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Abstruct-Zstimating the three-dimensional motion of an object 
from a sequence of projections is of paramount importance 
in a variety of applications in control and robotics, such as 
autonomous navigation, manipulation, servo, tracking, docking, 
planning, and surveillance. Although “visual motion estimation” 
is an old problem (the first formulations date back to the be- 
ginning of the century), only recently have tools from nonlinear 
systems estimation theory hinted at acceptable solutions. 

In this paper we formulate the visual motion estimation lprob- 
lem in terms of identification of nonlinear implicit systems with 
parameters on a topological manifold and propose a dynamic 
solution either in the local coordinates or in the embedding space 
of the parameter manifold. Such a formulation has structural 
advantages over previous recursive schemes, since the estimation 
of motion is decoupled from the estimation of the structure of 
the object being viewed, and therefore it is possible to handle 
occlusions in a principled way. 

I. INTRODUC~ON 

NDERSTANDING the geometry and kinematics of the U envizonment is a basic requirement for humans to suc- 

cessfully accomplish tasks such as walking, driving, and 

recognizing and grasping objects, It has been one of the 

principal goals of artificial intelligence, starting from the early 

1970’s, to build machines that recognize the shape and motion 
of objects within the environment. The goal is far from being 
reached and, indeed, it opens a new and exciting avenue of 
research in nonlinear systems theory. 

Although the first formulations of the visual motion estima- 
tion problem date back to the beginning of the century [31], 
[77], only within recent years have tools from control and esti- 
mation theory been applied 131, [8], [9], [28], [291, [351, 1521, 

[56], [60], [66] with rather encouraging results in traditionally 
difficult applications, such as autonomous vehicle navigation 

[18]-[20], vision-based tracking and servo [12], 1211, 1421, 

[44], vision-based manipulation [SI, [21], [42], docking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 191, 
[37], vision-based planning [ 141, and active sensing [69]. 

As the reliability and the performance of the algorithms 
improves, vision starts being acknowledged in the automatic 
control community as a powerful and versatile sensor to mea- 
sure motion, position, and structure of the environment, and 
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the appropriate tools from nonlinear estimationhdentification 

theory start being exploited [161, [301, 1-59], [601. The imple- 

mentation of sophisticated vision algorithms running in real 

time is not too far from becoming reality and, due also to the 

evolution of computer hardware, vision will be soon included 
“in the loop” of many control systems. 

“Vision in the loop” raises new and interesting problems of 
system theoretic flavor, ranging from distributed filtering and 

processing of large amounts of sensory data to the analysis 

and control of new classes of dynamical systems. Crucial 

issues in the use of vision as a sensor in control systems 

are, for example, nonlinear observability and identifiability in 

a projective geometric framework as well as estimation and 
control on peculiar topological manifolds. 

In this paper we will be mainly concerned with the “visual 
motion estimation” problem: Given a sequence of images 
taken from a moving camera, reconstruct the relative three- 
dimensional (3-D) motion between the camera and the envi- 
ronment (or scene). 

Since our goal is that of posing the visual motion estimation 

problem within a system-theoretical framework, we nced to 

specify a “description” of the environment and of the motion 

of the viewer. We will restrict our attention to “static” scenes 

or, equivalently, to portions of it which are moving rigidly 
relative to the viewer. 

The existing methods for motion estimation may be classi- 
fied, depending on the scene descriptors employed, as point- 
based, line-based, curve-based, or model-based. We will focus 

on the simplest case when the scene is described by a number 
of point-features in the Euclidean 3-D space. For line-based 

schemes, see [72] and [81] and the references therein. The 

curve-based approach has been addressed in [2], [13], and [71]. 

The point-based methods may be further classified in terms 
of the camera model in question. The simplest cases assume 

either parallel projection [581, [73]-[75] or ideal perspective 
projection (pinhole model, see [23]). More articulated camera 
models in terms of projective transformations allow parallel 

and perspective projection as a subcase [3], 1251, [61], [701. 
We will be concerned mainly with the classical pinhole model; 

however, our schemes generalize to other camera representa- 

tions and may estimate the camera model along with visual 

motion (camera self-calibration, see 1251 and [611). Other 
schemes recover projective, nonmetric structure, independent 

of the camera parameters [221, [541, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[W. 
Motion reconstruction methods may be further classified 

in terms of the data processing technique as two-frames 
schemes (see for example [38], [49], and [78]), multiframe- 
batch methods [70], [75], or recursive algorithms. 

In the last decade, a variety of schemes has been proposed 
for recursively reconstructing structure for known motion [521, 
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motion for known structure [9], [28], [29], or both structure 

and motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3 ] ,  [35], [%I, [60], [66]. In general, given either 
the relative motion or the shape of the object being viewed, 

the other can be recovered easily since the problem can be 

reduced to a linear estimation task. When neither the motion 

nor the shape of the scene is known, the problem of estimating 

both of them from visual information becomes a remarkably 
difficult one. We find that a crucial step in tackling such 

an estimation task consists in being able to decouple the 

estimation of motion from the estimation of structure. This 

decoupling has dramatic consequences also from the practical 

standpoint, since it allows integrating motion information 

in the presence of occlusions in the image plane, whereas 
previous structure and motion estimation schemes could 
integrate motion information only to the extent in which all 

initial feature points were still visible (as in [3] and [361). 
In this paper we present a framework for estimating rigid 

motion independent of the structure (shape) of the scene. The 

estimates of motion can later be fed to any recursive “structure 

from known motion” module to estimate scene structure [52], 

[56l, [661. 

Organization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Paper 

The next section of this paper has introductory purpose: 
we establish the notation and review some basic concepts in 
the representation of rigid motion. Section II-B describes an 

alternative representation based upon the so-called “essential 
matrices” which were introduced in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[49]. In Section 111, we 
introduce a novel nonlinear implicit dynamical model with 
motion coded as a vector of parameters constrained onto the 

space of essential matrices. 

We show in Section IV how to carry out the identification 

of the model introduced. There we propose two methods, 

one based upon a dynamic model in the local coordinates of 
the parameter manifold and the other based upon a dynamic 

model in its embedding space, projected onto the parameter 
manifold. The formulation makes use of the results contained 

in the appendixes. An alternative iteration for identifying 
the model in local coordinates is described in Appendix A 
and tested in the experimental Section VI. There we discuss 

benchmark experiments that highlight the peculiarity of each 

scheme. Extensive experiments in real-world scenes have been 
conducted by the authors as well as by other researchers 

[7] and show consistent performance in situations where 
previously proposed techniques fail. 

