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1. INTRODUCTION
Motion detection is a very important problem both in video image
coding and in computer vision. In video coding, motion detection
is a necessary task for motion-compensated predictive coding
and motion-adaptive frame interpolation to reduce the required
channel bandwidth. In computer vision systems, motion detec-
tion can be used to infer the 3-D motion and surface structure
of moving objects with many applications to robot guidance and
remote sensing.

Let I (x,y,t) be a spatio-temporal intensity image signal due
to a moving object, where p = (x,y) is the (spatial) pixel vector.
A well-known approach to estimating 2-D velocities or pixel
displacements on the image plane is the standard block matching
method, where

E(d) = I(p,ti) — I(p + d,t2)12
pER

is minimized over a small spatial region R to find the optimum
displacement vector d. Minimizing E(d) is closely related to
finding d such that the correlation >-pERI(p,tl)I(p + d,t2) is max-
imized; thus, this approach is sometimes called the area cor-
relation method. This approach has been criticized because (1) the
method is computation-intensive; (2) the method ignores that the
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region R, which is the projection of the moving object at time
t = tl , will correspond to another region R ' at t = t2 with
deformed shape due to foreshortening of the object surface re-
gions as viewed at two different time instances; and (3) the image
signals corresponding to regions R and R' do not only differ
with respect to their supports R and R ', but also undergo am-
plitude transformations due to the different lighting and viewing
geometries at t1 and t2. Nowadays, problem (1) is not critical
anymore due to the availability of very fast hardware or parallel
computers, but problems (2) and (3) are serious drawbacks.
Several researchers have adopted other methods that depend
either on (a) constraints among spatio-temporal image gradients
or on (b) tracking features (e.g. , edges, blobs). However, ap-
proach (a) performs badly for medium- or long-range motion
and is sensitive to noise. Approach (b) is more robust in noise
and works for longer range motion, but feature extraction and
tracking is a difficult task and gives sparse motion estimates.
By comparison, if problems (2) and (3) can be solved, then the
block matching method has the advantages of more robustness
than approach (a) and denser motion estimates than ap-
proach (b).

After a brief overview of related literature in Sec . 2, we
present in Sec. 3 an improved model for block matching that
solves problems (2) and (3) by allowing R to undergo affine
shape deformations (as opposed to just translations that the block

(1) matching method assumes) and by allowing the intensity signal
I to undergo affine amplitude transformations. Section 4 pro-
vides a least-squares algorithm to find the parameters of this
affine model. Then, several experiments are reported in Sec. 5
that demonstrate the superiority of our affine model for image
matching and motion detection over other standard approaches.

2. BACKGROUND
There is vast literature on motion detection. Some reviews on
this topic include Refs. 1 through 3. Here, we briefly survey a
few sample works that contain elements related to our work.
The major approaches to computing displacement vectors for
corresponding pixels in two time-consecutive image frames can
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be classified as using gradient-based methods, correspondence
of motion tokens , or block matching methods

The gradient-based methods are based on some relationships
among the image spatial and temporal derivatives. For example,
Horn and Schunck4 used the optical flow constraint dlldt = 0' (8I/8x)v + (8I/8y)v = — 31/at, where v , v are the x,y

velocity components . Cornelius and Kanade5 extended Horn and
Schunck's work to allow for gradual changes in the moving
object's appearance and for flow discontinuities at object bound-
aries. Brockett6 developed a least-squares approach to approx-
imate optical flow by affine vector fields using shape gramians.
A broad class of gradient-based methods are all the pixel-recursive
algorithms, opu1ar among video coding researchers. Netravali
and Robbins developed a pixel-recursive algorithm to improve
the estimation accuracy and to increase the measuring range of
displacement. Stuller et 8

proposed a gradient search technique
for estimating displacement and a luminance change gain. Caf-
forio and Rocca9 proposed some improvements on pixel-recursive
estimation algorithms. Biemond et al'0 developed a pixel-recursive
algorithm for the estimation of rotation and translation param-
eters in consecutive image frames. Kalivas et proposed two
algorithms to estimate the parameters of a 2-D affine motion
model; one is based on Taylor series expansion and assumes
smooth spatial variation of intensities and the other is a steepest
descent algorithm. In general, the gradient methods are analyt-
ically tractable and they often make use of iterative solutions.
The methods can also give dense displacement estimates, i.e.,
a displacement vector for each pixel. However, because the
methods require derivatives, their use is limited to short-range
motion, i.e. , at most 2 to 3 pixels. To achieve longer range
displacement estimation , multiple resolution gradient methods
can be used, but this increases their computational complexity.
The derivatives in discrete domain are usually approximated by
differences , which introduce errors . In addition , differentiation
amplifies high-frequency components and thus the method can
be very sensitive to noise.

