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Abstract—This paper describes a novel application of Statistical Learning Theory (SLT) to single motion estimation and tracking. The
problem of motion estimation can be related to statistical model selection, where the goal is to select one (correct) motion model from
several possible motion models, given finite noisy samples. SLT, also known as Vapnik-Chervonenkis (VC), theory provides analytic
generalization bounds for model selection, which have been used successfully for practical model selection. This paper describes a
successful application of an SLT-based model selection approach to the challenging problem of estimating optimal motion models from
small data sets of imagemeasurements (flow).We present results of experiments on both synthetic and real image sequences formotion
interpolation and extrapolation; these results demonstrate the feasibility and strength of our approach. Our experimental results show
that for motion estimation applications, SLT-based model selection compares favorably against alternative model selection methods,
such as the Akaike’s fpe, Schwartz’ criterion (sc), Generalized Cross-Validation (gcv), and Shibata’s Model Selector (sms). The paper
also shows how to address the aperture problem using SLT-based model selection for penalized linear (ridge regression) formulation.
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1 INTRODUCTION

LEARNING plays a fundamental role in facilitating “the
balance between internal representations and external

regularities.” As “versatility <generalization> and scalabil-
ity are desirable attributes in most vision systems,” the
“only solution is to incorporate learning capabilities within
the vision system” [22]. Many challenging problems in
computer vision could thus benefit from using predictive
learning, when the goal is to come up with “good” models
based on available (training) data under fairly general
(flexible) assumptions. A good model is expected to provide
accurate predictions for future (test) data. Toward that end,
this paper describes a novel application of Statistical
Learning Theory (SLT) to motion estimation. SLT provides
the mathematical and conceptual framework needed for
estimating dependencies from finite training data, it enables
a better understanding of issues responsible for general-
ization, and it facilitates the development of better (more
rigorous) learning algorithms. SLT provides analytical
generalization bounds for model selection, which relate
unknown prediction risk (generalization performance) and
known quantities such as the number of training samples,
empirical error, and a measure of model complexity called
the Vapnik-Chervonenkis (VC)-dimension.

In the predictive learning framework [29], [30], [9],

obtaining a good model with finite training data requires

the specification of admissible models (or approximating

functions), e.g., the regression estimator, an inductive
principle for combining admissible models with available
data, and an optimization (“learning”) procedure for
estimating the parameters of the admissible models. The
inductive principle is responsible for model selection and it
directly affects the generalization ability in terms of
prediction risk, i.e., the performance on unseen/future
data. Conversely, a learning method is a constructive
implementation of an inductive principle, i.e., an optimiza-
tion or parameter estimation procedure, for a given set of
approximating functions. Model selection corresponds to
one seeking an optimal model for a well-defined predictive
learning problem formulation, i.e., for a given set of
admissible models and the loss function that provides a
measure of generalization performance. In this setting,
model selection amounts to model complexity control [9], [10].

In computer vision applications, model selection using
predictive learning expands on the classical statistical
framework and defines a novel framework, that of robust
learning. Robustness is related to both accuracy and
functionality, which have been succinctly defined in the
context of computer vision as “how close the captured
motion corresponds to the actual motion performed by the
subject” and “the fewer assumptions a system imposes on
its operational conditions, the more robust it is considered
to be. Many systems are based on knowing the initial state
of their systems and/or a well-defined model fitted (offline)
to the current subject. In a real life scenario, we may expect
a system to be capable of autonomy and run on its own, i.e.,
adapt to the current situation. Related to this is the problem
of how to recover from failure. A number of systems are
based on incremental updates or searching around a
predicted value. Many of these fail due to bad predictions
and are not able to recover” (see Moeslund and Granum
[21]). Poggio and Shelton [23] further address robust
learning in computer vision, when they make a strong case
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that “the problem of learning is arguably at the very core of
the problem of intelligence, both biological and artificial.
Since seeing is intelligence, learning is also becoming a key
to the study of artificial and biological vision. Vision
systems that learn and adapt represent one of the most
important directions in computer vision research. It may be
the only way to develop vision systems that are robust and
easy to use in many different tasks.”

This paper describes an application of an SLT-based
model selection to the challenging problem of estimating
optimal motion models from small sets of image measure-
ments (flow). We present results of experiments on both
synthetic and real image sequences for both motion
interpolation and extrapolation; these results demonstrate
the feasibility and strengths of our approach. In addition,
our results showed that our approach compares favorably
against alternative model selection methods regarding the
confidence they offer on model selection for motion
estimation. Our experimental results show that for motion
estimation applications, SLT-based model selection com-
pares favorably against alternative model selectionmethods,
such as the Akaike’s Final Prediction Error (fpe), Schwartz’
criterion (sc), Generalized Cross-Validation (gcv), and
Shibata’s Model Selector (sms). The paper also shows how
to address the aperture problem using SLT-based model
selection for penalized linear (ridge regression) formulation.

