural network. 

Blackburn [59] developed a method of solution using a Newton-Raphson 

iteration.  The Riccati equation given in Eq. (6.21) is first generalized as 

 ( ) 1,α α′ ′ ′= − − −TG P PSP PA A P R  (6.32) 

where ′ ′=
α

A A + αI  and = T -1

2S B R B .  If we map the square matrices G and P into 

column vectors 

 
( ) ( ) [ ]

( ) [ ]
11 21

11 21 ,

nn

nn

vec G G G

vec P P P

= =

= =

g P G

p P

⋯

⋯

 (6.33) 

then it is shown that given an initial Riccati solution ( )kp , the Newton-Raphson method 

can then be used to obtain a refined solution 

 ( ) ( ) ( ){ } ( )
1

1 ,k k k k
−

∂+ = −       ∂
Gp p p g p

P
 (6.34) 

where ∂ ∂G P  is the Jacobian matrix, which is shown to be 

 ( ) ( ) ,∂  ′ ′= − ⊗ + ⊗
∂  

T TG I A - SP A - SP I
P α α  (6.35) 

and ⊗  is the Kronecker product, where ija⊗ =A B B . 

Structured neural networks, first introduced by Wang and Mendel [60], are a 

special neural architecture that is customized to fit the specific matrix algebra application.  

An efficient method is employed that can take advantage of the matrix structure 

associated with the algorithm.  Ham and Kostanic [61] have demonstrated this approach 

in solving a wide variety of matrix algebra problems such as matrix inversion, LU 

decomposition, and solving the algebraic matrix Lyapunov equation. 
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Ham and Collins [62] developed an approach for solving the algebraic matrix 

Riccati equation.  A structured neural network is used for obtaining the computational 

solution ( )tP  and is shown in Figure 6.5. 

P

P

S P

′
1R

+

+

+

+

-

p

′ T

α
A

′
α

A.( )tz ( )tv

 

Figure 6.5.  Structured Neural Network for Solving the Riccati Equation. 

 

The error signal ( )tv  in Figure 6.5 is given as 

 ( ) ( ) ( ) ( ) ( ) ( ),t t t t t t ′ ′ ′= − − − 
T

α α 1v P SP A P P A R z  (6.36) 

where ( )tz  is an excitatory input signal.  An energy function is then formulated as 

( )
21

2 2
=E P v  (where 

2
v  is the Euclidean norm of v), which is minimized using the 

method of steepest descent, resulting in a system of first-order matrix differential 

equations 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,t t t t t t t t t′ ′ = + − 
T T

α
P A v z v z A v p Sɺ

αµ  (6.37) 

where µ > 0 is the learning rate parameter, and ( ) ( ) ( )t t t=p P z  as shown in Figure 6.5.  

In discrete-time form (the time step t∆  is absorbed into the learning rate µ ), the learning 

rule for each training step k becomes 

 ( ) ( )1 ( ) ,k k kµ+ = + ∆P P P      (6.38) 
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with the update term ( )k∆P  given as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .k k k k k k k k k′ ′ ∆ = + − 
T T

α
P A v z v z A v p Sα  (6.39) 

Ham and Collins [62] noted that even though the update term is not symmetric, 

the learning rule would still converge to the positive definite, symmetric solution.  They 

noted, however, that performing an additional computation resulting in a symmetric 

update term would improve convergence: 

 ( ) ( ) ( ) ( )1 .
2

k k k k
µ
 + = + ∆ + ∆ 

T
P P P P  (6.40) 

Ham and Collins [62] noted that the external excitatory vector input signals ( )tz  

are a set of linearly independent bi-polar vectors given as 

 [ ] [ ] [ ](1) (2) ( )1 1 1 , 1 1 1 , 1 1 1 ,n
z z z= − − = − − = − −⋯ ⋯ ⋯  (6.41) 

where each vector ( )kz  is presented once to the neural network in an iteration, i.e. for one 

iteration there is a total of n presentations of the training step given in Eq. (6.40), with the 

solution ( )kP  updated with each training step. 

The structured neural network offers some advantages over the Newton-Raphson 

method for solutions to higher-order systems.  The Newton-Raphson method requires 

matrix inversion, which resulted in singular solutions for ill-conditioned systems.  Matrix 

inversion is not required for the structured neural network.  Eliminating both matrix 

inversion and computation of the Jacobian matrix as a Kronecker product in turn reduces 

the computational burden.  For these reasons the structured network approach is selected 

for implementation into the nonlinear algorithm. 
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6.4. Algorithm Evaluation 

The nonlinear algorithm is developed to achieve the desired motion cues at an 

update rate of 60 Hz.  Since the computer image generator, which provides the out-the-

window visual imagery to the simulator pilot, also runs at 60 Hz, the motion cues would 

be synchronous with the visual cues.  However, because of the computer operating 

system, the real time operating system and the I/O system on the Langley real time 

computing system, the minimum interval must be an integer multiple of 125 µsec and a 

power of 2.  Therefore, a time step of 16 msec or an update rate of 62.5 Hz was selected 

for the real time implementation and the pilot tests.  

For the vertical mode based upon the integrated perception model, the off-line 

solution of the Riccati equation initially produced one closed-loop eigenvalue of zero, 

which resulted in the linear optimal control weights being very difficult to tune, resulting 

in undesirable motion cues.  This eigenvalue was a result of the inclusion of the 

optokinetic channel in the heave mode algorithm formulation given in Section 6.2.3; the 

formulation based on the vestibular model alone did not produce a zero eigenvalue.  

Kalman decomposition [41] was performed on the perceptual state space model of Eq. 

(6.31), resulting in a model with one less state, with no change to the perceptual response. 