Another class of commonly used motion analysis methods is
the correspondence of motion tokens , where important image
features are extracted and tracked over consecutive image frames.
Various types of tokens can be used, such as isolated points,
edges , and blobs . As an example of point tokens , Tsai and
Huang'2 used seven correspondence point pairs to determine
3-D motion parameters of curved surfaces from 2-D perspective
views. Lee1 developed an algorithm to recover 2-D affine trans-
formations of planar objects by using moments to find invariant
axes. Costa et 14

proposed an approach to deal with affine-
invariant point matching in the presence of noise . As an example
of blob tokens, Fuh and Maragos15 developed a region matching
method where blob-like regions corresponding to intensity peaks
and valleys are extracted at each frame and tracked over time.
In general, correspondence methods can usually achieve medium
or longer range displacement estimates than gradient methods,
but they usually give only sparse estimates. They are more robust
in the presence of noise, but the correspondence problem is
difficult to solve.

In block matching methods, blocks (or subframes) in the
previous frame are matched with corresponding blocks in the
current frame via criteria such as minimizing a mean-squared
(or absolute) error or maximizing a cross-correlation. For ex-
ample, Jam and Jam16 proposed a mean-squared error block
matching algorithm for estimating interframe displacement of
small blocks. Tzou et al.'7 proposed an iterative block matching
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algorithm, which showed better performance than conventional
algorithms to estimate both the displacement and the amplitude
ratio. Gilge18 developed fast algorithms both for motion esti-
mation (by using vector quantization techniques) and for illu-
mination correction (by modeling changes with an additive bias).
Finally, Skifstad and Jam'9 presented methods for detecting
scene changes in moving imagery with varying illumination.

3. AFFINE MODEL FOR IMAGE MATCHING
We assume that the region R' at t = t2 has resulted from the
region R at t = ti via an affine shape deformation p— Mp +
d, where

Mp + d = cosO —s sinOyl Fx1 + Fdxl . (2)
LSX sinO s cosO j LYi Ldyj

The vector d = (d,d) accounts for spatial translations, whereas
the 2 X 2 real matrix M accounts for rotations and scalings
(compressions or expansions). That is, are the scaling ratios
in the x,y directions, and are the corresponding rotation
angles. These kinds of region deformations occur in a moving
image sequence. For example, when objects rotate relative to
the camera, the region R also rotates. When objects move closer
or farther from the camera, the region R gets scaled (expanded
or compressed). Displacements by d can be caused by transla-
tions of objects parallel to the image plane as well as by rotations.
In addition, we allow the image intensities to undergo an affine
transformation I—>rI + c, where the ratio r adjusts the image
amplitude dynamic range and c is the brightness offset. These
intensity changes can be caused by different lighting and viewing
geometries at times t1 and t2.

Thus, given l(x,y,t) at t = t1 ,t2, and at various image lo-
cations, we select a small analysis region R and find the optimal
parameters M, d, r, c that minimize the error functional

E(M,d,r,c) = II(p,ti) — rI(Mp + d,t2) — c2 . (3)
pER

The optimum d provides us with the displacement vector. As
by-products, we also obtain the optimal M, r, c, which provide
information about rotation, scaling, and intensity changes. We
call this approach the affine model for image matching. Note
that the standard block matching method is a special case of our
affine model, corresponding to an identity matrix M, r = 1,
c = 0. Although d is a displacement vector representative for
the whole region R, we can obtain dense displacement estimates
by repeating this minimization procedure at each pixel, with R
being a small surrounding region. Note that if R is a square
region, its corresponding region R' under the map p — Mp +
d will generally be a rotated and translated parallellogram. More
general shape/intensity transformations can be modeled by a sum
of affine maps, i.e. , I(p,ti) —÷ c + rI(Mp + d,t2), as
developed in Ref. 20.

