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Abstract

Motion blur due to camera motion can significantly degrade

the quality of an image. Since the path of the camera mo-

tion can be arbitrary, deblurring of motion blurred images

is a hard problem. Previous methods to deal with this prob-

lem have included blind restoration of motion blurred im-

ages, optical correction using stabilized lenses, and special

CMOS sensors that limit the exposure time in the presence of

motion.

In this paper, we exploit the fundamental tradeoff between

spatial resolution and temporal resolution to construct a hy-

brid camera that can measure its own motion during im-

age integration. The acquired motion information is used

to compute a point spread function (PSF) that represents the

path of the camera during integration. This PSF is then

used to deblur the image. To verify the feasibility of hybrid

imaging for motion deblurring, we have implemented a pro-

totype hybrid camera. This prototype system was evaluated

in different indoor and outdoor scenes using long exposures

and complex camera motion paths. The results show that,

with minimal resources, hybrid imaging outperforms previ-

ous approaches to the motion blur problem.

1. Introduction

Motion blur is the result of the relative motion between the

camera and the scene during the integration time of the im-

age. Motion blur can be used for aesthetic purposes, such as

emphasizing the dynamic nature of a scene. However, it is

usually an undesired effect that has been accompanied pho-

tography since its early days and is still considered an open

problem that can significantly degrade image quality. Fig. 1

shows examples of images that are blurred by simple, yet

different motion paths. In reality, due to the diversity of pos-

sible motion paths, every motion blurred image is uniquely

blurred. This diversity makes the problem of motion deblur-

ring hard.

Motion blurred images can be restored (up to lost spatial

frequencies) by image deconvolution [8], provided that the

motion is shift-invariant, at least locally, and that the blur

function (point spread function, or PSF) that caused the blur

is known. As the PSF is not usually known, a considerable

amount of research has been dedicated to the estimation of

(a) Scene (b) Horizontally blurred

(c) Vertically blurred (d) Circularly blurred

Figure 1: Different camera motions leads to different mo-

tion blur. In this example, the unblurred scene shown in (a) is

blurred by three different camera motion paths. In (b) and (c)

the scene is blurred by linear horizontal and vertical motions

respectively; while in (d) the scene is blurred by a circular mo-

tion. In reality, the space of possible motion paths is much more

diverse, which makes the problem of motion deblurring hard.

the PSF from the image itself [3, 18, 19], or from a sequence

of images [2, 9, 16]. This approach, which is called blind

image deconvolution, assumes that the motion that caused

the blur can be parameterized by a specific and very simple

motion model, such as constant velocity motion or linear

harmonic motion. Since, in practice, camera motion paths

are more complex, the applicability of the above approach

to real-world photography is very limited.

Two hardware approaches to the motion blur problem,

which are more general than the above methods, have been

recently put forward. The first approach uses optically sta-

bilized lenses for camera shake compensation [5, 6]. These

lenses have an adaptive optical element, which is controlled

by gyroscopes, that compensates for camera motion. This

method is effective only for relatively small exposures; im-

ages that are integrated over durations that are as small as

1/15 of a second exhibit noticeable motion blur [15, 14].

The second approach uses specially designed CMOS sensors

[4, 10]. These sensors prevent motion blur by selectively
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stopping the image integration in areas where motion is de-

tected. It does not, however, solve the problem of motion

blur due to camera shake during long exposures.

In this paper, we present a novel approach to motion de-

blurring of an image. Our method estimates the continuous

PSF that caused the blur, from sparse real motion measure-

ments that are taken during the integration time of the image,

using energy constraints.

This PSF is used to deblur the image by deconvolution.

In order to obtain the required motion information, we ex-

ploit the fundamental tradeoff between spatial resolution and

temporal resolution by combining a high resolution imaging

device (the primary detector) together with a simple, low

cost, and low resolution imaging device (the secondary de-

tector) to form a novel hybrid imaging system. While the

primary detector captures an image, the secondary detector

obtains the required motion information for the PSF estima-

tion.