Implementation of this reduced-order model removed the uncontrollable state and in turn 

eliminated the closed-loop eigenvalue of zero.  The linear optimal control weights could 

then be tuned to produce the desired specific force cue; matrices Q and Rd were increased 

to produce the desired onset ramp and magnitude while the filtered white noise break 

frequency γ  was increased to 20π rad/s to eliminate false cues. 
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In Figure 6.6, the vertical mode responses for a square pulse input from the 

nonlinear algorithm are compared to the linear algorithm based upon the integrated 

perception model.  A learning rate parameter µ = 2 × 10
-7

 is used in computing the 

Riccati equation solution.  The nonlinear weight parameters Q2 = diag(1.0,2.0) result in 

the desired washout characteristics.  The first diagonal term Q2(1,1) acts upon the 

simulator displacement, reducing the z-axis displacement.  The second term Q2(2,2) acts 

upon the simulator velocity, reducing the offset response that follows the onset cue to an 

imperceptible magnitude. 
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Figure 6.6.  Nonlinear Algorithm Vertical Mode Responses. 

 

A further increase of Q2(1,1) does not reduce the displacement, but reduces the 

negative cue at the end of the pulse.  An additional increase of Q2(2,2) decreases the 

offset, but the magnitude of the negative cue remains unchanged.  Figure 6.6 also shows 
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the nonlinearity α and the energy norm E(P) for the heave response.  The variations 

resulting for α will in turn affect the vertical response.  The energy norm reaches peak 

values at the start and end of the pulse, and approaches zero as the response is washed out 

and the platform returns to a neutral position. 

The yaw mode responses for an angular acceleration pulse doublet are shown in 

Figure 6.7.  Since all closed-loop eigenvalues were nonzero, Kalman decomposition of 

the perceptual model was not required.  The weight Rd that acts upon the simulator yaw 

displacement was reduced to 200 to produce a faster onset cue.  The nonlinear weight 

parameter Q2 = 120 reduces the false cue at the end of the pulse. 
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Figure 6.7.  Nonlinear Algorithm Yaw Mode Responses. 

 

In this mode an upper limit αmax equal to 1 is placed on α that restricts the yaw 

displacement.   Increasing αmax will result in a longer sustained cue, but with an increase 
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in the yaw displacement beyond 12 degrees.  Note that after αmax is reached, the energy 

norm E(P) rapidly decreases, increasing again when α starts to decrease below its upper 

limit.  A learning rate parameter µ = 2 × 10
-6

 is used in computing the Riccati equation 

solution; increasing µ by one order-of-magnitude results in a discontinuity in the angular 

velocity cue when αmax is reached. 

For the two-degree-of-freedom longitudinal mode, the initial formulation with the 

integrated perception model resulted in a higher-order system (15
th

-order) that is much 

larger than either heave (6
th

-order) or yaw (5
th

-order).  Two closed-loop eigenvalues of 

zero resulted from the off-line solution of the Riccati equation.  The first originated from 

the additional simulator state θ.  The second resulted from the optokinetic channel for the 

translational degree-of-freedom.  Removal of the additional platform state combined with 

Kalman decomposition of the perceptual model given in Eq. (6.7) eliminates the two 

closed-loop eigenvalues of zero, reducing the system to 11
th

-order. 

The longitudinal mode responses for a surge ramp to step input of 1 m/s
2
 

magnitude and 3 m/s
2
/s slope are shown in Figure 6.8.  Note that the nonlinear algorithm 

produces a specific force cue very close to the linear case, but with a reduction in the x-

axis displacement.  The percent reduction in displacement compared to the linear case 

increases as a function of the aircraft surge input magnitude.  The peak angular velocity is 

slightly larger than the linear case, resulting in a slight increase of the pitch angle.  The 

responses for both α and the energy norm (not shown) are similar to the heave and yaw 

modes in that the nonlinearity primarily affects the cue onset, with the energy norm 

washing out to zero over time. 
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Figure 6.8.  Nonlinear Algorithm Longitudinal Mode Responses to Surge Input. 

 

The nonlinear weight parameters Q2 = diag(0,0.6) result in the desired washout 

characteristics.  Increasing the first diagonal term Q2(1,1) that acts upon the x-axis 

simulator displacement from 0 to 0.1 will result in increasing magnitudes of x-axis 

displacement and tilt with additional oscillatory responses.  A further increase of the 

second diagonal term Q2(2,2) results in an increase of the peak angular velocity.  A 

learning rate parameter µ = 2 × 10
-6

 is used in computing the solution of the Riccati 

equation; the responses are unchanged with an increase of µ by one order-of-magnitude. 

Figure 6.9 shows the algorithm lateral mode responses to an aircraft half-sine 

input of 3 m/s
2
 peak and 5-second duration.  As with the longitudinal mode, Kalman 

decomposition was performed on the integrated perception model to eliminate one zero 

eigenvalue, and the additional simulator state φ was removed from the algorithm 
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formulation.  As with the surge response, the nonlinear algorithm produces a specific 

force cue very close to the linear case, but with a 0.1-m reduction in the y-axis 

displacement.  Similar to the longitudinal mode, the peak angular velocity is slightly 

larger than the linear case, but in this case the peak roll angle is slightly smaller.   
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Figure 6.9.  Nonlinear Algorithm Lateral Mode Responses to Sway Input. 

 

A learning rate parameter µ = 2 × 10
-6

 was again used; again the responses are 

unchanged with an increase of µ by one order-of-magnitude.  The nonlinear weight 

parameters Q2 = diag(0,0.8) produce the desired washout characteristics.  The effects of 

increasing the weights are the same as with the longitudinal mode. 

The responses for a pitch doublet input of 0.1 rad/sec
2
 are shown in Figure 6.10.  

A learning rate parameter µ = 2 × 10
-6

 is used in computing the solution of the Riccati 

equation.  The nonlinear weight parameter Q2 = 1 results in a large value for α, but does 
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not produce any noticeable change in the angular velocity response.  Note that the 

response is scaled (by the pitch degree-of-freedom nonlinear gain), but closely follows 

the shape of the aircraft input.   
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Figure 6.10.  Nonlinear Algorithm Pitch Degree-of-Freedom Responses. 

 

The frequency characteristics of the linear state space filter are very close to a 

unity-gain filter.  Since there is no benefit from solving the Riccati equation in real time, 

the formulations shown in Eqs. (6.1) to (6.23) are replaced by unity-gain filters for both 

the pitch and roll degree-of-freedom.  Figure 6.11 shows the revised implementation for 

the longitudinal and lateral modes. 
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Figure 6.11.  Revised Algorithm Implementation with Unity-Gain Pitch Filter. 