4. LEAST-SQUARES ALGORITHM

Finding the optimal M, d, r, c is a nonlinear optimization prob-
lem. While the problem can be solved iteratively by gradient
steepest descent in an 8-D parameter space, this approach cannot
guarantee convergence to a global minimum. Alternatively, in
our work we propose the following algorithm that provides a
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closed-form solution for the optimal r,c and iteratively searches
a quantized parameter space for the optimal M,d. We find first
the optimal r,c by setting

I(Mp + d,t2)I(p,ti) + r 12(Mp + d,t2)
pEER pER

+c I(Mp+d,t2)=O
pER

— = — I(p,ti) + r I(Mp + d,t2)
t3C pER pER

+cE 1=0
pER

Solving these two linear equations yields the optimal r* and c
as functions of M and d:

A l(Mp +d,t2)/(p,t1) — /(Mp + d,t2) I(p,t1)

r*(M,d) = pER pER pER

AI2(Mp+d,t2)—
[I(MP+dt2)]pER pER

c*(M,d) =
! [ I(p,ti)_r*(M,d)/(Mp+dt2)]A pER pER

whereA is the area of the region R. Replacing the optimal r*,c*
into E yields the error functional

E*(M,d) = E(M,d,r*,c*)
= l(p,ti) _r*I(Mp + d,t2) — c*f2

pER

= I2(p,ti) — r*I(p,ti)I(Mp + d,t2) — c*I(p,ti)
pER pER pER

I \2 /
pER pER pER pER pER pER=n- 2

pER I
A>I—( '2

pER \pER

where Ii = I(p,ti) and 12 = I(Mp + d,t2). Since the term
is independent of M and d, minimizing E*(M,d) is equivalent to
maximizing the function

K(M,d) =

I \2 / \2

pER pER pER pER pER pER

I \2AI -
(>12)pER pER

The function K(M,d) consists of several correlation terms. Now,
by discretizing the 6-D parameter space M,d and exhaustively
searching a bounded region, we find the optimal M,d that max-
imize K(M,d). (The 2-D parameter subspace d is inherently

discrete because it represents integer pixel coordinates .) After
having found the optimal M and d, we can obtain the optimal
r and c from the known functions r*(M,d) and c*(M,d).

In our implementation of the above algorithm we select the
image domain regions R to be overlapping squares of size B x B
pixels. (In this paper we set B = 21 .) The centers of these re-
gion blocks form a uniform square grid of G x G points. The
optimum displacement d is estimated at these region centers.

(4) Here, G controls the spatial frequency of estimated displace-
ments. To avoid aliasing, and because we are implicitly using
a 2-D rectangular window for our short-space analysis, the dis-
tance between two consecutive region centers should not exceed
B/2 (in each direction). Further, we constrain the action of M
so that it performs a uniform rotation by 0 = O = O and

(5) uniform scaling by s = s = s. We also constrain d = (d,d)
to be within an L x L window around p, where L/2 is the
maximum expected displacement in each direction. To find the
optimum scaling s, we discretize and bound its parameter space
by searching the finite range between 1 and the maximum
scale deviation from unity (which depends upon the specific

(6) application) at steps of size 0. 1 . Similarly, we find the optimum
rotation angle 0 by bounding its range between 0 and a
maximum angle and by searching at steps of 2 deg. For each
region, the rotation and scaling are implemented locally by set-
ting their centers at the region center. Thus, overall we search
in a bounded finite discrete 4-D parameter space Fi-

(7) nally note that, if p is an integer pixel vector in R, the vector
p' = Mp + d will generally have real-valued coordinates due
to the rotation and scaling induced by M. Hence, to be able to
assign an intensity value at the location p' we do bilinear in-
terpolation of the four neighbors of p' that have integer pixel•

(8) coordinates.

In this section we describe several experiments that apply the
above affine model and least-squares algorithm to 2-D motion

(9) detection. Figures 1(a) and 1(b) show an original poster image
and a synthetically transformed image according to the affine
model with a global translation of d = (5,5) pixels, rotation
by 0 = 6 deg, scaling s = 1 .2, intensity ratio r = 0.7, and
intensity bias c = 20. The center of the synthesized rotation
and scaling is at the global center of the image. Figures 1(c)
and 1(d) show that the displacement field estimated via the affine

(10) matching algorithm (with the maximum scaling and rotation set
at 1 .2 and 6 deg) is much more robust than that estimated via
the standard block matching. Table 1 lists the average values
and standard deviations of the recovered affine model parameters
and of the displacement estimation errors (in pixels). The av-
eraging was done over G2 = 256 blocks. (Note: due to the
global rotation and scaling with respect to the image center, the
displacement is not constant over each analysis region.) The
numerical results of Table 1 provide evidence about the efficacy
of our algorithm to estimate affine changes in image motion and
illumination.