2 MODEL SELECTION FOR REGRESSION

This section briefly reviews model selection in predictive
learning, and reviews classical and VC-based analytic
methods for model selection. A learning method is an
algorithm that estimates an unknownmapping (dependency)
between system’s inputs and outputs, from the available
data, i.e., known (input, output) samples. Once such a
dependency has been estimated, it can be used for prediction
of system outputs from the input values. The usual goal of
learning is the prediction accuracy, also known as general-
ization. A generic learning system [13], [9], [30] consists of:

. a Generator of random input vectors x, drawn from a
fixed (unknown) probability distribution P ðxÞ;

. a System (or teacher) which returns an output value
y for every input vector x according to the fixed
conditional distribution P ðyjxÞ, which is also
unknown;

. a Learning Machine, which is capable of implement-
ing a set of approximating functions fðx; !Þ, ! 2 �,
where � is a set of parameters of an arbitrary nature.

The goal of learning is to select a function (from this set),
which approximates best the System’s response. Many
problems in computer vision can be formally stated as the
problem of real-valued function estimation from noisy
samples. This problem is known in statistics as (nonlinear)
regression. In the regression formulation, the goal of learning
is to estimate an unknown (target) function gðxÞ in the
relationship: y ¼ gðxÞ þ ", where the randomerror " (noise) is
zeromean,x is a d-dimensional vector andy is a scalar output.
A learning method (or estimation procedure) selects the
“best” model fðx; !0Þ from a set of (parameterized) approx-
imating functions (or possible models) fðx; !Þ specified a
priori, where the quality of an approximation is measured by
the loss or discrepancymeasureLðy; fðx; !ÞÞ. A common loss

function for regression is the squared error. Thus, learning is
the problem of finding the function fðx; !0Þ (regressor) that
minimizes the prediction risk functional

Rð!Þ ¼
Z

ðy� fðx; !ÞÞ2pðx; yÞdxdy

using only the training data ðxi; yiÞ; i ¼ 1; . . . ; n, generated
according to some (unknown) joint probability density
function (pdf) pðx; yÞ ¼ pðxÞpðyjxÞ. Prediction risk func-
tional measures the accuracy of the learning method’s
predictions of the unknown target function gðxÞ.

The standard formulation of the learning problem (as
defined above) amounts to function estimation, i.e., select-
ing the “best” function from a set of admissible functions
fðx; !Þ. Here, the “best” function (model) is the one
minimizing the prediction risk. The problem is ill-posed
since the prediction risk functional is unknown (by
definition). Most learning methods implement the idea
known as “empirical risk minimization” (ERM), which is
choosing the model minimizing the empirical risk, or the
average loss for the training data:

Rempð!Þ ¼
1

n

X

n

k¼1

ðyk � fðxk; !ÞÞ2: ð1Þ

The ERM approach is only appropriate under parametric
settings, i.e., when the parametric form of unknown
dependency is known. Under such a (parametric) approach
the unknown dependency is assumed to belong to a narrow
class of functions (specified by a given parametric form). In
most practical applications, parametric assumptions do not
hold true, and the unknown dependency is estimated in a
wide class of possible models of varying complexity. Since
the goal of learning is to obtain a model providing minimal
prediction risk, it is achieved by choosing a model of
optimal complexity corresponding to smallest prediction
(generalization) error for future data. Existing provisions
for model complexity control include [24], [9]: penalization
(regularization), weight decay (in neural networks), para-
meter (weight) initialization (in neural network training),
and various greedy procedures (also known as constructive,
growing, or pruning methods).

Classical methods for model selection are based on
asymptotic results for linear models. Recent approaches [3],
[14], [18] basedonapproximation theoryextendclassical rate-
of-convergence results to nonlinear models (such as multi-
layer perceptrons); they are, however, still based on asymp-
totic assumptions. Nonasymptotic (guaranteed) bounds on
the prediction risk for finite-sample settings have been
proposed in VC-theory [29]. We also point out that all
approximation theory results are aimed at deriving accurate
estimatesofrisksince thegoalof (prediction)riskestimationis
equivalent tocomplexity controlwhen thenumberof samples
is large (i.e., asymptotic case). However, there is a subtle but
important difference between the goal of accurate estimation
of prediction risk and using those estimates for model
complexity control with finite samples. That is, a model
selection criterion can provide poor estimates of prediction
risk,yet thedifferencesbetween its riskestimates (formodelsof
different complexity)mayyieldaccuratemodel selection [10].

There are two general approaches for estimating predic-
tion risk for regression problems with finite data: analytical
anddata-driven.Analyticalmethodsuseanalytic estimatesof
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the prediction risk as a function of the empirical risk (training
error) penalized (adjusted) by some measure of model
complexity. Once an accurate estimate of the prediction risk
is found, it can be used for model selection by choosing the
model complexity that minimizes the estimated prediction
risk. In the statistical literature, various analytic prediction
risk estimates have been proposed for model selection (for
linear regression). These estimates take the form of:

Rest ¼ r
d

n

� �

1

n

X

n

i¼1

ðyi � ŷyiÞ2; ð2Þ

where r is a monotonically increasing function of the ratio of
model complexity d (the number of degrees of freedom) and
the training sample size n. r is often called a penalization
factor because it inflates the average residual sum of squares
for increasingly complex models.