The methods introduced have some degree of generality, as 
a number of other problems in computational vision may be 

cast in the same framework, as discussed in Section V. 

Finally, conclusions are drawn in Section VII. 

11. BACKGROUND AND NOTATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Representation of Rigid Motion 

A transformation g:  IR3 - IR3 of the 3-D Euclidean space 

is a rigid motion if it preserves the Euclidean distance between 
points p ,  and the cross product between vectors q, 

4 P l , P 2 )  = d ( g ( p d , g ( p 2 ) )  VP1,PZ E R3 
9*(41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 2 )  =9*(41)  A 9*(92) Vq1, q2 E TR3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR3 

where g* is the transformation induced on vectors q A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PZ - P I  * g*(q) A g ( p z )  - g(p1)  and TIR3 is the tangent 
space to R3. If we represent the points p z  in coordinates 

X ,  A [Xz Y,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&IT relative to some orthonormal reference 

frame, we may characterize a rigid motion as a translation of 

the origin and a rotation of the reference frame. The matrices 
which represent the change of basis induced by a rotation 

of the reference are orthogonal with unit determinant; such 
matrices form a Lie group of dimension three, called SO(3) 
(special orthogonal group of transformations of R3) [l], [6], 

[68], [76]. We write the action of a rigid motion on IR3 as 

g = (T,R) with T E R3 and R E S 0 ( 3 ) ,  such that 

(1) 

The set of rigid motions has the structure of a Lie group 
of dimension six and is called SE(3)  (special Euclidean 
transformations of R3). It is sometimes useful to embed 
SE(3) in the linear group GC(4) (the general linear group of 

nonsingular 4 x 4 matrices) using homogeneous coordinates 

x [X* 1IT E IR4. Each rigid motion g is then represented 

as a matrix 

g ( X )  = RX + T. 

G = [o R T  I ]  17’ E Et3, R E  SO(3). 

We will use the notation g ( t )  A (T( t ) ,R( t ) )  when empha- 
sizing the time-dependence of g .  The group ophations in 

SE(3) coincide with the group operations of GL(4), so that the 
composition of rigid motions may be represented as a matrix 
multiplication: g1 o g2 = GlG2. The price we pay for such 
a simplification is that we have to embed SE(3) ,  which is a 

six-dimensional manifold, into which has dimension 16. 
The tangent space at the origin of SE(3) has the structure of 

a Lie algebra and is called se(3). Elements of se(3) are called 

“twists” in the robotics literature [55] and may be represented 
in so-called “Plucker coordinates” as 

where V E R3 and 

1-wz w1 0 1 
belongs to the Lie algebra of the skew-symmetric matrices 

so(3) = {SIST = -S} which is isomorphic to R3 via 

R A  H R = [wl w2 w3IT E R3. We will use the same 
symbol v for an element of se(3) and its Plucker coordinates. 
The reader interested in a complete treatment of the concepts 
sketched here may consult for instance [61, [41, E451, 1551, and 

[681. 
The reason why the representation introduced above is 

appealing is that all (compact) one-parameter subgroups of 
a matrix Lie group can be characterized using the exponential 

map. For instance, VIJ E se(3),g(t) = e(wA)t is a one- 

parameter subgroup of SE(3).  An explicit expression for the 
exponential map on SE(3)  is given by 

RA v [:: :] = - p (  0 0 )  
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where 

(2) 

T 7 ( R ) V  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 )  

(4) 

The exponential map may be inverted locally for computing 
V and R from R and T ,  since the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 ( R )  is invertible 
when IlRll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (0 ,w) .  In the case llRll = 0, the exponential map 
is defined simply by 

R & e ( f l A )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 7(n) A -[(I - e(OA))(RA) + ROT]. 

llflll 

R - I  

T = V  

Note that the exponential map, together with the isomorphism 
of so(3) with Et3, gives a local coordinate parameterization of 

SE(3)  which in the robotics literature is called the “canonical” 
(exponential) representation. The Rodrigues’ formulas [55] 
provide a convenient way of computing the exponential map. 

If we consider the composite action of time on the Euclidean 
space through SE(3) ,  we can motivate the characterization of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v A  = gg-’ as “velocity.” Consider a point p which has moved 

between t o  and t according to some motion: p ( t )  = g ( t ) p ( t o ) .  
Then we have 

d ( t )  = j ( t ) p ( t o )  = W g - l ( t ) g ( t ) P ( t o )  = 4 t>  A P ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X ( t )  = R(t )  A X ( t )  + V ( t )  

and, in coordinates 

(7) 

where V and R represent the translational and rotational 
velocities of the viewer’s moving frame [55]. 

B. The “Essential Manifold” 

A rigid motion may be represented as a point in the Lie 

group SE(3) which can be embedded in the linear space 
GL(4) (and hence exploit the matrix product as composition 
rule) and is in local correspondence with Et6 via the exponen- 
tial coordinates and the isomorphism between so(3) and R3, 
as seen in the previous section. We now discuss an alternative 
matrix representation of rigid motion which is more “compact” 
in the sense that it can be embedded in a space of smaller 
dimensions. Such a representation is derived from the so-called 
“essential matrices” introduced by Longuet-Higgins [49]. 

Consider a point g = (T ,  R) E SE(3),  then T A  E so(3) is 

a skew-symmetric matrix. Now define the space of “essential 
matrices” as 

E {SRIR E S0(3) ,  S = (TA)  E so(3)) C (8) 

Clearly the essential space does not inherit the group structure 
from the sum of matrices in since Q1, Q2 E E does not 
imply Q1 + Q2 E E.  One possible way of imposing the group 
structure is by forcing a group morphism with SE(3) ,  for 

which it is necessary to “unfold” T ,  R from Q = (TA)R  E E ,  
perform the group operation on SE(3),  and then collapse 

the result into E. We will see later in this section a way of 
unfolding an essential matrix into its rotation and translation 
components. 

The essential space has many interesting geometrical prop- 
erties: it is an algebraic variety 1531 and a topological manifold 
of dimension six. Later on we will provide a characterization 

of a local coordinate chart. The essential space may also be 

identified with TS0(3 ) ,  the tangent bundle of the rotation 
group, defined as TSO(3) A URESO(3) T ~ s o ( 3 )  1631. 

The following theorem, due to Huang and Faugeras and 
reported by Maybank 1531, gives a simple characterizing 
property of the space of essential matrices. 