As a real motion example, Fig. 2(a) shows a poster image
under dim light source, whereas Fig. 2(b) shows the same poster

(1 1) after a small rotation and under much brighter light sources. The
scene changes between the images in Figs. 2(a) and 2(b) were
induced by physically moving the digitizing camera and chang-
ing the scene illumination. As Fig. 2(c) shows, the standard
block matching (without affine shape deformation and affine
intensity transformation) can result in too many incorrect dis-
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Fig. 1. (a) An affine transformed version of the image in (b) with
translation d = (5,5), rotation 0 = 6 deg, scaling s = 1.2, intensity
ratio r = 0.7, and intensity bias c = 20; (b) the original poster image
(242 x 242 pixels, 8 bpp); (c) displacement vectors between the im-
ages in (a) and (b) obtained from standard block matching; and
(d) displacement vectors from the affine matching algorithm (L =
80 pixels).

placement vectors because every block in Fig. 2(a) tends to
match with the dark areas in Fig. 2(b). Figure 2(d) demonstrates
the good performance of the affine matching algorithm on
Figs. 2(a) and 2(b).

The goal of Figs. 3 and 4 is to compare the affine matching
algorithm with other approaches. Figure 3(a) shows the poster
image of Fig. 2(b) after the camera zoomed in by moving for-
ward from being 150 cm away to 100 cm (with focus read-
justed); hence, the poster image expands. Figure 3(b) shows the
same poster image rotated about 23 deg counterclockwise. Thus,
Figs. 2(b), 3(a), and 3(b) are frames from a moving image Se-
quence consisting oftranslation followed by rotation. Figure 3(c)
shows that the standard block matching of Figs. 2(b) and 3(a)
gives several errors in estimating displacements . Much better is
the result of applying the affine matching algorithm, shown in
Fig. 3(d), to track the motion between Figs. 2(b) and 3(a). Figure 4
shows the result of estimating the displacement field between
Figs. 3(a) and 3(b) by using (a) the standard block matching,
(b) the affine matching algorithm, (c) a feature-based displace-
ment estimation ri'5 and (d) a gradient-based optical
flow algorithm.4

Clearly, the affine matching algorithm has the best perfor-
mance. However, the superior performance of our affine model
comes at a high computational complexity. To quantify this

Table I . Recovered affine model parameters.

L Scaling s Rotation Bias c Ratio r d error d5 errorl
Correct 1.2 6.0 20.0 0.7 0

Average 1.1988 5.7500 20.4151 0.6902 0.2706 0.2762

St. Dev. 0.0108 0.6847 2.0627 0.0160 0.1671 0.2405

Fig. 3. (a) Third frame of poster after camera moved closer to the
object; (b) fourth frame of poster after a 23-deg counterclockwise
rotation; (c) displacement vectors from standard block matching of
images in Figs. 2(b) and 3(a); and (d) displacement vectors from af-
fine matching algorithm (L = 100 pixels).

complexity, let the image have height H pixels and width W
pixels. Let also N be the number of iterations required by the
gradient algorithm in Ref. 4 and let the impulse response of the
bandpass filter used in Ref. 15 for region extraction be K x K
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(a) (b) (a) (b)

(c) (d) (c) (d)

Fig. 2. (a) First frame of a poster image sequence under dim light
sources (242 x 242 pixels, 8 bpp); (b) second frame of poster with
small rotation and under much brighter light sources; (c) displacement
vectors from standard block matching; and (d) displacement vectors
from the affine matching algorithm (L = 30 pixels).