SLT provides analytic upper bounds on the prediction
risk that can be used for model selection [29], [30]. To make
practical use of such bounds for model selection, practical
values for theoretical constants involved have to be chosen
[9], [10]; this results in the penalization factor, rðp; nÞ, called
the Vapnik’s measure (vm):

rðp; nÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� p ln pþ lnn

2n

r

 !�1

þ
; ð3Þ

where p ¼ h=n, h denotes the VC-dimension of a model and
ð�Þþ ¼ 0, for x < 0. In SLT, Restð!Þ is obtained by substiting
rðp; nÞ for rðd=nÞ in (2). For linear estimators withm degrees
of freedom, the VC-dimension is h ¼ mþ 1. For a given
training data set, selection of the “best” model from several
parametric models corresponds to choosing the model
providing minimum bound on prediction risk (2), with a
penalization factor given by (3).

3 MOTION ESTIMATION

The estimation ofmotion from image sequences is “a difficult
problem that involves pooling noisy measurements to make
reliableestimates;” furthermore,motionestimation“assumes
somemodel of the image variationwithin a region” [6]. Early
attempts at robust (optical flow) motion estimation involved
least-squares regression followed by outlier detection and
rejection, and then reestimation of the motion for the
remaining pixels [4] using robust statistical techniques (M-
estimators) known for their lowbreakdownpoint to compute
a dominant motion while downweighting the outliers.

Much of computer vision, including motion, registration,
segmentation, and stereo, calls for optimal estimation using
linear and nonlinear (penalized) regression. In motion
analysis, regression models are often used in two different
contexts, i.e., interpolation or extrapolation, as explained
next. The regression problem involved in motion estimation
has a “training” set of examples, i.e., input vectors xi along
with corresponding targets yi, which put in correspondence
similar image locations, drawn from two consecutive frames
sampled at time t and tþ 1, respectively, or several con-
secutive frames fromavideo sequence.Using the training set,
one seeks to learnhow tomodel thedependencyof the targets
(“dependent variables”) on the inputs (“independent vari-
ables”). The objective is to make accurate predictions on
image points available but not included in the training set, or

on image points not yet seen from future frames; this
corresponds to interpolation and extrapolation, respectively.

We consider a short “real image sequence” and a long
“synthetic image sequence” both involving approximately
constant motion for the purpose of motion estimation.
Ground truth is available only for the synthetic image
sequences. The real image sequence is inherently noisy
and no ground truth is available. In the case of small
image displacements, we generate data fxi; yig for regres-
sion using normal flow computation (see Section 3.1); for
large displacements, i.e., the synthetic image sequence, the
image correspondences and ground truth are given.
Model fitting for each of a set of admissible models is
done using the LS estimation (see Section 3.2). Section 3.3
details how to choose the optimal model using VC-based
complexity control.

Note that the goal here is not to suggest novel motion
analysis models, but rather to choose, based on finite and
noisy data, an optimal model that would yield minimum
error for future inputs (i.e., minimum prediction risk).
Under motion analysis setting, we use model selection
criteria in order to select “correct” motion model from
several possible motion models, where the parametric
motion models are known to contain the true motion
model. This setting is much simpler than the general
problem of model selection [9], where the set of possible
models may not contain the true model.

3.1 Normal Flow

Normal flow computation [2], [12] provides the training
data needed for model selection and model fitting, i.e.,
parameter estimation. Let~ii and~jj be the unit vectors in the x
and y directions, respectively; �~rr ¼~ii�xþ~jj�y is the projected
displacement field at the point ~rr ¼ x~iiþ y~jj. If we choose a
unit direction vector ~nnr ¼ nx

~iiþ ny
~jj at the image point~rr and

call it the normal direction, then the normal displacement
field at ~rr is �~rrn ¼ ð�~rr � ~nnrÞ~nnr ¼ ðnx�xþ ny�yÞ~nnr. The normal
direction ~nnr can be chosen in various ways; the usual
choice is the direction of the image intensity gradient
~nnr ¼ rI=krIk. Note that the normal displacement field
along an edge is orthogonal to the edge direction. Thus, if at
time t we observe an edge element at position ~rr, the
apparent position of that edge element at time tþ�twill be
~rrþ�t�~rrn. This is a consequence of the well-known aperture
problem (see Section 6). We base our method of estimating
the normal displacement field on this observation.

For an image frame (say collected at time t), we find edges
usingan implementationof theCannyedgedetector. For each
edgeelement, sayat~rr,we resample the image locally toobtain
a small window with its rows parallel to the image gradient
direction ~nnr ¼ rI=krIk. For the next image frame (collected
at time t0 þ�t), we create a largerwindow, typically twice as
large as themaximumexpected value of themagnitude of the
normal displacement field. We then slide the first (smaller)
window along the second (larger) window and compute the
difference between the image intensities. The zero of the
resulting function is at distance un from the origin of the
second window; note that the image gradient in the second
window at the positions close to un must be positive. Our
estimate of the normal displacement field is then�un, andwe
call it the normal flow. A real color image sequence used in
our experiments is shown in Fig. 1. The corresponding
normal flow is shown in Fig. 2.
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3.2 Parameter Estimation

A hierarchy of parametric flow models has been developed
in the past starting from pure translation, image plane
rotation, 2D affine, and 2D homography (8-parameter flow,
also known as quadratic flow). We will consider all those
models here. Eight-parameter flow corresponds to the
instantaneous projected image motion field generated by a
moving plane. Other models used here can be obtained by
setting some of the eight parameters to zero. In the 8-
parameter model, coordinates of a point ðx; yÞ in the first
frame will move to ðx0; y0Þ in the next frame:

x0

y0

� �

¼ w1

w4

� �

þ w2 w3

w5 w6

� �

x
y

� �

þ x2 xy
xy y2

� �

w7

w8

� �

:

ð4Þ
Equation (4) relates corresponding points in successive
image frames. To obtain the displacement ~uuðx; yÞ ¼ ð�x �yÞT
of ðx; yÞ we subtract ðx yÞT from both sides of (4). The left-
hand side of (4) is replaced by ð�x �yÞT and on the right-
hand side w2 and w6 get replaced by w1

2
¼ w2 � 1 and

w1
6
¼ w6 � 1. We obtain

�x
�y

� �

¼ w1

w4

� �

þ w1
2

w3

w5 w1
6

� �

x
y

� �

þ x2 xy
xy y2

� �

w7

w8

� �

:

ð5Þ

The normal displacement field at ðx; yÞ is given by

unðx; yÞ ¼ �~rrn � ~nnr ¼ nx�xþ ny�y ¼ w1nx þ w1

2
xnx

þ w3ynx þ w7x
2nx þ w8xynx þ w4ny þ w5xny

þ w1

6
yny þ w7xyny þ w8y

2ny ¼ w � p;
where ~nnr ¼ nx

~iiþ ny
~jj is the gradient direction,

p ¼ ðnx xnx ynx ny xny yny x2nx þ xyny xynx þ y2nyÞT ;
and w ¼ ðw1 w1

2
w3 w4 w5 w1

6
w7 w8ÞT is the vector of

parameters.
Weuse themethoddescribed in Section 3.1 to compute the

normal flow. For each edge point~rri, we have one normal flow
value un;i, that we use as an estimate of the normal
displacement at the point, a vector pi computed from ðxi; yiÞ
and ~nnr;i ¼ nx;i

~iiþ ny;i
~jj, and an approximate equation

w � pi � un;i. Let the number of edge points be N � 8. We
needtofindasolutionofPw� b ¼ e,whereb isanN-element
vectorwith elementsun;i,P is anN � 8parametermatrixwith
rowspi, ande is anN-element errorvector.Weseek themodel
w that minimizes kek ¼ kb� Pwk; the solution satisfies the
system P TPw ¼ P Tb and corresponds to the linear least
squares (LS) solution. Model fitting for large image displace-
mentssampledfromthesynthetic imagesequenceisalsodone
using the LS as described above.

3.3 Model Selection

Trainingdata consists of normal flowor point displacements.
Affine and quadratic models are responsible for data
generation. The motion estimation (learning) problem corre-
sponds to choosing the best motionmodel from a given set of
possiblemotions using the observed (training) data. The goal
is to choose a model that will yield the lowest error at the
image points not used in training. In this section, we combine
the SLT regression (see Section 2) and motion estimation
techniques described in the preceding sections to choose a
flow model that has the best predictive performance.

We use the square loss function—i.e., the squared
difference RempðwmÞ ¼ 1

n

PN
i¼1

ðun;i � um
n;iÞ

2 between the com-
puted normal flow un;i and the predicted normal flow
umn;i ¼ wm � pi, where wm corresponds to the estimated
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Fig. 1. Frames 2, 4, 6, 8, 10, and 12 from a 13-frame sequence of a moving arm.

Fig. 2. Normal flow computed from pairs of frames 2-3, 4-5, 7-8, and 10-11 of the moving arm sequence.



model. The task of model selection corresponds to choosing
the best predictive model from a given set of linear
parametric models, using a small set of noisy training data.
We use VC-generalization bounds (see (2) and (3)). The
VC-dimension h of a linear model is given by the number of
degrees of freedom (DoF) of the model plus one. We choose
from the following five models that we obtain by setting
various elements of w in (5) to zero:

. [M1:] pure translation, w1
2
¼ w3 ¼ w5 ¼ w1

6
¼ w7 ¼ w8

¼ 0, 2 DoF, h ¼ 3.
. [M2:] translation, shear, and rotation, w1

2
¼ w1

6
¼ w7 ¼

w8 ¼ 0, 4 DoF, h ¼ 5.
. [M3:] translation and scaling, w3 ¼ w5 ¼ w7 ¼ w8 ¼ 0,

4 DoF, h ¼ 5.
. [M4:] 6-parameter affine, w7 ¼ w8 ¼ 0, 6 DoF, h ¼ 7.
. [M5:] full affine, quadratic flow, 8 DoF, h ¼ 9.

The next two sections present the results of experiments
using both synthetic and real image sequences for motion
interpolation and extrapolation. These results demonstrate
the feasibility and the strengths of our approach. The
experiments assume single (spatially and temporally
coherent) motions for all data sets. The same parameter
values apply to all frames of each data set.

4 EXPERIMENTAL RESULTS FOR SYNTHETIC IMAGE

SEQUENCES

We generated a synthetic “first moving square” image
sequence consisting of 11 frames (see Figs. 3a and 3c); the
square consists of 128 pixels. A corresponding “noisy”
sequence was created by adding Gaussian noise with mean
0 and variance 0.5 (see Figs. 3b and 3d). The ground truth
corresponds to the affine transformation model M4 (see (4)
and Section 3.3):

x0

y0

� �

¼ 2:699308
�2:4648887

� �

þ 0:991562 0:129631
�0:129631 0:991562

� �

x
y

� �

:

The other motion models considered are: M1, pure
translation, w2 ¼ w6 ¼ 1, w3 ¼ w5 ¼ w7 ¼ w8 ¼ 0; M2, trans-
lation and scaling, w3 ¼ w5 ¼ w7 ¼ w8 ¼ 0; M3, translation,
shear, and rotation, w2 ¼ w6 ¼ 1, w7 ¼ w8 ¼ 0; and M5,
quadratic model.