Theorem 2.1 (Huang and Faugeras, 1989): Let Q = UC 
VT be the singular value decomposition (SVD) [32] of a 
matrix in Then 

Q E E U C = CO = diag{X X 0)lX E RS 

Pro03 (+) let Q = SRIR E S0(3 ) ,S  E so(S);n(Q), 
the set of singular values of Q, is such that o(Q) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d a .  Next observe that QQT = SST = -S2. Also 

VS E so(3)3!T E R31S = (TA) ,  and the singular values of 
S2 are { ~ ~ T ~ ~ 2 ,  llT1(2,0}. Hence if Q E E ,  it has two equal 
singular values and a zero singular value. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(e) let Q = U&VT be an SVD. Furthermore, let 

0 -1 0 

0 0 1  
R z ( % ) =  0 

be a rotation of w / 2  about the axis [0 0 1IT, then 

Q=UCoVT=UCoRE f- UTURz f- V T .  ( 5> ( 3 
Now call R = URz(&(7r/2))VT and S = U CoBz( f  
(7r/2)) U T ;  it is immediate to see that RRT = RTR = 
I and ST = -S. From the uniqueness of the SVD, it 

follows that this decomposition is unique, modulo the sign 

in RZ (f (7r /2) ) .  Q.E.D. 
Remark 2.1: Note that, since Q A UCVT E E U C = 

diag{X X O}, there is one degree-of-freedom in defining the 
basis components of the subspaces (V.3)’ and which 
corresponds to rotating the orthogonal bases (V.1, V.2) and 
(U.1, U.2) about their orthogonal complements. However, the 
effects cancel out in the multiplications when defining R and 
S as in the proof above. 

C. Local Coordinates of the Essential Manifold 

For any given rigid motion (T, R) E SE(3) ,  there exists an 
essential matrix Q defined by Q = (TA)R.  We are interested 
now in the inverse problem: Given an essential matrix Q, can 
we extract its rotational and translational components? Is the 
correspondence Q ++ (T ,  R) unique? 

Consider the following map, defined locally between E and 
R6 

@: E t IR3 x SO(3) -+ Et3 x lR3 

where U ,  V are defined by the SVD 1321 of Q = U C V T ;  U.3 

denotes the third column of U ,  and R~(7rl2) is a rotation of 
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7r /2  about the axis [0 0 1]*. Note that the map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, defines the 

local coordinates of the essential manifold modulo two signs; 
therefore, the map associates to each element of the essential 
space four distinct points in local coordinates. This ambiguity 

may be resolved in the context of the visual motion estimation 
problem by imposing the “positive depth constraint” which 

means that each visible point lies in front of the viewer. In 

a case like this, we will be able to identify a unique local 

coordinates homeomorphism, as discussed in Section III-C. 
The inverse map is simply 

cp-l: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIR3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx IR3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+E 

D. Projection Onto the Essential Manifold 

Theorem 2.1 suggests a simple “projection” of a generic 
3 x 3 matrix onto the essential manifold: Let us define 

p T ( E ) :  -+ E 

M U diag{/\, A, O } V ~  (10) 

where U ,  V are defined by the SVD of M = U diag{ 01, 5 2 ,  

a3}kT, and X (01 +52) /2 .  It follows from the properties of 
the SVD [32] that p ~ ( ~ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ad) minimizes the Frobenius distance 
of M from the essential manifold 1331, [53]. 

111. STRUCTURE-INDEPENDENT MOTION ESTIMA~ON 
MODELED AS THE RECURSIVE IDENTIFICATION 

OF NONLINEAR IMPLICIT SYSTEMS 

In this section we begin with the constraints of rigid motion 
and perspective projection which define a “natural” nonlinear 
dynamical model for the 3-D coordinates of each visible 
feature point (structure). Motion is an unknown parameter of 
the model which is constrained on SE(3).  If we represent 
motion on the essential manifold, instead, it is possible to 

remove the 3-D structure of the scene from the model, ending 

up with a nonlinear and implicit dynamical model for the 
(measured) projective coordinates of the visible features with 
motion as an unknown parameter constrained on E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis 
allows us to decouple the estimation of motion from the 3- 

D structure of the scene, which has many advantages, for it 
allows dealing with occlusions of feature points and crossing 
regions of motion-space which render the “natural” model 

unobservable [59]. 
Consider the position of a rigid set of feature points in 3-D 

space. We call X = [X Y ZIT E R3 the coordinates of a 
generic point with respect to an orthonormal reference frame 

centered in the center of projection with 2 along the optical 
axis and X ,  Y ,  parallel to the image plane and arranged to 
form a right-handed frame (see Fig. 1). 

The relative motion between the camera and the object (or 
scene) is described by a rigid motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( t )  = (T(t) ,R(t))  E 

SE(3) which induces an instantaneous velocity (V( t ) ,  R(t)) 
such that 

X ( t )  = O ( t )  A X ( t )  + V(t>. (11) 

/ 

Fig. 1. 
frame. 

Point-based visual motion estimation; the viewer-centered reference 

If we assume the velocity to be constant between samples, 

so that Q(t) and V ( t )  represent the local coordinates of the 
rigid motion of the camera between time t and t + 1, then 

we can write 

X ( t  + 1) = R(I)X( I )  + T( t )  (12) 

where (T, E )  are related to (V, R) via the exponential map. 
What we are able to measure is the perspective projection 

7r of the point-features onto the image plane which, for 
simplicity, we represent as the real projective plane. The 

projection map 7r associates to each p # 0 its projective 

coordinates as an element of IRP2 (see Fig. 1) 

7l-: R3 - {O} --f IRP2 

x H Z = [ [ r c  y 11 T ‘  =n(X) - I -  

We usually measure x up to some error n which is well 
modeled as a white, zero-mean, and normally distributed 

process with covariance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, 

y = r c + n  7LEN(O,R,). 

In summary, when we represent the scene structure using 
points in the Euclidean 3-D space, the visual motion estimation 
problem is defined by the constraints of rigid motion and 
perspective projection 

The above is a nonlinear dynamical model having the 3-D 
structure of the scene in the state. Estimating motion amounts 
to identifying the above model with the parameters T,  R 
constrained on SE(3). However, we do not know Xzo, so that 
we end up with a mixed estimationlidentification task which 
proves extremely difficult [59]. 

In the next section we will show how representing motion 
on the essential manifold allows us to decouple the estimation 
of motion from the structure parameters X,. 