 

The systems of first-order differential equations given for the neurocomputing 

solver in Eq. (6.40) require a numerical integration algorithm.  A series of algorithms 

(Euler, 2
nd

-order Adams-Bashforth, 2
nd

- and 4
th

-order Runge-Kutta) were evaluated.  No 

improvement was noticed with the higher-order methods as compared to the Euler 

method.  However, for the system state equations in Eq. (6.26), the Euler method was 

found unstable for low sampling frequencies; the 2
nd

-order Runge-Kutta method resulted 

in stable results for sample rates as low as 32 Hz. 

The responses using a second neurocomputing solver developed by Wang and Wu 

[63] are sensitive to the magnitude and stiffness of the closed-loop eigenvalues, with the 

responses dependent upon the choice and structure of the activation functions.  The 

approach proposed by Ham and Collins [62] utilizes a structured network without 

activation functions; the responses are more robust with respect to the closed-loop 

eigenvalues.  This solver yields improved responses and convergence with less 

computational burden; only one solver iteration is required per time step. 
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During implementation on the NASA Langley real time computing system, it was 

discovered that for a time step of 16 msec, the real time requirement for the nonlinear 

algorithm was not being met.  The baseline software for the nonlinear algorithm, with all 

presentations of the excitatory vector ( )tz  given in Eq. (6.41) for each mode, i.e. n 

presentations for an n
th

-order system, resulted in an average CPU time of 34 msec.  This 

CPU time also includes the contributions of the aircraft model and control loader.  

Optimizing matrix operations by taking advantage of symmetry and sparse matrices in 

the state equations and solution of the Riccati equation resulted in an average CPU time 

of 24 msec.  Reducing the number of presentations of the vector ( )tz  for each mode to 

the first three vectors produced a CPU time of 12 msec, which met the real time 

requirement. 

This change is reflected in the nonlinear algorithm results shown in this Section.  

The results for the yaw mode were about the same as the case of 5 presentations of ( )tz .  

For the heave mode, the learning rate µ was reduced from 2 × 10
-6

 to 2 × 10
-7

 to remove a 

false cue at the end of the square pulse; the results were then very close to the case of 6 

presentations of ( )tz .  For the longitudinal and lateral modes the results were about the 

same as the case of 11 presentations of ( )tz  for each mode; the only noticeable change 

was an increase in a secondary artifact in the specific force cue after the half-sine pulse as 

shown in Figure 6.9 that remains imperceptible. 

A summary of the nonlinear algorithm parameters for each of the four modes 

(longitudinal, lateral, vertical, and yaw) is given in Appendix C. 
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6.5. Pilot Tuning of the Algorithm 

A computer program was developed by Telban, et al. [64] for the purpose of 

driving the NASA Langley Visual Motion Simulator (VMS) that is described in Section 

2.1.  This program includes both the optimal algorithm and the nonlinear algorithm.  A 

general description of the program is given along with a description and flow charts of 

each cueing algorithm.  Common block variable listings and a program listing are also 

provided.  Procedures for tuning the nonlinear gain coefficients are also given.   

In order to determine the nonlinear gain coefficients for each degree-of-freedom 

that resulted in the most desired pilot performance, an experienced simulator pilot 

executed a series of controlled maneuvers with the optimal and nonlinear algorithms on 

the VMS.  This series of maneuvers was first executed with the polynomial gain 

coefficients determined prior to testing.  Coefficients for each degree-of-freedom were 

then adjusted until the simulator pilot subjectively felt the desired perception and 

performance were reached, while ensuring that the simulator motion platform limits were 

not exceeded.   

The following maneuvers were executed for both algorithms using the nonlinear 

B757 model: 

  Straight Approach and Landing (with varying wind from head to tail) 

  Offset Approach and Landing (with and without turbulence) 

  Takeoff from Full Stop (with and without engine failure) 

  Ground Maneuvers (taxiing, effect of aircraft brakes). 

 

No additional tuning was needed for either the straight-in or offset approach 

maneuvers.  However, both algorithms showed a tendency to exceed the actuator limits 

of the motion system with the takeoff maneuver.  Reducing the surge gains for the 

optimal algorithm and both the surge and pitch gains for the nonlinear algorithm resulted 
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in platform motion within the actuator limits during the takeoff maneuvers.  Table 6.1 

lists the nonlinear gains by degree-of-freedom for each algorithm.  From Eq. (2.8), the 

coefficients c1, c2, and c3 are given for each degree-of-freedom. 

Table 6.1.  Nonlinear Gain Coefficients for the Cueing Algorithms. 

 Optimal Algorithm Nonlinear Algorithm 

Degree-of-

Freedom 

 

c1 

 

c2 

 

c3 

 

c1 

 

c2 

 

c3 

Surge (X) 0.6 -0.055 0.002 0.5 -0.05 0.002 

Sway (Y) 0.5 -0.055 0.002 0.4 -0.035 0.001 

Heave (Z) 0.6 -0.082 0.0038 0.6 -0.082 0.0038 

Roll (p) 0.3 -0.3 0.1 0.3 -0.3 0.1 

Pitch (q) 0.4 -0.54 0.26 0.3 -0.3 0.1 

Yaw (r) 1.1 -1.46 0.64 1.1 -1.46 0.64 

 

6.6. Comparison of Motion Cueing Algorithms 

Algorithm responses using test runs for each degree-of-freedom are given in 

Appendix D.  Comparisons are made (with the linear optimal algorithm) of both specific 

force cues (denoted by SF in the graphs) at the pilot’s head and angular velocity cues, as 

well as the linear and angular displacement of the simulator.  Actuator extension lengths 

are also compared.  The number of each actuator referenced in Appendix D is shown on 

the motion platform in Figure 2.4.   

The vertical mode responses for the nonlinear algorithm for a pulse input of 1 

m/s
2
 magnitude and 10-second duration are shown in Figure 6.12.  The onset ramp is 

very close to that of the adaptive and optimal algorithms, with a slightly larger peak 

magnitude.  The cue is sustained for a longer duration, resulting in 33 percent more z-axis 

displacement compared to the linear optimal algorithm.  The negative specific force cue 

at the end of the pulse is twice the magnitude as the adaptive algorithm response.  This 

results in increased sensation that indicates the end of the pulse input.  