The parameters wi have qualitative interpretations in
terms of image motion. For example, w1 and w4 represent
horizontal and vertical translation, respectively. Addition-
ally, it is possible to express divergence (isotropic expan-
sion), curl (rotation about the viewing direction), and
deformation (squashing or stretching) as combinations of
the wis, while the parameters w7 and w8 roughly represent
the yaw and pitch deformations in the image plane. (Similar
qualitative interpretation for the affine optical flow model is
possible in terms of rotation, translation, scale, and skew.)
Black et al. [5] point out that, for small regions of human
body images such as eyes and fingers, the quadratic model
may not be necessary and the motion of these regions can be
approximated by the simpler affine model defined earlier in
which the terms w7 and w8 are zero.

For interpolation experiments, we randomly subsample
n ¼ 32 or 64 pixel correspondences (out of 128) from
10 successive pairs of frames ð< i; iþ 1 >; i ¼ 1 . . . 10Þ, and

estimate the parameters for each of the motion models using
LS (see Section 3.2). Note that estimation is done indepen-
dently for the x and y coordinates. As a consequence, the VC-
dim h for M1, M2, M3, M4, and M5 is now 2, 3, 3, 4, and 5,
respectively.Theboundonrisk (see (2)and(3)) foreachmodel
is derived using the LS error and the penalty vm (3). The
corresponding (toeachmodel) interpolating total error (forall
frame pairs) is calculated using all the 128 points and the
ground truth information. Note that the total error is an
estimate of (unknown) prediction risk in the VC-theoretical
formulation. The experiment is repeated 100 times with
different random realizations of training data, for both
nonnoisy and noisy image sequences. The average interpo-
lated sequences are shown in Fig. 3. The box plots (see Fig. 4)
summarizing the empirical risk, the boundonprediction risk,
andthe totalerroracross thewholesequence, forn ¼ 32, show
that the bound on prediction risk can be used for model
selection for both non-noisy and noisy sequences. Note that
the bound on prediction risk is a better predictor than the
empiricalrisk.Theempiricalrisk, theboundonpredictionrisk
and (total) interpolation error for M3 are too large to be
displayed. Ground truth M4 is consistently found as the
optimal motion model; its interpolation error is minimum.
The quadratic model M5 is a very close runner-up to M4.
Similar results were obtained for experiments with n ¼ 64.

For extrapolation (“tracking”) experiments, we randomly
subsample n ¼ 32 or 64 pixel correspondences (out of a
stack of 5� 128 correspondences) from the first five pairs of
frames ð< i; iþ 1 >; i ¼ 1 . . . 5Þ, and estimate the para-
meters for each of the models using LS (see Section 3.2).
Note that the data available for extrapolation is much less
than the data available for the interpolation experiment.
Here again, estimation is done independently for the x and y
coordinates. As a consequence, the VC-dim h for M1, M2,
M3, M4, and M5 is now 2, 3, 3, 4, and 5, respectively. The
bound on risk for each model is derived using the LS error
and the penalty vm (3). The corresponding extrapolating
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Fig. 3. Motion interpolation results for a noise-free (a) and a noisy
sequence (b). Motion extrapolation results for a noise-free (c) and a
noisy sequence (d). The pixels corresponding to the ground truth (M4)
and the average estimated positions are shown.



error for the remaining frames is calculated using the
ground truth data starting from image frame 6. The
experiment is repeated 300 times with different random
realizations of training data for nonnoisy and noisy image
sequences. The average extrapolated sequences are shown
in Fig. 3. Fig. 5 shows the bound on prediction risk for each
motion model, while Tables 1 and 2 show the median
extrapolation error for each of the remaining five image
frames for all models. It can be seen that the bound on
prediction risk yields good model selection. The bound on
prediction risk for M3 is too large to be displayed. Ground
truth M4 is found as the optimal model for motion tracking
and its extrapolated error is minimum. The quadratic model
M5 is again a very close runner-up to the ground truth.
Similar results were obtained for experiments with n ¼ 64. It
can be seen from Tables 1 and 2 that the second ranked
model, M5, can keep track with the optimal model M4 only
for the first two extrapolated frames (6 and 7).