SOATTO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: MOTION ESTIMATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA397 

B. The “Essential Filter” 

Since the essential constraint is a homogeneous equation, 

and hence defined only up to a scale factor, we may restrict 
Q to belong to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASs instead of Etg. It is customary to set the 

norm of translation to be unitary; this can be done without 
loss of generality as long as translation is not zero. The zero- 

norm translation case can be dealt with separately, and we 

discuss it in Section 111-E. For simplicity, we now assume 
11Q112 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= llTll = 1. At each time instant we have a set of N 
constraints in the f o R  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

X 

f 
X’ 

timet 
T 

t 

time t+dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd R  
Fig. 2. The coplanarity constraint, 

A. Structure-Independent Models for Motion Estimation 

When a rigid object is moving between two time instants 
t and t + 1, the coordinates X of a point at time t ,  their 

correspondent X’ at time t + 1 and the translation vector T 
are coplanar (Fig. 2). Their triple product is therefore zero. 

This is true of course also for X,X’ and T,  since x is the 
projective coordinate of X ,  and therefore the two identify the 
same direction in R3, interpreted as the “ray-space’’ model 

of RP2 [57]. When expressed with respect to a common 
reference frame, for example that at time t ,  we may write 
the triple product as 

(15) 

As it turns out, the above constraint is not only a consequence 

of rigid motion, but also suffices to characterize it once 
five or more such constraints are given [53], [49]. Let us 

define Q A (TA)R, so that the above coplanarity constraint, 
which is known as the “essential constraint” or the “epipolar 
constraint,” becomes 

(16) 

X I T ( T  A (RE, ) )  = 0 Vi = 1 : N .  

’T 
X, Qx, = 0 V i  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .. . N. 

Estimating motion corresponds to identifying the model 

( Q x , ) ~ x :  = 0 Q E E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y, =z, + 72, V i  = 1 . N ,  72% E N(0, %%). (17) 

Since (16) is linear in Q, we use the improper notation 

~ ( t  + l)Q(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~zl( t ) ,z( t )Q(t)  = 0 x E R N x g  

where x is an N x 9 matrix combining x , ,x :  and Q is 
interpreted as a nine-dimensional vector obtained by stacking 

the columns of the 3 x 3 matrix Q on top of each other. In the 
following we will not distinguish between Q interpreted as a 

matrix in and a nine-dimensional column vector. The 

generic row of x has the form [zz’, yz’, z’, zy’, yy’, y’, z, y, 11. 
We will use the notation ~ ( t )  when emphasizing the time- 
dependence, while we will write xXt (t),X(t) when highlighting 
which vectors are used for constructing x. 

therefore, Q lies at the intersection between the essential 

manifold and the linear variety X G , ! ( ~ ) , ~ ( ~ ) ( O )  (see Fig. 3). 
Note that, even after imposing unit norm, there is still a 

sign indeterminacy in Q which accounts for the two possible 
solutions Q1 = +Q and Qz = -Q of the essential con- 

straint. These become four after being transformed to local 

coordinates. This ambiguity can be overcome by imposing the 
positive depth constraint as it will be done in Section 111-C. 

As time progresses, the point Q(t) ,  corresponding to the ac- 
tual motion, describes a trajectory on E (and a corresponding 

one in local coordinates) according to 

The last equation is indeed just a definition of the right-hand 

side, as we do not know n ~ ( t ) .  The identity of n ~ ( t )  and the 

sign + in the above equation will be unraveled in Section IV- 
B. For now, we will consider the previous equation to be a 
discrete-time dynamical model for Q on the essential manifold 
with n~ as unknown input. If we accompany it with the 

essential constraint, we get 

Q(t + 1) =Q(t)  + n ~ ( t )  Q E E 

0 = ~ z r ( t ) , ~ ( t ) Q ( t )  

y, =2, + 72, YZ = 1. .  . N .  (18) 

Now the visual motion estimation problem is characterized as 
the estimation of the state of the above model which is defined 
on the essential manifold. It can be seen that the system is 
“linear” (both the state equation and the essential constraint 
are linear in Q). E ,  however, is not a linear space. We will 

see how to solve the estimation task in Section IV. 

The observability/identifiability of the essential models is 
addressed in [59]. It is proven that the model is globally 
observable under general position conditions. Such conditions 

are satisfied if the viewer’s path and the visible objects cannot 
be embedded in a (proper) quadric surface of R3 and if all 
the visible points cannot be embedded on a plane 1501, 1591. 

C. Choosing the Local Coordinates for the Essential Manifold 

The map @ introduced in (9) defines the local coordinates 

of the essential space modulo a sign in the direction of 
translation and in the rotation angle of Rz. Therefore, the map 
@ associates to each element of the essential space four distinct 
points in local coordinates. This ambiguity can be resolved by 
imposing the “positive depth constraint,” i.e., that each visible 
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Fig. 3. Structure of the motion problem on the essential space. 

point lies in front of the viewer 1271, 1331, 1491, 1501, [793. 
Consider one of the four local counterparts of Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE and the 

triangulation function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd x , x f :  E + IR1+l with d x , d ( Q )  = 

[2,Z’IT which gives the depth of each point as a function 

of the projection and the motion parameters (it is just the 

intersection of corresponding projection rays, see Fig. 2). Note 

that it is locally smooth away from zero translation. Therefore, 
given any N point-matches with projective coordinates x 2 ,  x ’ ~ ,  
we may use @ as a local coordinate chart for the following 
set, which we call the “normalized essential manifold:” 

E + E  n d- l  (R:)~ n ss x ,x f  
= {Q = SRlR E S 0 ( 3 ) ,  S 2 T A  E so(3) 

(IT(( l ,d,,,,r,(Q) > Ob’i = l . . . N )  (19) 

has been estimated with a normalized translational velocity, 
it can be used to estimate the “normalized structure” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  
via triangulation [66]. By matching the distance between the 

reference points in the normalized structure with its reference 
value, we can rescale both the depth of each point and the 

direction of translation simply by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAllXrl - XT211  = pl/TII. 