We also address the question of motion analysis of motion

blurred imaged, where the constant brightness constraint

does not normally hold. This discussion appears, for clar-

ity, in the appendix.

We have conducted several simulations to verify the feasi-

bility of hybrid imaging for motion deblurring. These sim-

ulations show that, with minimal resources, a secondary de-

tector can provide motion (PSF) estimates with sub-pixel ac-

curacy. Motivated by these results, we have implemented a

prototype hybrid imaging system. We have conducted ex-

periments with various indoor and outdoor scenes and com-

plex motions of the camera during integration. The results

show that hybrid imaging outperforms previous approaches

to the motion blur problem.

2. Fundamental Resolution Tradeoff

An image is formed when light energy is integrated by an

image detector over a time interval. Let us assume that the

total light energy received by a pixel during integration must

be above a minimum level for the light to be detected. This

minimum level is determined by the signal-to-noise charac-

teristics of the detector. Therefore, given such a minimum

level and an incident flux level, the exposure time required

to ensure detection of the incident light is inversely propor-

tional to the area of the pixel. In other words, exposure time

is proportional to spatial resolution. When the detector is

linear in its response, the above relationship between expo-

sure and resolution is also linear. This is the fundamental

tradeoff between the spatial resolution (number of pixels)

and the temporal resolution (number of images per second).

This tradeoff is illustrated by the solid line in Fig. 2. The

parameters of this line are determined by the characteristics

of the materials used by the detector and the incident flux.

Different points on the line represent cameras with different
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Figure 2: The fundamental tradeoff between spatial resolu-

tion and temporal resolution of an imaging system. While a

conventional video camera (white dot) is a single operating

point on the tradeoff line, a hybrid imaging system uses two dif-

ferent operating points (gray dots) on the line, simultaneously.

This feature enables a hybrid system to obtain the additional

information needed to deblur images.

spatio-temporal characteristics. For instance, a conventional

video camera (shown as a white dot) has a typical tempo-

ral resolution 30 fps and a spatial resolution of 720 × 480
pixels.

Now, instead of relying on a single point on this tradeoff line,

we could use two very different operating points on the line

to simultaneously obtain very high spatial resolution with

low temporal resolution and very high temporal resolution

with low spatial resolution. This type of a hybrid imaging

system is illustrated by the two gray dots in Fig. 2. As we

shall see, this type of hybrid imaging gives us the missing in-

formation needed to deblur images with minimal additional

resources.

3. Hybrid Imaging Systems

We now describe three conceptual designs for the hybrid

imaging system. The simplest design, which is illustrated in

Fig. 3(a), uses a rigid rig of two cameras: a high-resolution

still camera as the primary detector and a low-resolution

video camera as the secondary detector. Note that this type

of a hybrid camera was exploited in a different way in [17]

to generate high resolution stereo pairs using an image based

rendering approach. In our case, the secondary detector is

used for obtaining motion information. Note that it is ad-

vantageous to make the secondary detector black and white,

since such a detector collects more light energy (broader

spectrum) and therefore can have higher temporal resolu-

tion. Also note that the secondary detector is used only as

a motion sensor; it has low resolution, and high gain and is

not suitable for super resolution purposes [1].

The second design uses the same lens for both detectors by

splitting the image with a beam splitter. This design, which

is shown in Fig. 3(b), requires less calibration than the previ-

ous one since the lens is shared, and hence, the image projec-

tion models are identical. An asymmetric beam splitter that

passes most of the visible light to the primary detector and
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Figure 3: Three conceptual designs of a hybrid camera. (a)

The primary and secondary detectors are essentially two sepa-

rate cameras. (b) The primary and secondary detectors share

the same lens by using a beam splitter. (c) The primary and

secondary detectors are located on the same chip with differ-

ent resolutions (pixel sizes).

reflects non-visible wavelengths toward the secondary de-

tector, for example a “hot mirror” [13], would be preferred.