In the next experiment, we generate a “first moving
square” synthetic image sequence consisting of 11 frames.
To create the corresponding noisy sequence, we add

Gaussian noise (the mean 0 and the variance 0.5). The
motion is a quadratic transformation—M5, with the center
of the square as a reference point—given by

x0

y0

� �

¼
4:386585

4:983113

� �

þ
0:965926 0:258819

�0:258819 0:965926

� �

x

y

� �

þ x2 xy

xy y2

� �

0:002140

0:006435

� �

:

For interpolation experiments, we randomly subsample
n ¼ 32 or 64 pixel correspondences (out of 128) from
10 successive pairs of frames ð< i; iþ 1 >; i ¼ 1 . . . 10Þ,
and estimate the parameters of the motion models using
LS (see Section 3.2). The bound on prediction risk for each
model is derived using the LS error and the penalty vm (3).
The corresponding (to each model) interpolating error (for
all pair wise frames) is calculated using all the 128 points
and the ground truth information. The experiment is
repeated 100 times with different random realizations of
training data. The box plots summarizing the empirical risk,
bound on prediction risk, and total error for the sequence
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Fig. 4. Summary of interpolation results for the “first moving square” sequence, n ¼ 32. The ground truth motion model is M4. Left to right: empirical
risk, bound on prediction risk, and interpolation error. Top row: nonnoisy sequence. Bottom row: noisy sequence.

Fig. 5. Bounds on prediction risk for the “first moving square” sequence, n ¼ 32. The ground truth motion model is M4. (a) Nonnoisy sequence. (b)
Noisy sequence.



(see Fig. 6) show that the bound on prediction risk can be
used for model selection in motion estimation for both
nonnoisy and noisy image sequences. The empirical risk,
bound on prediction risk, and interpolation error for M3 are
too large to be displayed. The ground truth model, M5, is
consistently found as the optimal motion model; its
interpolation error is minimum. Similar results to those
shown in Fig. 6 were obtained for n ¼ 64.

For extrapolation (“tracking”) purposes we randomly
subsample n ¼ 32 or 64 pixel correspondences (out of a stack
of 5� 128 correspondences) from ð< i; iþ 1 >; i ¼ 1 . . . 5Þ,
and estimate the parameters for each of the models using LS
(see Section 3.2).Note that thedata available for extrapolation
is much less than the data available for the interpolation
experiment. The corresponding extrapolation error for the
remaining frames is calculated using the ground truth data
starting from frame 6. The experiment is repeated 300 times

with different random realizations of training data. Fig. 7
shows the bound on prediction risk for each motion model.
Tables 3and4showthemedianextrapolation error for eachof
the remaining five image frames for all models. It can be seen
that theboundonprediction riskyieldsgoodmodel selection.
The bound on prediction risk for M3 is too large to be
displayed.Theground truthM5 is foundas theoptimalmodel
for motion tracking and its extrapolation error is minimum.
Similar results were obtained for experiments with n ¼ 64.

As could be expected, for synthetic image sequences, both
the bound on prediction risk and the interpolation and
extrapolation errors, were consistently decreasing as we
increased the number of sample points from 16 to 128 (see
Fig. 8). Note that the bound on prediction risk for the ground
truth model is consistently lower than the bound on
prediction risk for the next best model. Similar results for
both interpolation and extrapolation were obtained if the
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TABLE 1
Median Extrapolation Error for the Nonnoisy Sequence, n ¼ 32,

the Ground Truth is M4

TABLE 2
Median Extrapolation Error for the Noisy Sequence, n ¼ 32,

the Ground Truth is M4

Fig. 6. Summary of interpolation results for the “first moving square” sequence, n ¼ 32. The ground truth motion model is M5. Left to right: empirical
risk, bound on prediction risk, and interpolation error. Top row: nonnoisy sequence. Bottom row: noisy sequence.



samples were selected randomly across all the training
frames, which we label as the “whole” interpolation or
extrapolation, rather than the “standard” interpolation using
random sampling from successive pairs of frames and then
pooling the data together.

4.1 Comparative Analysis of Model Selection
Criteria

Various analytic prediction risk estimates have been
proposed in the statistical literature for model selection (2)
using the observed empirical risk and penalization factor r.
We performed a comparative analysis of model selection
criteria for different classical forms of penalization factor
rðpÞ ¼ r d

n

� �

(2), which have been proposed in the statistical
literature. These penalization factors are listed below and
compared to the Vapnik measure vm (3).

. Final prediction error (fpe) [1]: rðpÞ¼ð1þpÞð1�pÞ�1.

. Schwartz’s criterion (sc) [27]: rðp; nÞ¼1þlnn
2
pð1�pÞ�1.

. Generalized cross-validation (gcv) [11]: rðpÞ¼ð1�pÞ�1.

. Shibata’s model selector (sms) [26]: rðpÞ ¼ 1þ 2p.

Note that, in this experiment, all model selection criteria
require two regressions. All these classical approaches are
motivated by asymptotic arguments for linear models and,
therefore, apply well for large training sets. In fact, for large
n, prediction estimates provided by fpe, gcv, and sms are
asymptotically equivalent. The penalization factor r inflates

the average residual sum of squares for increasingly
complex models. Note in particular that the fpe risk follows
from general Akaike Information Criterion (AIC) when the
noise variance is estimated via empirical risk for each
chosen model complexity [9]. AIC is derived under a very
restrictive setting such as asymptotic linear models and
known noise model. AIC does not indicate how to estimate
the noise model, which is required for model selection and
is assumed to be known.