E. Dealing with Zero-Translation 

So far we have assumed that IlTll # 0, and we have defined 

the normalized essential manifold based upon the constraint 

IlTll = 1. It is easy to see that the condition ((TI1 = 0 

defines a “thin-set” in the parameter space. Due to the noise 

in the measurements, there is always a translation which is 

least-squares compatible with the observations. However,, one 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR+ is the positive open-half space of IR, and d-’ ask what when the system close to such 
X,X’ 

denotes the preimage of dx ,x f .  Consider @ restricted to E.  It 

and, furthermore, bijective. The normalized essential manifold 

thus defined is a topological manifold of dimension five, since 
we have imposed the metric constraint ((T(1 = 1. 

a configuration. When the translation is almost zero, there 
is little parallax in the projected coordinates of the visible 

the direction of translation ill-conditioned~ 

Luckily enough, we do not need to worry about the structure 
of the scene, since it does not enter our dynamic model, or 

follOws from the properties Of the SVD that @ is continuous 
objects which fhe estimates of the depth and those of 

D. Propagating Scale Information 

It is well known [49] that from visual information it is 
only possible to recover the structure and the motion modulo 

a scale factor multiplying the translational velocity and the 

depth of the visible points. In fact, we cannot distinguish 
between a car moving on a street and a car which is “twice 
as big, twice as far, and moving twice as fast.” Such a 
scale ambiguity is captured by the homogeneous nature of 
the essential constraint (16). However, as soon as we are 
given some scaling information about the scene at one time 
instant-for example the size of the car-we can rescale the 
scene and the estimated velocity to its appropriate values. 

Suppose we are given the distance between two visible 

“reference” points in space IIXT1-XT211 = p .  Once the motion 

about the direction of translation, since its estimate will be 
weighted by the scale, which is exactly llT(l E 0. However, 

we would still like to estimate the correct rotational velocity. 
Here the definition of the normalized essential manifold comes 

at hand. In fact, the estimation scheme will estimate some 

direction of translation T such that (IT11 = 1 regardless the 
scale of T ,  so that the correct rotational component of the local 
coordinates can be computed. In the experimental section we 
will show an experiment in which the system crosses a region 
in the parameter space where T = 0 and Q # 0. 

Remark 3.1: The one just described is a crucial feature 
of the method proposed. In fact, schemes based upon si- 
multaneous structure and motion estimation [3l, [52l, 1561 
become ill-conditioned when close to zero-norm translation, 

since it is a nonobservable configuration for the model (14), 

- 
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Iv. SOLVING THE ESTIMATION TASK 

At this point we are ready to address the problem of 
recursively estimating motion from an image sequence. There zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R 

Embedding space estimator 

consists in solving at each step a linear estimation problem in 
the linear embedding space and then “projecting” the estimate 

onto the essential manifold (Fig. 4 bottom). 
It is very important to understand that these are modeling 

assumptions about motion which can be validated only a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
posteriori. In general, we observe that the first method solves 

a strongly nonlinear problem with techniques which are based 

upon the linearization of the system about the current reference 

trajectory so that the linearization error may be relevant. The 
second method does not involve any linearization, whereas it 
imposes the constraint of belonging to the essential manifold 
in a weaker way. Note that each method produces, together 
with the motion estimates, the variance of the estimation error 
which is to be used by the subsequent modules of the structure 
from motion estimation scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[66]. 

A. Estimation in Local Coordinates 

Consider composing (18) with the map defined in (9) 

restricted to the normalized essential manifold E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@: E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+s2 x IR3 4 R5 

where T is expressed in spherical coordinates of radius one. 
Then the system in local coordinates becomes 

[ ( t  + 1) = [ ( t )  + ng(t); <( to )  = Eo 

0 = Xy(t),yl(t)Q(<(t)) + %(t). (20) 

Motion may be modeled as a first-order random walk E 

N(0, RE) for some RE which is referred to as the variance 

of the model error. While the above assumption is somewhat 
arbitrary and can be validated only a posteriori, it is often safe 

to assume that the noise in the measurements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy(t),y’(t) are 
white, zero-mean Gaussian processes with variance R,. The 
second-order statistics of the induced noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 are a somewhat 
delicate issue that is discussed in Appendix A. 

The estimation scheme for the model above, which takes 
into account the correlation of the error 6 ,  is reported in Ap- 
pendix A. A simplified version is obtained by approximating 
f i  with a white process (note that fi is correlated only within 

one time step). The resulting scheme is based upon an implicit 
extended Kalman filter (IEKF) which is derived in Appendix 
B. We summarize here the equations of the estimator. Call 
C = (axQ/a<) and D (aZQ/az), then we have the 
following: 
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Prediction Step: Prediction Step: 

i ( t  + Ilt) =<@It); E"(Ol0) = t o  (21) s(t + Ilt) = Q(tlt); Q(Ol0) = QO (30) 

P(t + Ilt) = P(t ( t )  + RE; P(O(0) = Po. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(22) P(t + l ( t )  = P( t ( t )  + RQ; P(O(0) = Po. (31) 

Update Step: 

( ( t  + llt + 1) = ( ( t  + lit) - L(t + 1)X(t + 1) 

. Q(i(t + 1lt)) (23) 

~ ( t  + ilt + 1) =r(t + i ) ~ ( t  + ilt)r*(t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) 

+ L(t  + 1)R,(t + l )LT(t  + 1). (24) 

Gain: 

L(t + I) = P(t  + Ilt)CT(t + l)A-'(t + 1) 

h(t + 1) = C(t  + 1)P(t + l / t )CT( t  + 1) 
(25) 

+ R,(t + 1) (26) 

(27) r(t + 1) = I  - ~ ( t  + i ) q t  + 1). 
Residual Variance: 

Rc(t + 1) = D( t  + l)R,DT(t + 1). (28) 

Note that P(tlt) is the variance of the motion estimation 
error which is used as variance of measurement error from 

subsequent modules of the structure from motion estimation 

scheme [66]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA similar formulation of the IEKF was used 

by Di Bernard0 et al. [17]. Similar expressions were also 

used before in the literature on specific applications; the first 
instance to our knowledge was in the recursive computation 

of the Hough transform [15]. 

B. Estimation in the Embedding Space 

Suppose that motion, instead of being a random walk in R5, 
is represented in the essential manifold as the "projection" of 

a random walk through Et9 (Fig. 4 top). 

sums them, and then projects the result onto the essential 

manifold 

We define the operator @ that takes two elements in 

$: R3x3 x JR,3x3 + E  

Mi,M2 H Q = P T ( E ) ( M I  +M2)  

where the symbol "+" is the usual sum in 

above definitions, our model for motion becomes simply 

With the 

Update Step: 

Q(t + llt + 1) = Q(t + llt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG3 L(t  + 1)X(t + 1)Q(t + lit) 
(32) 

(33) 

~ ( t  + 11t + 1) = r(t + i ) ~ ( t  + Ilt)rT(t + 1) 

+ L(t  + l)R,(t + l)LT(t + I). 
Gain: 

(34) 

(35) 

(36) 

L(t + 1) = -P(t + l(t)XT(t + l ) A - l ( t  + 1) 

A(t + 1) =x(t  + 1)P(t + lIt)XT(t + 1) + R,(t + 1) 

r(t + 1) = I  - L(t + i)x(t + 1). 