A third conceptual design, which is illustrated in Fig. 3(c),

uses a special chip layout that includes the primary and the

secondary detectors on the same chip. This chip has a high

resolution central area (the primary detector) and a low reso-

lution periphery (the secondary detector). Note that this chip

can be implemented using binning technology now com-

monly found in CMOS (and CCD) sensors [7]. Binning al-

lows the charge of a group of adjacent pixels to be combined

before digitization. This enables the chip to switch between

a normal full-resolution mode (when binning is off) and a

hybrid primary-secondary detector mode (when binning is

activated).

4. Computing Motion

The secondary detector provides a sequence of images

(frames) that are taken at fixed intervals during the expo-

sure time. By computing the global motion between these

frames, we obtain samples of the continuous motion path

during the integration time. The motion between succes-

sive frames is limited to a global rigid transformation model.

However, the path, which is the concatenation of the mo-

tions between successive frames, is not restricted and can be

very complex. We compute the motion between successive

frames using a multi-resolution iterative algorithm that min-

imizes the following optical flow based error function [11]:

arg min
(u,v)

∑

(

u
∂I

∂x
+ v

∂I

∂y
+

∂I

∂t

)2

(1)

where, ∂I
∂x

, ∂I
∂y

, ∂I
∂t

are the spatial and temporal partial deriva-

tives of the image, and (u, v) is the instantaneous motion at

time t. This motion between the two frames is defined by

the following global rigid motion model:

[

u
v

]

=

[

cos θ sin θ ∆x
− sin θ cos θ ∆y

]





x
y
1



 (2)

where (∆x,∆y) is the translation vector and θ is the rotation

angle about the optical axis.

Note that the secondary detector, which has a short but non-

zero integration time, may also experience some motion

blur. This motion blur can violate the constant brightness

assumption, which is used in the motion computation. In ap-

pendix A we show that, under certain symmetry conditions,

the computed motion between two motion blurred frames is

the center of gravity of the instantaneous displacements be-

tween these frames during their integration time. We refer to

this as the motion centroid assumption when estimating the

PSF.

5. Continuous PSF Estimation

The discrete motion samples that are obtained by the motion

computation need to be converted into a continuous point

spread function. To do that, we define the constraints that a

motion blur PSF must satisfy, and then use these constraints

in the PSF estimation.

Any PSF is an energy distribution function, which can be

represented by a convolution kernel k : (x, y) �→ w, where

(x, y) is a location and w is the energy level at that location.

The kernel k must satisfy the following energy conservation

constraint:
∫ ∫

k(x, y) dx dy = 1, (3)

which states that energy is neither lost nor gained by the
blurring operation (k is a normalized kernel). In order to
define additional constraints that apply to motion blur PSFs,
we use a time parameterization of the PSF as a path function
f : t �→ (x, y) and an energy function h : t �→ w. Due to
physical speed and acceleration constraints, f(t) should be
continuous and at least twice differentiable, where f ′(t) is
the speed and f ′′(t) is the acceleration at time t. By assum-
ing that the scene radiance does not change during image
integration, we get the additional constraint:

∫

t+δt

t

h(t) dt =
δt

tend − tstart

, δt > 0, tstart ≤ t ≤ tend − δt,

(4)

3
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Figure 4: The computation of the continuous PSF from the

discrete motion vectors. (a) The discrete motion vectors which

are samples of the function f : t �→ (x, y). (b) Interpolated

path f(t) and its division into frames by Voronoi tessellation.

(c) Energy estimation for each frame. (d) The computed PSF,

h(t).

where [tstart, tend] is the image integration interval. This

constraint states that the amount of energy which is inte-

grated at any time interval is proportional to the length of

the interval.

Given these constraints, and the motion centroid assump-

tion from the previous section, we can estimate a continuous

motion blur PSF from the discrete motion samples, as illus-

trated in Fig. 4. First, we estimate the path f(t) by spline

interpolation as shown in Fig. 4(a,b); spline curves are used

because of their smoothness and twice differentiability prop-

erties, which satisfy the speed and acceleration constraints.