Our experimental results show that the Vapnik measure
compares favorably against alternative model selection
methods, regarding the confidence they offer in model
selection for motion estimation (see Table 5). The results
shown in the table are for standard interpolation, whole
interpolation, and standard extrapolation. The entries show
the percentage of time that each model selection criteria is
accurate in its predictions. Please note that Table 5 is about
choosing the right model rather than measuring the
prediction error. Recall that the goal for VC-theory is to
select the model providing the best prediction accuracy
rather than selecting the correct model. Hence, it is possible
that the VC-based model selection approach may select the
“wrong” model providing the best generalization (predic-
tion) accuracy [9], [10]. For example, Cherkassky and Mulier
[9, pp. 28-29] provide experimental evidence from an
experiment where a simpler linear decision rule, which does
not match the underlying class distributions, often performs
better than the ground truth quadratic decision rule.
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TABLE 3
Median Extrapolation Error for the Nonnoisy Sequence, n ¼ 32,

the Ground Truth is M5

TABLE 4
Median Extrapolation Error for the Noisy Sequence, n ¼ 32,

the Ground Truth is M5

Fig. 7. Bounds on prediction risk for the “first moving square” sequence, n ¼ 32. The ground truth motion model is M5. (a) Nonnoisy sequence.

(b) Noisy sequence.



5 EXPERIMENTAL RESULTS FOR REAL IMAGE

SEQUENCES

Training data comes from eleven frames drawn from a real
image sequence of a moving arm and the corresponding
normal flow (see Figs. 1 and 2). We report the results
obtained for both interpolation and extrapolation (using (5)
and in Section 3.3). The ground truth is not known and the
images are inherently noisy. In the interpolation experi-
ment, we randomly subsampled 25 percent of image flow
values (out of approximately 400 points); the experiment is
repeated 100 times with different random realizations of
training data. Training data is drawn from two frame pairs:
ði; iþ 1Þ and ðiþ 2; iþ 3Þ; interpolation is performed for

frames ðiþ 1; iþ 2Þ. Fig 9 summarizes the prediction risk

and interpolation error for the whole experiment. The

prediction risk ranks the motion models so that its optimal

choice, M2, yields the minimum total interpolation error.
In the extrapolation experiment we randomly sub-

sampled 10 percent of image flow values (out of

approximately 400 points); the experiment is repeated

100 times with different random realizations of training

data. Training data was drawn from the first five pairs of

frames: ði; iþ 1Þ starting with i ¼ 1. Extrapolation is

performed for the remaining five frames of the sequence.

Fig. 10 summarizes the prediction risk and extrapolation

error for the whole experiment. The prediction risk ranks
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Fig. 8.Boundsonprediction risk asa functionof numberof samples for anonnoisy (a) andanoisy sequence (b). Theground truthmodels areM4 andM5.

TABLE 5
Comparison of Model Selection Criteria on the “First Moving Square” Synthetic Image Sequence



the motion models so that its optimal choice, M2, yields
the minimum total extrapolation error.

To further illustrate the workings of the extrapolation

experiment, Fig. 11 shows predicted position of hand
contours for each of the motion models. The starting hand
contour, the predicted hand contour, and the actual hand
contour after two frames, are displayed using pluses,
triangles, and dots, respectively. It can be seen that the
optimal motion model, M2, predicts the hand contour

closest to the actual hand contour position. Figs. 9 and 10
show that a simple model, M2, explains the data as well as
more complex models. Since the hand moves in a plane, M5

is probably the true model.

6 CONDITION NUMBER AND THE APERTURE

PROBLEM

In Section 3.2, we showed how to estimate the flow
parameters w by solving the LS problem min kPw� bk.
Condition number �2ðP Þ is computed as the ratio of the
largest and the smallest singular values of P :

�2ðP Þ ¼ �maxðP Þ
�minðP Þ : ð6Þ

The sensitivity in estimating w is roughly proportional to

"ð�2ðP Þ þ �LS�
2

2
ðP ÞÞ; ð7Þ

where �LS is the magnitude of the residual of the LS

solution and " ¼ k�bk=kbk is the relative error in b. The
normal flow is computed with subpixel accuracy [12] and
" ¼ Oð0:01Þ. Since, in the examples presented here,

�LS ¼ Oð1Þ, it can be seen that condition numbers greater
than 10 are undesirable. A large condition number typically
corresponds to either inappropriate scaling of columns of P
or to the aperture problem.

Scaling of columns P is handled as follows: When the
columns of P have different scales the problem can be fixed
by scaling the columns before solving the LS problem. The
original problem is replaced by minfkðPGÞy� bkg. G is
chosen to be a diagonal matrix whose elements are
kP ð:; iÞk�1, where P ð:; iÞ is the ith column of P . If the
matrix PG is well conditioned, y is estimated using the
LS method and w ¼ Gy is computed. In the experiments
with a moving forearm (see Figs. 1 and 2 and Section 5),
typical values of �2ðP Þ are in the range of 1 to 2 for M1, in
the range of 30 to 40 for M2 and M3, in the range of 40 to 50
for M4, and in the range of 3,000 to 4,000 for M5. Scaling
brings all these condition numbers below 5, i.e., �2ðPGÞ < 5.
This scaling procedure has been implemented and used for
the experiments using real image sequences (see Section 5).

When the condition number after scaling, �2ðP Þ, is still too
large, it can be said that the data is not appropriate for the
parameter estimation due to the aperture problem [28]. Note
that theapertureproblemrefers to the fact that the flowcannot
be estimated from the given normal flow due to the
inappropriate distribution of feature points. This distribution
is reflected in thedatamatrixP . In this case, the solution is not
provided by standard LS. The problem has to be solved by
minimizing the penalized risk functional

RpenðyÞ ¼
1

n
ðkðPGÞy� bk2 þ yT

�yÞ; ð8Þ

where � is a symmetric and nonnegative definite penalty
matrix [9]. A reasonable choice of the penalty term is the
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Fig. 9. Interpolation results for the moving arm sequence. (a) Bounds on prediction risk. (b) Average square error.