V. FURTHER PROBLEMS m DYNAMIC VISION WHICH 

MAY BE FORMULATED AS IDENTIFICATION 

OF NONLINEAR IMPLICIT MODELS 

In this section we show that (17) has some degree of 
generality in the context of dynamic vision. In fact, there 
are other problems that fall within the identification of the 

same class of nonlinear implicit models with parameters on a 

topological manifold. 

A. Dynamic Self-Calibration 

So far, we have taken the camera to be an ideal perspective 

projection of unit focal length. When the camera model is a 
more general affine transformation in Et2, (16) does not hold. 

However, a similar constraint may be derived based on the 

epipolar geometry [23] as 

x:*Fx, = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV i  = 1. .  . N .  (37) 

The matrix F is called "fundamental matrix." It specifies the 

relation between each point and its corresponding epipolar line 

[25]. If the camera is represented as a 3 x 4 matrix [AI01 where 

f s ,  0 - i o  

is the internal parameter matrix,' then it can be shown that 

ATFA E E (38) 

Q(t + 1) = &(t) @ n ~ ( t )  

where no(t)  E N(O,R,,) is a white, zero-mean Gaussian 

(29) is an essential matrix. 
The Fundamental matrix has been originally introduced 

by Faugeras. In [25], the matrix F i s  estimated from the 

(linear) constraint (37), and then its structure (38) is imposed a 
posteriori by solving a set of polynomial equations known as 
Kruppa equations. Such equations are, unfortunately, poorly 

conditioned, and the scheme is extremely sensitive to noise. 

's: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY 

noise in IR9. If we substitute the above equation into (18), we 

have again a dynamical model on a Euclidean space (in our 
case Etg) driven by white noise. The essential estimator is the 
least variance filter for the above model and corresponds to a 
linear Kalman filter uDdate in the embedding mace. followed f is the focal length, ( i n ,  i o )  are the coordinates of the intersection - *  - ~ - "., 
by a projection onto the essential manifold. In principle, 

an approximate gain '"Id be precomputed Offline for each 
possible configuration of motion and feature positions: 

between the optical axis and the image plane, and ( s z ,  sY) the pixel sizes 
along the image plane coordinates. The deviation from 90' of the angle 
between the optical axis and the CCD surface is usually on the order of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lo,  and we may therefore neglect it. 
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Scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATX TY 
Local M: .0002 Std:.0004 M:-.0015 Std: .0048 

Essential M: 3.97543-5 Std: .0001 M: .0017 Std: .0013 
2-D M: .3763-3 “+!d: .0009 M: -.08353-3 Std: .0071 

TABLE I 

Tz 
M: .0002 Std: ,0004 
M: .0002 Std: .0001 
M: .28513-3 Std: .0009 

Scheme Rx RY 
Local M:.0008 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASL, L M:.0002 Std:.0002 
Essential M:-.0008 Std: .0004 M: 3.99493-6 Std: .0002 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ Z  

M:-.0002 Std:.0008 

M: -1.61073-5 Std: .0004 
I I I I 2-D I M: .21563-3 Std: ,0034 I M: .22613-3 Std: .0006 I Mz.00733-3 Std:.0006 

Furthermore, temporal coherence of the camera model is not where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v, - xivs exploited. If we substitute (38) into (37), we get a dynamic 

model lv2 - YiV3 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAi = A(Zi, V) = 

( A - ~ Q A - ~ ~ , ) ~ ~ :  = o  Q E E 

3, = 2, + n2 vz = 1..  . N .  

Estimating the camera parameters along with rigid motion may 

then be formulated as identification of the above model, where 

the parameters are on the manifold E x AF, and AF is the set 

of affine transformations of R2 represented in homogeneous 
coordinates. This formulation has been derived in [61]. 

B. Motion from Weak-Perspective 

Alternative camera models may be employed in the same 

framework, for example the so-called “weak” or “affine” 
perspective, consisting of a parallel projection onto a plane 

followed by a perspective projection of the plane onto the 
image. In such a case, the fundamental matrix has the simple 

form [25] ,  [43] 

F =  0 0 b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I I: I] 
where 

a = - R23 

b = R13 

c = ~R23Rli - SR13R21 

d = ~R23R12 - ~R13R22 

e = R23Tz - R23TY 

and s is a scale factor. The state manifold in this case is S4 
r 621. 

C. Subspace Motion Factorization for Estimating 
Direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Heading 

version of the basic model (14) 
Consider the derivative of the output of the differential 

r l i  

and V E S2 is represented in local coordinates as V(O,$). 
Observing N points, one may write 

where 

C(V,..) A 

Under the usual rank conditions, we may compute the least- 
squares approximation of d as 

d d t [ ? ]  Act ,  

X N  

where t indicates the pseudo-inverse. Therefore, the motion 
field specifies the constraint [34] 

x = cc’x =3 cyv, 2)k = 0 

where C L  A I - CCt indicates the orthogonal complement 
of the range space of C. Heeger and Jepson [34] proposed 
to estimate the direction of translation by minimizing the two 
norm of the above constraint over V E S2.  They minimize by 
extensive search over all possible directions ( @ , 4 ) .  

Indeed, it is immediate to see [65] that the problem of 
estimating the direction of translation can be rephrased as 
the problem of identifying the following exterior differential 
system [lo], with parameters V on a sphere, embedded in R3 

C’(V,Z)k = o  v E s2 
y, =2, f n ,  VZ = 1 . . . N  . 

The “projection” onto the manifold is defined, in this case, 
simply as prs2(V) V/llV\l, and the same techniques 
described in the previous section can be used for carrying 
on the estimation. 
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Fig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 Components of translational velocity as estimated by the local coordlnate estimator (&frame) The ground truth 1s shown in dotted lines 
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Fig. 6. Components of rotational velocity as estimated by the local coordinate estimator (radframe). 