In order to estimate the energy function h(t) we need to find

the extent of each frame along the interpolated path. This

is done using the motion centroid assumption by splitting

the path f(t) into frames with a 1D Voronoi tessellation,

as shown in Fig 4(b). Since the constant radiance assump-

tion implies that frames with equal exposure times integrate

equal amount of energy, we can compute h(t) (up to scale)

for each frame as shown in Fig. 4(c). Note that all the rect-

angles in this figure have equal areas. Finally, we normalize

(scale) h(t) to satisfy the energy conservation constraint and

smooth it. The resulting PSF is shown in Fig. 4(d). The end

result of the above procedure is a continuous motion blur

PSF that can now be used for motion deblurring.

6. Image Deconvolution

Given the estimated PSF we can deblur the high resolution

image that was captured by the primary detector using ex-

isting image deconvolution algorithms [8, 12]. Since this is

the only step that involves high-resolution images, it dom-

inates the time complexity of the method, which is usually

the complexity of FFT. The results reported in this paper

Figure 5: The set of diverse natural images that were used in

the simulation tests.

were produced using the Richardson-Lucy iterative decon-

volution algorithm [8], which is a non-linear ratio-based

method that always produces non-negative gray level val-

ues, and hence gives results that make better physical sense

than linear methods [8].

7. Simulation Results

Prior to prototype implementation, two sets of simulation

tests were done in order to validate the accuracy of the

PSF estimation algorithm.

The first set addresses the accuracy of the motion estima-

tion as a function of frame resolution and gray level noise.

The second set illustrates the accuracy of the computed path

f(t) in the presence of motion blur. Both our tests were

conducted using a large set of images that were synthesized

from the 16 images shown in Fig. 5.

7.1. Motion Estimation Accuracy Test

In this test, we computed the motion between an image and

a displaced version of the same image (representing two

frames) using four different resolutions and four different

levels of Gaussian noise for each resolution. The displace-

ment used in the test was (17, 17) pixels, and the noise level

was varied between standard deviations of 3 gray levels to 81

gray levels. The computed displacements of the downscaled

images were scaled back to the original scale and compared

with the actual (ground truth) values. Table 1 shows the test

results. We can see that sub-pixel motion accuracy was ob-

tained for all tests except the test with the lowest image qual-

ity of 80× 80 pixels and noise standard deviation of 81 gray

levels. This test confirms the feasibility of using a low reso-

lution detector to obtain accurate motion estimates.

Table 1: Scaled motion estimation error between two frames

(in pixels) as a function of resolution and noise level. This table

shows that it is possible to obtain sub-pixel motion accuracy

from significantly low resolution and noisy inputs.

Noise σ = 3 σ = 9 σ = 27 σ = 81
Error Error Error Error

Res. Avg stdv Avg stdv Avg stdv Avg stdv

640× 640 0.01, 0.00 0.01, 0.00 0.02, 0.00 0.04, 0.00

320× 320 0.03, 0.00 0.04, 0.00 0.05, 0.00 0.10, 0.01

160× 160 0.03, 0.00 0.04, 0.00 0.07, 0.00 0.40, 0.14

80× 80 0.13, 0.00 0.21, 0.01 0.39, 0.10 2.60, 4.49

4
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7.2. Path Accuracy Test

Here, we first generated a dense sequence of 360 images by

using small displacements of each image in the set shown in

Fig. 5, along a predefined path. We then created a motion

blurred sequence by averaging groups of successive frames

together. Finally we recovered the path from this sequence

and compared it to the ground truth path. Table 2 shows

the results computed over a set of 16 synthesized sequences,

for different blur levels and different paths. We can see that

sub-pixel accuracy was obtained for all paths. Moreover,

the small standard deviation obtained for the different test

sequences shows that the different textures of the test images

have little effect on the accuracy of the path estimation.

Table 2: Path estimation error, in pixels, as a function of path

type and motion blur. We can see that sub-pixel accuracy was

obtained for all tests with very little deviation between different

test images.

f(t) = r(sin t, cos t) (t, sin t) (αt2, sin t)
Error Error Error

Blur Avg stdv Avg stdv Avg stdv

8 frames 0.092, 0.0000 0.099, 0.0000 0.299, 0.0001

16 frames 0.278, 0.0000 0.311, 0.0001 0.610, 0.0004

8. Prototype Hybrid Camera Results

Fig. 6 shows the prototype hybrid imaging system we have

implemented. The primary detector of the system is a 3M

pixel (2048 × 1536) Nikon digital camera equipped with a

×6 Kenko zoom lens. The secondary detector is a Sony DV

camcorder. The original resolution of the camcorder (720×
480) was reduced to 360 × 240 to simulate a low resolution

detector.