 123

0 2 4 6 8 10 12 14 16 18 20
-10

-9.9

-9.8

-9.7

-9.6
Z-Axis Specific Force at Pilot Head

S
p
e
c
ifi

c
 F

o
rc

e
 (

m
/s

2
)

0 2 4 6 8 10 12 14 16 18 20
-0.2

-0.1

0

0.1

0.2

0.3
Simulator Z-Displacement

Z
-D

is
p
l 
(m

)

Time (sec)

Aircraft (Scaled by 0.1)

Adaptive Algorithm

Optimal Algorithm

Nonlinear Algorithm

 

Figure 6.12.  Algorithm Responses to Vertical Pulse of 1 m/s
2
 Magnitude, 10-Second 

Duration. 

 

Figure 6.13 compares responses with the vertical pulse magnitude increased to 3 

m/s
2
.  The cue from the nonlinear algorithm is sustained for a longer duration, resulting in 

slightly less (5 percent less) z-axis displacement as compared to the linear optimal 

algorithm.  The nonlinear algorithm response washes out faster due to the nonlinear 

effects generated from the Riccati equation solution.  The negative cue at the end of the 

pulse is slightly smaller than the optimal algorithm response, but is much larger than the 

negative cue that results from the adaptive algorithm. 
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Figure 6.13.  Algorithm Responses to Vertical Pulse of 3 m/s
2
 Magnitude, 10-Second 

Duration. 

 

Figure 6.14 compares the algorithm responses to an aircraft longitudinal input.  A 

surge ramp to step input of 1 m/s
2
 peak magnitude and 3 m/s

2
/s slope is applied to each 

algorithm.  The specific force response for the nonlinear algorithm does not wash out as a 

function of time, resulting from the steady-state tilt angle sustaining a constant 

magnitude.  A small increase in the angular velocity (tilt) rate compared to the optimal 

algorithm is also observed.  Note that the adaptive algorithm has a larger steady-state 

specific force magnitude, as well as a larger angular velocity.   
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Figure 6.14.  Algorithm Responses to Surge Ramp to Step of 1 m/s
2
 Magnitude, 3 

m/s
2
/s Slope. 

 

Figure 6.15 compares the responses from the integrated perception model for 

these surge cues.  The sensed specific force, or otolith responses show the nonlinear 

algorithm closely tracks the shape of the sensed response from the aircraft.  The optimal 

algorithm produces about the same onset as the nonlinear algorithm, but results in 

noticeably less sensed response, especially for the first few seconds after the peak 

magnitude is reached.  The perceived velocity responses show a slightly larger magnitude 

for the nonlinear algorithm, increasing to 2 percent greater magnitude after 10 seconds.  

The adaptive algorithm shows a negative, or false specific force cue sensed at the onset 

that results in a subsequent lag and a reduction in the perceived velocity for one second.   



 126

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1
X-Axis Sensed Specific Force at Pilot Head

S
e
n
s
e
d
 S

p
e
c
ifi

c
 F

o
rc

e
 (

m
/s

2
)

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10
X-Axis Perceived Velocity at Pilot Head

Time (sec)

P
e
rc

e
iv

e
d
 V

e
lo

c
it
y
 (

m
/s

)
Aircraft

Adaptive Algorithm

Optimal Algorithm

Nonlinear Algorithm

 

Figure 6.15.  Integrated Perception Model Responses to Surge Cues of Figure 6.14. 

 

Figure 6.16 compares the algorithm responses to an aircraft lateral input.  A sway 

half sine of 3 m/s
2
 peak magnitude and 5-second duration was applied to each algorithm.  

Note that the specific force cue generated by the adaptive algorithm has some significant 

distortion.  A false cue is generated at onset, resulting in a noticeable lag in the motion 

cue response.  A large peak magnitude is reached, but nearly one second after the aircraft 

input reached its peak.  A large residual specific force cue remains for about three 

seconds after the aircraft input ends.  The response generated by the linear optimal 

algorithm shows no negative cue at the onset, a well-shaped half sine response with a less 

noticeable lag, and much less residual specific force cue.  The nonlinear algorithm results 

in a peak specific force cue that is 15 percent larger than the linear optimal algorithm, 

with even less lag and almost no residual specific force cue after the half sine input ends. 
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Figure 6.16.  Algorithm Responses to Sway Half Sine of 3 m/s
2
 Magnitude, 5-Second 

Duration. 

 

Figure 6.17 compares the responses for these sway cues from the integrated 

perception model.  As expected, the nonlinear algorithm peaks to a larger sensed specific 

force as compared to the optimal algorithm, resulting in a larger perceived velocity.  

After five seconds, the conflict between the vestibular and visual stimuli is reduced, 

resulting in a gradual acceptance of the visual cues governed by the optokinetic influence 

in the model.  The problems noted with the adaptive algorithm are evident; the false cue 

and delayed peak are noticeable along with excessive sensed and perceived responses 

observed in the last two seconds of the pulse input.  In all three algorithms, the magnitude 

of the vestibular cues eliminates the latency to onset of linearvection that would occur 

with visual stimuli alone. 
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Figure 6.17.  Integrated Perception Model Responses to Sway Cues of Figure 6.16. 

 

 The yaw mode responses for an angular acceleration doublet of 0.1 rad/s
2
 

magnitude and 5-second duration are shown in Figure 6.18.  Both the optimal and 

nonlinear algorithms extend the duration of the positive angular velocity cue about one 

second longer than the adaptive algorithm, with the nonlinear algorithm duration being 

slightly longer.  Note that the false angular velocity cue near the end of the aircraft input 

is reduced for the nonlinear algorithm.  The yaw angle displacement command returns to 

the neutral state (zero displacement) in less than twenty seconds, while the linear optimal 

algorithm requires more time to return to the neutral state. 
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Figure 6.18.  Algorithm Responses to Yaw Doublet of 0.1 rad/s
2
 and 5-Second 