Fig. 10. Extrapolation results for the moving arm sequence. (a) Prediction risk. (b) Square error.



ridge regression penalty function � ¼ �I, where I is an

identity matrix [15]. Solving the following modified least

squares problem minimizes RpenðyÞ (8):

. Create the modified data matrices

U ¼ PG
ffiffiffi

�
p

I

� �

; v ¼ p

0

� �

;

where 0 is a column vector of zeroes.
. Minimize the empirical risk functional Remp ¼

1

n kUy� vk. The minimization is done by solving
for y by LS method. Finally, compute w ¼ Gy.

. Compute the effective DoF for the penalized

problem as DoF ¼Pm
i¼1

�2i
�2iþ�

, where �i are the

singular values of PG.

� is chosen to make �2ðP Þ small. For illustration
purposes, experiments with �2ðUÞ ¼ 10 and �2ðUÞ ¼ 100

were performed for the example shown in Fig. 12. The data
comes from a small region along the arm shown in Figs. 1
and 2. In this example, the models M1, M2, and M3 have
small values of the condition numbers of the PG matrices.
The condition numbers of data matrices PG for both M4

and M5, however, are very large ð> 1016Þ and their effective
ranks are 5 and 7, respectively. The estimated empirical
risk for models M1 �M5 are ð0:552; 0:015; 0:3; 0:0139617;
0:0131344Þ and the corresponding prediction risks are
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Fig. 11. Tracking results for the real image sequence. Left to right and top to bottom are shown the extrapolation results forM1,M2,M3,M4, andM5.
Each figure shows starting hand contour, predicted hand contour after two frames, and actual hand contour after two frames.



ð1:364; 0:049; 0:978; 0:059; 0:072Þ. Note that, based on (2) and
(3), M2 would be chosen. However, if there were more
feature points, either M4 or M5 could have been chosen
since they have smaller empirical risk values than the other
models; since they are poorly conditioned, however,
penalized solutions have to be used. (Note that the
penalization factor is heavy for small numbers of feature
points.) The relevant results are as follows. In the case of
the affine model M4, the penalization coefficients � ¼
ð0:017; 0:17Þ result in condition numbers ð100; 10Þ, empirical
risk values ð0:0139622; 0:0190552Þ, effective DoF values
ð4:9969; 4:7258Þ, and prediction risk values ð0:052; 0:068Þ.
The effective DoF are a crude estimate of the VC-
dimension. It can be seen that the larger the penalization
term, the more bias is introduced. In the case of the
quadratic model (M5), the penalization coefficients � ¼
ð0:020; 0:203Þ result in condition numbers ð100; 10Þ, empiri-
cal risk values ð0:0131595; 0:022909Þ, effective DoF values
ð6:1726; 5:2896Þ, and prediction risk values ð0:057; 0:088Þ.
Note that, for small penalization factors, the empirical risk
goes up slightly, but the prediction risk goes down due to
the lowered effective DoF.

Note that the bound on the prediction risk will be very
high for higher order models. The model choices are biased
toward lower order models rather than zero velocity
motion. Zero velocity motion results only from LS para-
meter estimation errors. Lack of data, which is characteristic
of the aperture problem, biases the choice involved towards
selecting lower order models.

7 CONCLUSIONS

This paper describes a novel application of Statistical
Learning Theory to optimal model selection, with applica-
tions to single motion estimation and tracking from small
data sets of imagemeasurements (flow). This is accomplished
without using restrictive assumptions such as asymptotic
settings and/or Gaussian noise. The experimental results,
using both synthetic and real image sequences, demonstrate
the feasibility and strengths of our approach for motion
model selection using SLT. Our experimental results also
show that our approach compares favorably against alter-
native model selection methods regarding the confidence
they offer onmotion estimation. The paper also showshow to
address the aperture problem using SLT-based model
selection under penalized regression formulation.

In practical computer vision applications, one is likely to
encounter two modifications of the basic formulation for
model selection and motion estimation used in this paper.
Namely, the type of motion can change (at some unknown
time moments)—this is known as temporal partitioning

problem. Also, different portions of an image may undergo

different types of motion—this is known as spatial partition-

ing problem. Here, the nature of the learning problem

changes since the primary goal of learning/estimation

becomes to partition the data into two subsets: inlier samples

that will be used for estimating motion parameters and

outlier samples that will be ignored or downplayed. We are

presently working on those problems using methodological

aspects of SLT, in general, and robust Support Vector

Machines (SVM) regression, in particular.
Another aspect relevant to many CV applications—i.e.,

motion analysis—and presently under investigation is the

need to identify/estimate several motions from a given data

set. In this case, the goal of robust learning is to estimate

different models for each appropriately chosen subset of the

originaldataset.Theresultingproblemof robustmultiplemodel

estimation is intrinsically more difficult than the standard

problemof singlemodel estimation since the former involves

simultaneous partitioning of the original data into several

subsets and estimating amodel (structure) for each subset.
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