Fig. 7 and Fig. 8 show results obtained from experiments

conducted using the prototype system. Note that the expo-

sure times (up to 4.0 seconds) and the focal lengths (up to

884mm) we have used in our experiments far exceed the ca-

pabilities of other approaches to the motion blur problem.

(a)

(b)
(c)

Primary System

Secondary System

Figure 6: The hybrid camera prototype used in the experi-

ments is a rig of two cameras. The primary system consists of a

3M pixel Nikon CoolPix camera (a) equipped with a ×6 Kenko

zoom lens (b). The secondary system is a Sony DV camcorder

(c). The Sony images were reduced in size to simulate a low-

resolution camera.

In Fig. 7(a) and Fig. 8(a) we see the inputs for the deblurring

algorithm, which consists of the primary detector’s blurred

image, and a sequence of low resolution frames captured

by the secondary detector. Figures 7(b) and 8(b) show the

computed PSFs for these images. Notice the complex mo-

tion paths and the sparse energy distributions in these PSFs.

Figures 7(c) and 8(c) show the deblurring results. Notice the

details that appear in the magnified rectangles and compare

them to the original blurred images and the ground truth im-

ages shown in figures 7(d) and 8(d) (that were taken without

motion blur using a tripod).

Notice the text on the building shown in the left column of

Fig. 8, which is completely unreadable in the blurred im-

age shown in Fig. 8(a), and clearly readable in the deblurred

image show in Fig. 8(c). Some increase of noise level and

small deconvolution artifacts are observed and are expected

side effects of the deconvolution algorithm. Overall, how-

ever, in all the experiments the deblurred images show sig-

nificant improvement in image quality and are very close to

the ground truth images.

9. Conclusion

In this paper, we have presented a method for motion deblur-

ring by using hybrid imaging. This method exploits the fun-

damental tradeoff between spatial and temporal resolution to

obtain ego-motion information. We use this information to

deblur the image by estimating the PSF that causes the blur.

Simulation and real test results show that, with minimal re-

sources, hybrid imaging outperforms previous approaches to

the motion blur problem.

Our approach has several application. It can be applied to

aerial surveillance systems where vehicle translation, which

cannot be corrected by gyro-based stabilization systems, can

greatly reduce the quality of acquired images. The method

also provides a motion deblurring solution for consumer

level digital cameras. These cameras often have small yet

powerful zoom lenses, which makes them prone to severe

motion-blur, especially in the hands of a non-professional

photographer. Since the method is passive, it can be im-

plemented by incorporating a low-cost chip into the camera

such as the one used in optical mice. This chip has low spa-

tial resolution and high temporal resolution, which can be

used to obtain the egomotion information. The image de-

blurring process can be performed automatically, or upon

user request, by the host computer that is usually used to

download the images from the camera. Alternatively, the de-

blurring function can be incorporated into the camera itself,

so that the user always sees images of the highest (motion

deblurred) quality. We believe that our proposed method can

be applied to various domains of imaging, including, remote

sensing, aerial imaging, and digital photography.

5
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Indoor Scene: 3D Objects Indoor Scene: Face

(Focal length = 604mm, Exposure time = 0.5 sec.) (Focal length = 593mm, Exposure time = 0.5 sec.)

Low Resolution Image Sequence Low Resolution Image Sequence

(a) Input images from the primary detector and the secondary detector.
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(b) Computed PSFs. Color indicates the energy density.

(c) Computed deblurred images. Windows show details.

(d) Ground truth images that were taken using a tripod (no motion blur).