Duration. 
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Figure 6.19 shows the roll responses for an angular acceleration doublet of 0.1 

rad/s
2
 magnitude and 5-second duration.  The aircraft acceleration doublet is integrated to 

produce the triangular angular velocity shown in Figure 6.19, and generates a specific 

force discontinuity at the doublet transition.  Note that the specific force response for the 

nonlinear algorithm is about the same magnitude in comparison to the optimal and 

adaptive algorithm responses. 
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Figure 6.19.  Algorithm Responses to Roll Doublet of 0.1 rad/s
2
 and 5-Second 

Duration. 
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Figure 6.20 shows the pitch responses of the same magnitude and duration for all 

three algorithms.  Similar aircraft inputs to the roll degree-of-freedom are observed.  Note 

that for a single degree-of-freedom pitch input (e.g., pitch during straight and level 

flight), the adaptive algorithm will produce the largest angular velocity and specific force 

cues, with the nonlinear algorithm cues being less than the optimal algorithm.  However, 

with the addition of longitudinal cues generated during a takeoff maneuver, the aircraft 

inertial acceleration will penalize or decrease the angular velocity gain as governed by 

the cost function of Eq. (2.11).     
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Figure 6.20.  Algorithm Responses to Pitch Doublet of 0.1 rad/s
2
 and 5-Second 

Duration.  
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6.7. Turbulence 

Reid and Robinson [65] first addressed the problem of producing acceptable 

motion cues to turbulent gust inputs.  They noted that heave is the most critical cue in 

representing turbulence, but is also the most restricted cue when constraining motion 

within the platform geometry.  To overcome this limitation, they developed an approach 

in which a second set of aircraft flight equations driven only by the turbulence inputs is 

employed.  The output from this augmented channel is then added to the output from the 

primary flight equations, being driven by both turbulence and the pilot control inputs, 

before serving as input to the motion system.  A similar approach to that developed by 

Reid and Robinson [65] has been implemented and is shown in Figure 6.21. 

Figure 6.21.  Optimal Algorithm Vertical Mode with Augmented Turbulence 

Channel. 

 

The input to the augmented channel is the z-axis component wG of the turbulence 

vector G.  Reid and Robinson showed that wG is the dominant turbulence component 

needed in producing vertical acceleration due to turbulence.  The secondary flight 

equations can then be represented by a transfer function HG(s).  The secondary 

acceleration I

Ga  is then scaled with a constant gain KG.  Both the primary and secondary 

signals are then combined before input to the vertical motion cueing filter W22. 
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From a simulated aircraft test run, a system identification of aircraft vertical 

accelerations in response to turbulence was performed.  The transfer function HG(s) was 

then created to not only represent the acceleration, but also incorporate some desired 

motion cueing characteristics, i.e., attenuated low-frequency content and increased high-

frequency content.  The following second-order transfer function was obtained for HG(s): 

 ( )
( )( )
( )( )
2.4 1 2.4 1

0.1 .
0.4 1 0.1 1

G

s s
H s

s s

+ +
=

+ +
 (6.42) 

For the optimal algorithm, a gain of KG equal to 0.8 was chosen to maximize the 

desired sensation of turbulence while keeping the actuator extensions within the motion 

limits.  Figure 6.22 shows the optimal algorithm vertical responses due to turbulence both 

with and without the augmented channel.  Note that the addition of the channel results in 

larger specific force peaks along with greater z-axis displacement.  Figure 6.23 shows the 

power spectral density (PSD) of the heave acceleration cues.  Note that the addition of the 

augmented turbulence channel greatly increases the PSD for low and mid-range 

frequencies up to 3 Hz. 

A similar implementation to that shown in Figure 6.21 was applied to the 

nonlinear algorithm.  In this approach, the linear cueing filter W22 was replaced with the 

nonlinear heave filter, with the gain KG set equal to 1.2.  Figure 6.24 shows the nonlinear 

algorithm vertical responses due to turbulence.  Note that the augmented channel results 

in larger specific forces and displacements than the optimal algorithm, with a similar 

increase in the power spectral densities as shown in Figure 6.25.     



 134

0 5 10 15 20 25 30
-12

-11

-10

-9

-8
Vertical Turbulence Response

S
p
e
c
ifi

c
 F

o
rc

e
 (

m
/s

2
)

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4
Simulator Z-Displacement

Z
-D

is
p
l 
(m

)

Time (sec)

w /o Augmented Turbulence

w ith Augmented Turbulence

 

Figure 6.22.  Optimal Algorithm Motion Cues Due to Turbulence. 
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Figure 6.23.  Power Spectral Density of Optimal Algorithm Motion Cues. 
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Figure 6.24.  Nonlinear Algorithm Motion Cues Due to Turbulence. 
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Figure 6.25.  Power Spectral Density of Nonlinear Algorithm Motion Cues. 
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6.8. Summary of Results 

The inclusion of the integrated perception model to the linear algorithm 

formulation will, in general, sustain the motion cues longer compared to the formulation 

solely based on the vestibular system.  However, this would result in excessive simulator 

displacements that could exceed the motion system hardware limits.  The addition of the 

nonlinear control law with a time-varying feedback matrix based upon simulator motion 

allows the large displacements that result from high magnitude motion cues to be washed 

out more quickly compared to cues of lower magnitude.  The neurocomputing approach 

provides an effective means of updating the solution of the Riccati equation at each time 

step.  Reducing the number of sub-iterations of the presentation vector z(t) results in the 

computation meeting the real time requirement, without degradation of the quality of the 

resulting motion cues. 

The vertical mode responses from the nonlinear algorithm produce a washout of 

the motion cues that significantly reduces the z-axis displacement without requiring 

additional scaling of the simulated aircraft inputs.  For the longitudinal mode response to 

a surge input, the nonlinear algorithm does not produce any difference in the specific 

force cue, but shows a reduction in the x-axis displacement; the percentage reduction of 

which compared to the linear algorithm will increase with increasing aircraft inputs.  The 

specific force responses shown for a large half-sine sway input to the lateral mode are 

unchanged, but again show a significant reduction with the y-axis displacement. 

The effect of the nonlinear algorithm on the yaw mode differs from the 

translational modes as the duration of the angular velocity cue is increased and a false cue 

is decreased; both effects increasing the simulator yaw displacement.  A maximum limit 
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was needed on the nonlinearity α to control this increase in displacement.  For pitch and 

roll degree-of-freedom inputs, the nonlinear algorithm could not yield any change in the 

motion cues.  A unity-gain filter replaced the respective state space motion cueing filter 

in the longitudinal and lateral modes. 