(a) (b)

(c) (d)
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Fig. 4. Displacement vectors between images in Figs. 3(a) and 3(b)
from four approaches (L = 100pixels); (a) standard block matching;
(b) affine matching algorithm; (c) a feature-based displacement es-
timation algorithm15; and (d) a gradient-based optical flow algo-
rithm.4

pixels. (In Fig. 4, N = 256 and K = 21 .) Then, Table 2 lists
the computational complexity of the four algorithms compared
in Fig. 4. The quantities in Table 2 express the order of mag-
nitude of the number of required operations (multiplications!
additions); the multiplicative constant factors involved in these
orders of magnitude are different for each algorithm. We have
implemented the affine matching algorithm on a parallel com-
puter (MasPar with 1024 processors), and the execution time
has been reduced by a ratio of about 20: 1 compared with a serial
computer (SUN4).

Although the displacement estimates from the affine matching
algorithm are mostly robust, there may be a few mismatches,
which we view as noise. In this case, additional improvement
can be achieved by smoothing the displacement vector field. We
exclude the use of linear filtering (e.g. , local averaging) because
linear smoothing filters have the well-known tendency to blur
and shift sharp discontinuities in signals. Sharp discontinuities
in the displacement field may indicate object boundaries and,
hence, must be preserved. Instead, we chose spatio-temporal
vector median filtering because the scalar median filter can elim-
mate outliers while preserving abrupt edges. Vector median fil-

Table 2. Computational complexity of four algorithms; B = block
size, G = estimation grid size, L = displacement search window
size, S = number of scaling search points, 0 = number of rotation
search points, W = image width, H = image height, N = number
of iterations, and K = filter size.

andard block matching O(B2 . L2 . G2)

Affine model matching O(B2 . L2 . G2 . S .

L Region correspondence algorithm [8] O(H . W . K2)

Gradient optical flow algorithm [11] O(H . W . N)

Fig. 5. (a) First frame of an infrared cloud image sequence (240 x 320
pixels, 4 bpp where intensity of each pixel is the altitude of the cloud
top); (b) second frame of the cloud sequence (30 mm between frames);
and (c) displacement vectors (magnified 1.5 times) from the affine
matching algorithm, smoothed by a spatio-temporal vector median
filter (L = 30 pixels).

tering is defined as the x,y componentwise median filtering:
med{d,} = (med{d,1}, med{d,1}), where d,, i = 1,2 n, are
the displacement vectors in a spatio-temporal cube surrounding
the center of region R and time t1 . We have found this vector
median to perform well in smoothing velocity fields; see also
Ref. 15 . (For a recent theoretical analysis of the vector median
see Ref. 21.)

Our affine matching algorithm not only performs well on
rigid objects undergoing short- or long-range motion and/or changes
in scene lighting, but also has satisfactory performance on non-
rigid objects, such as moving clouds where the interframe changes
of object shapes could be very large. Figures 5(a) and 5(b) show
two time frames from a satellite infrared cloud image sequence.
Figure 5(c) shows the respective motion displacement field d
that resulted by applying the above affine matching algorithm
and smoothing the raw estimates by a spatio-temporal vector
median filter. We have applied the affine matching algorithm
followed by vector median smoothing to several moving se-
quences of cloud imagery with an equally good success as in
Fig. 5. For example, Fig. 6 shows the same type of motion
tracking system applied to a moving cloud sequence obtained
during a hurricane; here, the motion is more rapid and inhom-
ogeneous across the image.

6. CONCLUSIONS

We have developed an affine model and a corresponding least-
squares algorithm for image matching that shows good perfor-
mance in estimating 2-D motion for a variety of moving imagery,
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(c)

Fig. 6. (a) First frame of a satellite infrared cloud image sequence
from a hurricane (240 x 320 pixels, 4 bpp); (b) second frame of the
hurricane sequence (30 mm between frames); and (c) displacement
vectors (magnified 1.5 times) from the affine matching algorithm,
smoothed by a vector median filter (L = 60 pixels).

e.g. , indoor pictures, outdoor scenes, and clouds. In terms of
robust estimation of displacements , the approach outperforms
other conventional methods based either on block matching,
gradient methods, or on feature tracking, especially for long-
range motion and/or illumination changes. However, our method
has a somewhat higher computational complexity; in the present
day, this no longer presents a problem due to the availability of
very fast hardware and parallel computers . Post-smoothing the
velocity field via spatio-temporal vector median filtering almost
always improves the performance of the matching algorithm.
The resulting displacement vectors can also be used as input
data to various 3-D models that can provide estimates of the
3-D motion and depth parameters of moving objects.
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