Figure 7: Experimental results for indoor scenes. (a) Input images, including the motion blurred image from the primary detector

and a sequence of low resolution frames from the secondary detector. (b) The computed PSFs. Notice the complexities of their paths

and their energy distributions. (c) The deblurring results. The magnified windows show details. (d) Ground truth images that were

captured without motion blur using a tripod.
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Outdoor Scene: Building Outdoor Night Scene: Tower

(Focal length = 633mm, Exposure time = 1.0 sec.) (Focal length = 884mm, Exposure time = 4.0 secs.)

Low Resolution Image Sequence Low Resolution Image Sequence

(a) Input images from the primary detector and the secondary detector.

X (Pixels)10 130

10

90

Y
(P

ix
el

s)

0.001

0.06

X (Pixels)10 60

10

30

Y
(P

ix
el

s)

0.001

0.003

(b) Computed PSFs. Color indicates the energy density.

(c) Computed deblurred images. Windows show details.

(d) Ground truth images that were taken using a tripod (no motion blur).

Figure 8: Experimental results for outdoor scenes. (a) Input images, including the motion blurred image from the primary

detector and a sequence of low resolution frames from the secondary detector. (b) The computed PSFs. Notice the complexities of

their paths and their energy distributions. (c) The deblurring results. Notice the clarity of the text and the windows in the left and

right deblurred images, respectively. (d) Ground truth images that were captured without motion blur using a tripod.
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A. Optical Flow for Motion Blurred Images

Consider two frames F and G, which are both motion

blurred. We assume for the purpose of analysis only that

we have n instantaneous snapshots of the scene that were

taken during the integration time of frames F and G. We

refer to these as Fi, Gi 1 ≤ i ≤ n and to the optical flow

vectors between two corresponding snapshots Fi and Gi as

(ui, vi). Each point Fi(x, y) satisfies the optical flow con-

straint equation:

ui

∂Fi(x, y)

∂x
+ vi

∂Fi(x, y)

∂y
+

∂Fi(x, y)

∂t
= 0. (5)

For clarity, we shall omit the spatial index (x, y). Adding

the equations of all the instantaneous snapshots yields:

∑

(

ui

∂Fi

∂x
+ vi

∂Fi

∂y
+

∂Fi

∂t

)

= 0. (6)

Approximating the spatial derivatives (∂Fi

∂x
, ∂Fi

∂y
) by convo-

lutions with the derivative kernels (∆x,∆y), and approxi-

mating the temporal derivative ∂Fi

∂t
by Gi − Fi yields:

∆x⊗
∑

uiFi+∆y⊗
∑

viFi+
∑

Gi−
∑

Fi = 0. (7)

Without loss of generality, we can assume that
∑

Fi �= 0
since adding a constant to F and G does not change any of

the derivatives. By multiplying and dividing by
∑

Fi we

get:

∆x ⊗

∑

uiFi
∑

Fi

F + ∆y ⊗

∑

viFi
∑

Fi

F + (G − F ) = 0, (8)

which can also be written as:
(∑

uiFi
∑

Fi

)

∂F

∂x
+

(∑

viFi
∑

Fi

)

∂F

∂y
+

∂F

∂t
= 0. (9)

Equation (9) is the optical flow constraint for frames

with motion blur, where (u, v) =

(

∑

uiFi
∑

Fi

,

∑

viFi
∑

Fi

)

.

This constraint has little practical use since we do

not know the values of the instantaneous motion vec-

tors (ui, vi). However, if the distribution of Fi is

symmetrical with respect to ui and vi, meaning that
∑

ui · (Fi − F̄i) = 0,
∑

vi · (Fi − F̄i) = 0, equation (9)

can be reduced to:

ū
∂F

∂x
+ v̄

∂F

∂y
+

∂F

∂t
= 0, (10)

where ūi =
∑

ui/n, v̄i =
∑

vi/n are the averages of the

instantaneous motion vectors (ui, vi).

Note that integration is invariant to the order, and since the

instantaneous motions (ui, vi) implicitly assumes chrono-

logical order, we need to show that the above equations

are true for different orderings of the snapshots. This is

true since the sum of displacements between snapshots does

not change by order permutation, and therefore neither does

their average.
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