The responses to single degree-of-freedom aircraft inputs were compared with the 

NASA adaptive algorithm and the optimal algorithm.  Results for the vertical mode show 

the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining 

small cues for a longer duration and washing out larger cues more quickly compared to 

the optimal algorithm.  The longitudinal mode response to a surge input results in a 

specific force response with no steady-state washout due to the addition of the integrated 

perception model in the algorithm formulation.  The onset of the surge response 

eliminates the false cue that persists with the adaptive algorithm.   The lateral mode 

response to a sway input reveals a motion cue without the false cue or distorted shape 

observed with the adaptive algorithm, and a larger magnitude compared to the optimal 

algorithm.  Yaw mode responses reveal that the nonlinear algorithm improves the motion 

cues by reducing the magnitude of negative cues and increasing the cue duration. 

In order that takeoff maneuvers be successfully completed within the motion 

system hardware limits, pilot tuning resulted in reduction of the nonlinear gain of the 

surge degree-of-freedom. This resulted in less steady-state specific force cue compared to 

the adaptive algorithm.  The pitch degree-of-freedom nonlinear gain was also reduced, 

resulting in less angular velocity cues compared to the optimal algorithm.  These results 

are investigated further with pilot performance testing [66]. 
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7. Conclusions and Future Research 

7.1. Conclusions 

An improved linear optimal algorithm was developed that incorporates the latest 

research on human vestibular sensation models.  Using these new models, a set of linear 

motion cueing filters were synthesized and tuned using optimal control techniques.  

Preliminary pilot tests revealed unsatisfactory perception of turbulence effects.  A filter 

for the vertical mode based upon a revised otolith model resulted in a significant increase 

in the magnitude of the high-frequency gain, resulting in faster responding heave cues.  A 

filter for the longitudinal mode was designed with the new otolith model and resulted in 

faster responding surge cues with a reduction in the tilt coordination rate. 

The revised otolith sensation model, derived from prior research, was formulated 

with a short time constant obtained from research with afferent responses that shows one 

order-of-magnitude reduction from past work with ocular torsion responses.  The 

physiological experiments from the literature produced transfer functions with a 

fractional exponent in the lead operator.  By applying fractional calculus, transient 

responses to impulse and step inputs have been derived.  Comparison of the transient 

response of the revised model with these responses clearly shows that a less complex 

model can generate a response that is a reasonable approximation between responses 

from the regular and irregular units. 

An integrated model of human motion perception was developed.  This model 

includes models of both vestibular and visual motion sensation and incorporates the 

nonlinear interaction between the vestibular and visual stimuli.  The visual estimate of 

perceived self-motion is modeled as an optokinetic influence that filters the difference 
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between the cues through a first-order low-pass filter that represents the gradual build-up 

of self-velocity.  A conflict signal estimator is used to control the optokinetic influence 

gain.  Models for both rotational and translational motion were developed, producing 

responses that explain the characteristics of self-motion observed in the literature. 

A nonlinear motion cueing algorithm was developed that combines features of the 

adaptive and linear optimal algorithms, and incorporates the vestibular and integrated 

perception models.  A nonlinear control law was implemented that requires the solution 

of the Riccati equation in real time.  The neurocomputing approach implemented for this 

task yields responses that are robust with respect to the closed-loop eigenvalues, with less 

computational burden compared to a second neurocomputing solver and a Newton-

Raphson implementation. 

Results for the vertical mode show the nonlinear algorithm producing a motion 

cue with a time-varying washout, sustaining small cues for a longer duration and washing 

out larger cues more quickly.  The addition of the integrated perception model was shown 

to improve the response to a surge input, producing a specific force response with no 

steady-state washout.  Improved cues are also observed for responses to a sway input.  

The false longitudinal and lateral cues observed with the NASA adaptive algorithm were 

absent.  Yaw mode responses reveal that the nonlinear algorithm improves the motion 

cues by reducing the magnitude of negative cues closer to perceptual thresholds.  The 

addition of the augmented turbulence cue to the heave mode for both the optimal and 

nonlinear algorithms increases the turbulence sensation significantly so that pilot control 

inputs are influenced. 
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7.2. Suggested Future Research 

Both the optimal and nonlinear algorithm formulations resulted in rotational pitch 

filters with frequency characteristics very close to a unity-gain filter.  For large aircraft 

inputs, these filters produce strong pitch cues with large pitch angles that do not wash 

out.  This can result in either the simulation being stopped due to the motion limits being 

exceeded, or the motion cues being further restrained by a limiting or braking algorithm.  

Modifying the pitch filter to provide washout capability would allow large pitch angles to 

gradually decrease to a neutral position and increase the likelihood that simulations with 

large pitch angles such as takeoff be successfully completed.  The pitch filter in the 

optimal algorithm longitudinal mode formulation can be modified to produce washout by 

reducing the weight component Rd(4,4) that constrains the simulator pitch angle from Eq. 

(4.17). 

For the nonlinear algorithm, the corresponding weight component Rd(4,4) was 

removed from the cost function to eliminate a zero closed-loop eigenvalue, resulting in 

improved convergence of the Riccati equation neurocomputing solver.  Producing 

washout capability with the pitch filter would require additional research with the 

neurocomputing solver to improve convergence with a closed-loop eigenvalue of zero, or 

an augmented approach that would address this problem separately. 

A braking algorithm developed by Wu [13] was implemented for both algorithms 

and is presented with the motion cueing program implementation [64].  This braking 

algorithm did an adequate job of restraining the simulator motion as the hardware limits 

were approached, but performed poorly in returning motion control to the cueing 

algorithm.  An improved algorithm that is effective in both restraining large excursions 
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and resuming regular simulator motion would allow increased nonlinear gains and 

improve motion cueing performance.  One approach that is suggested is the algorithm 

developed by McFarland [67] for NASA Ames. 