VI. EXPERIMENTS 

In this section we describe two experiments on real image 
sequences and one simulation experiment to reveal the differ- 

ent features of each scheme and their behavior when close to 
singular configurations in the motion space (e.g., pure rotation 

about the projection center). 

A.  Simulation Experiments 

We have generated a cloud of 20 feature points at random 
within a cubic volume of side 1 m, placed 1.5 m ahead of the 
viewer. The scene was viewed under perspective projection 
onto an image plane of 500 x 500 pixels with a focal length 

of one, corresponding to a visual field of approximately 50". 

Gaussian noise with 1 pixel std was added to the measured 
projections according to the performance of the most current 

feature-tracking schemes [4]. The viewer was then made to 

navigate around the cloud with constant velocity for 50 time 

instants (frames), after which the viewer stopped translating 

and only rotated about its center of projection for 25 frames, 

inverting the direction after 15 of them. Finally, the viewer 

resumed its roto-translational motion to return to the initial 

configuration. 

This experiment is interesting from many extents: first 

of all, for part of the sequence the model is in a singular 

configuration, since the translational velocity is zero. Indeed, 

as we have discussed in Section 111-E, the schemes proposed 

still recover some normalized direction of translation and the 

correct rotational velocity. Once the appropriate scaling infor- 

mation has been inserted, full translation is correctly estimated. 

Second, in the first and the last part of the experiment, the 

motion is designed such that the effects of translation and 

rotation produce the same variation, up to first order, in the 
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Fig. 7. Components of translational velocity as estimated by the essential estimator (&frame). Note the spikes due to the local coordinate transformation. 
Note also that wch spikes do not affect convergence, since they do not occur in the estimation process, but while transferring to local coordinates. The switching 
can be avoided by a higher level control on the continuity of the singular values of the estimated state. There is a significant error in the local coordinates near 
frame 260, when the translation is zero and the direction of rotation is inverted. The smoothness imposed by the dynamics of the parameters is responsible 
for the transient in the estimates of the rotation which propagates onto the estimate of translation, causing a visible spike with a significant transient. 
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Fig. 8. 
spikes due to the local coordinate transformation. Note also that there is no transient to recover since they do not occur in the estimation process. 

Components of rotational velocity as estimated by the local coordinate estimator (radframe). The ground truth is shown in dotted lines. Note the 

derivative of the observations. This is a well-known ambiguous 

stimulus in which it is difficult to distinguish locally the effects 

of rotation from those of translation. 

We have systematically varied the conditions of the exper- 

iments, by changing the distance in space from the cloud of 

dots between 1 m and 5 m, the initial conditions between 

0% and 1000% off the true value, the level of measurement 

noise between 0 and 2 pixels, and the number of visible points 
between 1 and 100. 

It is interesting to notice that, while previous schemes based 

upon the essential matrix needed at least eight [49] or five 

[38] visible points at each time instant, here we can allow any 

number of points even below the threshold of five, since we 

integrate over time the motion information. 

The behavior of the different filters was consistent with 

a graceful degradation of the estimates as the noise level 

increases and a need for more precise initial conditions as the 

noise increases and the number of visible points diminishes. 

The performance of the filter saturates as the number of visible 

points increases beyond 20. The performance also degrades as 

the points move far away from the viewer and as the structure 

approaches a plane. Under these conditions, in fact, the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x approaches rank six rather than its normal rank of eight 

We have tested the essential filter in local coordinates, both 

implemented using the IEKF and the two-dimensional (2-D) 

iteration described in Appendix A and the essential filter in 

the embedding space. We now comment on the performance of 

1241, ~ 6 1 .  
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Fig. 9. Components of the essential matrix as estimated by the essential 
estimator. There are no spikes. The estimates between time 200 and 300 are 
nonzero, despite the ground truth (dotted line), since the essential space is 
normalized to unit-norm. The value of the components of the estimates of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q in the singular region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 0 allow us to recover correctly the rotational 
velocity, once transformed to local coordinates. 

each filter on the reference simulation experiment, highlighting 
some of the features peculiar to each scheme. The performance 
of the filters is compared in Table I. 

B. The Local Coordinate Estimator 

In Figs. 5 and 6 we show the six components of translational 

and rotational velocity as estimated by the local coordinates 
estimator. Ground truth is plotted in dotted lines. Convergence 
is reached in less than 20 steps from an initial condition within 
20% the true state. Initialization is performed using one step of 
the traditional Longuet-Higgins' algorithm [49]. Tuning of the 
filter has been performed, as with the other schemes, within 
an order of magnitude. It must be pointed out that we have 

observed a better behavior by increasing the variance of the 

pseudo-innovation. This is due to the fact that the EKF relies 
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on the hypothesis that the measurement noise is white and the 
linearization error is negligible, while this is often not the case. 
An increase in the variance of the measurement noise accounts 
for the residual of the linearization. The computational cost of 

one iteration is of about 100 Kflops for 20 points. 

C. The Estimator in the Embedding Space 

In Fig. 9 we show the nine components of the essential 
matrix as estimated by the essential estimator in the embedding 

space. Since convergence is about four times slower than the 
local coordinate version and each step requires four times less 
computation, we have sampled the measurements four times 
faster, ending up with a 400 frames-long sequence. 

Note first that between the frames 200 and 300, the true 

value of the state is zero. The estimates of the filter drift off 

to nonzero values, since the essential matrices are defined 

as to have unit norm. Such nonzero values are those that 

allow estimating correctly the rotational velocity and a dummy 

direction of translation even in the case of pure rotation about 
the optical axis, as discussed in Section 111-E. By transforming 

the state into local coordinates and inserting the appropriate 
scale, it is possible to recover the correct rotational and 
translational components of motion, as shown in Figs. 7 and 8. 

defined in (9) may have singu- 
larities due to noise when the last eigenspace is exchanged 

with one of the other two. In fact, due to the presence of 

noise, the third singular value of the estimated essential matrix 

is nonzero, and occasionally may even become bigger than 

the other two. Since the SVD sorts the singular values in 

decreasing order, the eigenvectors-which encode the motion 
information-may be interchanged. 

This causes the spikes observed in the estimates of motion. 
However, there is no transient to recover, since the errors do 
not occur in the estimation step but only in transferring to 
local coordinates. The switching can be avoided by a higher 

level control on the continuity of the singular values. The only 

significant error in the local coordinates occurs at around frame 

260, when the translation is zero and the direction of rotation 

is inverted. The smoothness imposed by the dynamics of the 

parameters is responsible for the transient in the estimates of 
the rotation which propagates onto the estimates of translation, 
causing a visible spike with a significant transient. Note that 
a much less relevant spike was also present in the estimate of 
the filter in local coordinates (Fig. 5). 