The performance of the nonlinear algorithm will improve when implemented on a 

new motion system with improved actuator extensions and bandwidth.  Surge and pitch 

gains can be increased to improve pilot performance.  Due to the algorithm producing 

faster washout with large motion cues, the necessity for a braking algorithm to address 

large excursions may be minimal.  The addition of a pitch filter with washout would 

further improve the available motion cues.  This improved nonlinear algorithm could then 

be evaluated with a large homogeneous group of test pilots using the same state of the art 

techniques [66] developed for this research.   
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Appendix A.  Fractional Exponent Derivation 

Because of the fractional exponent in the transfer function of Eq. (3.22), an 

elementary solution to its response cannot be readily obtained.  However, an approximate 

solution to the response can be derived through the application of fractional calculus [32]. 

By first substituting the regular unit parameters into Eq. (3.22) and then 

implementing partial fraction expansion, Eq. (3.22) becomes 

( )
0.188 0.1881792.056 0.044538

674.058 0.016752 .
62.5 62.5 0.0145 0.0145

s s
H s

s s s s
= + − −

+ + + +
 (A.1) 

In Eq. (A.1), there are two groups of two transfer functions.  Each group is related 

to either the otolith mechanics (“fast”) time constant τM or the adaptation (“slow”) time 

constant τA, with one of the two transfer functions including an exponent that represents a 

fractional derivative.  For the first group, the solution to the term without the fractional 

exponent can be easily obtained by taking the inverse Laplace transform of the response: 

 1 62.51
.

62.5

t
L e

s

− − 
= 

+ 
 (A.2) 

To derive a solution to the fractional exponent term, The inverse Laplace 

transform is first obtained by applying fractional calculus [32]: 
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ν
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− 
 (A.3) 

where a = -62.5, ν = -0.188, and the term ( ) ( )*, ,at

tE a t e at
νν γ ν= , with *γ  being the 

incomplete gamma function, a transcendental function that can be expressed as 
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∞
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=
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∑  (A.4) 

Substituting Eq. (A.4) into Eq. (A.3) will result in 



 144

 ( )
( )

( )
1

0

, .
1

k

t

k

ats
L E a t

s a k

ν
νν

ν

− ∞
−

=

 
= = 

− Γ + + 
∑  (A.5) 

Eq. (A.5) is an infinite series, which for ν  = 0 will reduce to the Taylor series expansion 

of the exponential function: 
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where for a = -62.5, the solution is the same as Eq. (A.2). 
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where ( )f t  satisfies the first-order ordinary differential equation 

 ( ) ( ) ( )1 ,v
f t a f t t ν−′ − = Γ  (A.8) 

with the solution 
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Note that in Eq. (A.9) the integral does not exist when ν - 1 is less than 0.  To overcome 

this problem, we use the recursion formula 
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Note that the integral in Eq. (A.10) now exists since ν  + 1 is greater than 0.  Eq. 

(A.10) can now be used to compute the responses of the two fractional exponent transfer 
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functions given in Eq. (A.1).  For each of these transfer functions, three terms are 

computed.  The first two terms are analytical functions with the third term including an 

integral that requires an approximate solution. 

To evaluate the integral in Eq. (A.10), the integral can be rewritten as 
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where ( )
1

(1 ) 1

0
.at z

I t e z dz
ν− += ∫ɶ    Note that as at → −∞ , the integrand in ( )I tɶ  approaches 0 

for 0 1z≤ ≤ , and 1 for z = 1.  Also, for z near z = 1, we can write 
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This suggests we can write the integrand in ( )I tɶ  as 
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and therefore ( )I tɶ  can be rewritten as 
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and ( )
1

( )
N

NR t K at
+

≤ −  as at → − ∞ , where K is a constant.  The integral ( )I t  in Eqn. 

(A.11) can now be evaluated as 



 146

 ( ) ( )
( )

1
2 (1 )

10
0

1
1

N
jat at z

j N
j

I t t e C e z dz O
at

ν + − −

+
=

   
= − +    −   

∑ ∫  (A.16) 

By taking the inverse Laplace transform of Eq. (A.1) and applying Eqs. (A.10) 

and (A.16) to the transfer functions with fractional exponents results in the impulse 

response h(t): 
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The response to a unit step input will now be considered.  Given a system with the 

initial conditions 0x =  and 0x =ɺ  when t = 0, and an arbitrary input u(t), we look for a 

solution in the form 

 ( ) ( ) ( )
0

,
t

x t h x u dτ τ τ= ∫ , (A.18) 

where ( ),h x τ  is Green’s function, i.e. the system response to an impulse input, and has 

already been derived for the regular and unit transfer function in Eq. (A.17).  If we 

consider the response to a unit step, i.e. ( ) 1u τ =  for t > 0, the response for a term without 

the fractional exponent is simply ( )
0

1
1

t
a at

e d e
a

τ τ = −∫ , while the response for a term with 

the fractional exponent from Eq. (A.10) is 
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and applying the recursion formula in Eq. (A.19) results in 
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Applying Eqs. (A.18) and (A.20) to the impulse response for the regular unit parameters 

given in Table 3.1 and combining terms results in the response to a unit step: 
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Appendix B.  Optimal Algorithm System Parameters and Filter 

Characteristics 

Table B.1.  Optimal Algorithm System Parameters 

Parameter Pitch/Surge Roll/Sway Yaw Heave 

Semicircular Canals 

 

Threshold (deg/sec) 2.0 2.0 1.6  

τ1 (sec) 5.73 5.73 5.73  

τ2 (sec) 0.005 0.005 0.005  

τa (sec) 80 80 80  

τL (sec) 0.06 0.06 0.06  

GSCC (Threshold Units) 28.6479 28.6479 35.8099  

Otolith 

 

Threshold (m/sec
2
) 0.17 0.17  0.28 

AO (sec
-1

) 0.1 0.1  0.1 

BO (sec
-1

) 0.2 0.2  0.2 

B1 (sec
-1

) 62.5 62.5   

GOTO (Threshold Units) 4.7059* B1 4.7059* B1  2.8571 

Filtered White Noise Break Frequency 

 

An(1,1) 1 1 1 1 

An(2,2) π π   

Penalty Weights 

 

Q(1,1) 1 1 1 1 

Q(2,2) 10 10   

Rd(1,1) 8 8 0.1 0.1 

Rd(2,2) 4 4 300 4 

Rd(3,3) 1 1  1 

Rd(4,4) 250 250   

R(1,1) 1 1 1 1 

R(2,2) 1 1   
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 Table B.2.  Optimal Algorithm Filters with Young-Meiry Otolith Model. 

Poles W11(s) Zeros W12(s) Zeros W22(s) Zeros 

Longitudinal (Pitch/Surge) Filter 

 

-68.1595 -68.7884 -200 -83.3944 

-7.0133 -6.5825 -11.0387-14.9159i -13.4373 

-0.6401-0.9364i -0.6880-0.9932i -11.0387+14.9159i -1.9681 

-0.6401+0.9364i -0.6880+0.9932i -0.3930-0.3584i 0 

-1.1077-0.1855i -1.0203-0.3224i -0.3930+0.3584i 0 

-1.1077+0.1855i -1.0203+0.3224i -0.0468 0 

-0.0774 -0.0753 0 0 

Lateral (Roll/Sway) Filter 

 

-59.9780 -60.4781 -200 -77.7778 

-7.9333 -7.4642 -11.7349-13.9453i -13.6704 

-0.6034-0.9274i -0.6391-0.9757i -11.7349+13.9453i -1.9129 

-0.6034+0.9274i -0.6391+0.9757i -0.3862-0.3524i 0 

-1.0354-0.2332i -0.9707-0.3186i -0.3862+0.3524i 0 

-1.0354+0.2332i -0.9707+0.3186i -0.0440 0 

-0.0774 -0.0753 0 0 

Vertical (Heave) Filter 

 

-5.6454   -48.1817 

-0.5503-0.4841i   -0.1827 

-0.5503+0.4841i   0 

-0.1865   0 

-0.1587   0 

Yaw Filter 

 

-16.6776 -11.8526   

-0.4070 -0.1429   

-0.1944 0   

-0.0316 0   
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 Table B.3.  Optimal Algorithm Filters with New Otolith Model. 

Poles W11(s) Zeros W12(s) Zeros W22(s) Zeros 

Longitudinal (Pitch/Surge) Filter 

 

-13.4477 -13.0429 -1436 -5.5720 

-0.5214-0.8914i -0.5317-0.9162i -3.2046 -1.5649 

-0.5214+0.8914i -0.5317+0.9162i -0.3868-0.3566i   0 

-0.9031-0.2666i -0.8718-0.2961i -0.3868+0.3566i   0 

-0.9031+0.2666i -0.8718+0.2961i -0.0762   0 

-0.1018 -0.0995   0   0 

Lateral (Roll/Sway) Filter 

 

-13.4477 -13.0429 -1436 -5.5720 

-0.5214-0.8914i -0.5317-0.9162i -3.2046 -1.5649 

-0.5214+0.8914i -0.5317+0.9162i -0.3868-0.3566i   0 

-0.9031-0.2666i -0.8718-0.2961i -0.3868+0.3566i   0 

-0.9031+0.2666i -0.8718+0.2961i -0.0762   0 

-0.1018 -0.0995   0   0 

Vertical (Heave) Filter 

 

-0.5870-0.5120i   -0.1943 

-0.5870+0.5120i     0 

-0.1993     0 

-0.1587     0 

Yaw Filter 

 

-16.6662 -11.7582   

-0.4429 -0.1420   

-0.1506   0   

-0.0183   0   
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Appendix C.  Nonlinear Algorithm System Parameters 

Table C.1.  Nonlinear Algorithm System Parameters 

Parameter Pitch/Surge Roll/Sway Yaw Heave 

     

Semicircular Canals 

 

Threshold (deg/sec) 2.0 2.0 1.6  

τ1 (sec) 5.73 5.73 5.73  

τA (sec) 80 80 80  

GSCC (Threshold Units) 28.6479 28.6479 35.8099  

τOK (sec) 2.0 2.0 2.0  

Otolith 

 

Threshold (m/sec
2
) 0.17 0.17  0.28 

AO (sec
-1

) 0.1 0.1  0.1 

BO (sec
-1

) 0.2 0.2  0.2 

B1 (sec
-1

) 62.5 62.5   

GOTO (Threshold Units) 4.7059* B1 4.7059* B1  2.8571 

τOK (sec) 2.0 2.0  2.0 

     

Filtered White Noise Break Frequency 

 

An11 1 1 1 20π 

An22 π π   

Linear Weights 

 

Q(1,1) 1 1 1 1 

Q(2,2) 300 300   

Rd(1,1) 8 8 0.1 40 

Rd(2,2) 4 4 300 400 

Rd(3,3) 1 1  40 

R(1,1) 1 1 1 200 

R(2,2) 1 1   

Nonlinear Parameters 

 

µ 2.0 × 10
-6 

2.0 × 10
-6

 2.0 × 10
-6

 2.0 × 10
-7

 

Q2(1,1) 0 0 1.0 1.0 

Q2(2,2) 0.6 0.8  2.0 

αmax 1.0 1.0 1.0 0.2 
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Appendix D.  Optimal and Nonlinear Algorithm Comparison Figures 
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Figure D.4.  Sway Half Sine, 1 m/sec
2
 Magnitude, 5-Second Duration.
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Figure D.7.  Roll Doublet, 0.1 rad/sec
2
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2
 Magnitude, 5-Second Duration. 

 

 



 161

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15

A
n
g
u
la

r 
V

e
lo

c
it
y
 (

d
e
g
/s

e
c
)

Angular Velocity r

Aircraft

Optimal Algorithm

Nonlinear Algorithm

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10
Simulator Angle Psi

A
n
g
le

 (
d
e
g
)

Time (sec)
 

0 5 10

-0.2

0

0.2

Actuator Extension

L
e
g
 1

 (
m

)

0 5 10

-0.2

0

0.2

Actuator Extension

L
e
g
 2

 (
m

)

0 5 10

-0.2

0

0.2

L
e
g
 3

 (
m

)

0 5 10

-0.2

0

0.2

L
e
g
 4

 (
m

)

0 5 10

-0.2

0

0.2

Time (sec)

L
e
g
 5

 (
m

)

0 5 10

-0.2

0

0.2

Time (sec)

L
e
g
 6

 (
m

)
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