The computational cost of our current implementation of the 
filter in the embedding space amounts to circa 41 Kflops per 
each step for 20 points. Initialization was performed within 

20%, as in the previous case, using one step of the algorithm 
of Longuet-Higgins [491. 

The homeomorphism 

D. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - 0  Iteration 

The essential filter in local coordinates has been imple- 
mented using the double iteration described in Appendix A. 
The results are reported in Figs. 10 and 11. This scheme 
reaches similar accuracy to the local filter after proper ini- 

tialization, even though the error analysis used for calculating 

the variance of the estimates at each fixed time was only 
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Fig. 11. Components of rotational velocity as estimated by the double iteration estimator (radframe) 

approximate. Speed may be adjusted by varying the number 

of iterations at each fixed time. We have noticed that a number 
of steps between three and seven is sufficient. The cost of the 

scheme for seven iterations and 20 points is 100 Kflops. The 
simulations reported were performed using a constant variance 
of the error of the kiteration. 

We summarize the performance of the three schemes in 
Table I: mean (M) and standard deviation (Std) of the estima- 
tion error are computed in steady state between frame 30 and 
50 for the local coordinate scheme and the 2-D iteration while 
between time 180 and 260 for the estimator in the embedding 
space. 

E. Experiments on Real Image Sequences 

In the first experiment, we have tested our schemes on a 
sequence of 10 images taken at the University of Massachu- 
setts at Amherst (see Fig. 12). There are 22 feature points 

visible; ground truth and feature tracking have been provided. 

Due to the limited length of the sequence, we have run it 

on the local coordinates estimator which has a transient of 
about 10-20 steps to converge from arbitrary initial condition. 

Hence we have run the local estimator on the 10 images 
starting from zero initial condition, and we have used the 
final estimate as initial condition for a new run whose results 
we report in Figs. 13-15. We did not perform any ad hoc 
tuning, and the setting was the same used in the simulations 
described in the previous paragraphs. In Fig. 13 we report the 
six motion components as estimated by the local coordinate 
estimator and the corresponding ground truth (in dotted lines). 
The estimation error is plotted in Fig. 14. As it can be seen, the 

estimates are within a 5% error, and the final estimate is less 
than 1% off the true motion. Finally, in Fig. 15 we display the 
norm of the pseudo-innovation of the filter which converges 
to a value of about in less than 10 + 5 steps. In this 
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Fig. 12. One image of the rocket scene. 

experiment, we have used the true given norm of translation 

as the scale factor. 
In a second experiment we have taken a box, attached some 

texture to it, and generated a sequence of images by rotating 
the box on top of a revolving chair placed in front of the 
camera. We have selected and tracked automatically feature 
points using a multiscale implementation of a standard scheme 

proposed by Lucas and Kanade [51] which gave us a number 

of good features as well as a number of spurious one (like 

the “T”-junctions between the chair and the horizontal lines 
in the background wall) and points in the background (Fig. 16 
top). A simple on-line statistical analysis on the innovation 
process of the filter allows us to easily reject these points as 
outliers [64]. The motion components of the remaining points, 
the ones attached to either the box or the chair, are estimated 
and plotted in Fig. 16 (bottom left; error bars indicate twice 
the variance of the estimates) along with the top-view of the 

structure as estimated by a simple EKF using the estimated 
motion, in the lines of [66] (Fig. 16, bottom right). 

Benchmark experiments on the scheme’s performance on 
real-life situations have been conducted also by other re- 
searchers. For instance, Bouguet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7j considered a sequence 
of over 4000 frames taken from a camera mounted on a cart 
which moved inside a building, eventually returning to its 
initial position. The aim of the experiment was to assess how 
accurate the reconstruction of the trajectory was by integrating 
over time the v‘elocity (or relative instantaneous configu- 
ration) through the sequence. Individual features, tracked 
using standard feature tracking schemes [4j, have a relatively 
short lifetime (on the order of 10 frames for that particular 

experiment). Therefore, traditional motion estimation schemes, 
having structure encoded in the state of the filter, would have 
discontinuities in the states corresponding to the structure 
parameters whenever a feature appears or disappears which 
affects the estimates of motion through the coupling present 
in the model (14). On the contrary, the velocity of the cart is 
of course continuous, and only by decoupling motion from the 
estimation of structure it is possible to integrate information 

throughout the sequence without having to deal with a variable 
number of discontinuous states. 

VII. CONCLUSIONS 

The problem of estimating 3-D motion from a sequence 

of images can be naturally set in the framework of dynamic 
estimation and identification. Under the assumption of a static 

scene, the rigid motion constraint and the perspective pro- 

jection map define in a natural way a nonlinear dynamical 

model, and estimating motion is equivalent to a mixed esti- 

matiodidentification task. 
Motivated by the structural limitations of the natural model 

(see [59j), we have proposed a new formulation for structure- 
independent motion estimation based upon the representa- 

tion of motion via the “essential matrices,” introduced by 
Longuet-Higgins [49]. Motion estimation is equivalent to the 

identification of a nonlinear implicit model with parameters 

on the essential manifold. Other problems in computer vision 

may be cast as the identification of a nonlinear implicit model, 

as for example dynamic self-calibration, subspace motion 

factorization, and partial motion reconstruction €rom weak 

perspective. 
We have proposed an algorithm which solves the identifi- 

cation task by estimating the state of a model defined on the 

parameter manifold. We perform the estimation either in the 
local coordinates or in the embedding space of the parameter 

manifold. 

We are now in the process of implementing the proposed 

schemes on real-time hardware. We believe that the simplicity 

and robustness of the methods proposed, along with the power 

of modem architectures, will soon allow us to insert them 

into the control loop of mechanical systems. The flexibility 
of vision as a sensor, once brought to real-time operation, 
opens up a number of applications ranging from visually- 
guided navigation, manipulation, surveillance, active sensing, 
and recognition. 

APPENDIX A 

&CURSIVE LOCAL IDENTIFICATION OF IMPLICIT 

SYSTEMS USING PREDICTION ERROR CRITERIA 

Suppose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{x( t )> E I R ~  is a trajectory on a linear state space 
which is subject to an implicit dynamic constraint of the form 

h[z(t),  dz(t), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa] = 0 z(0) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 0  a E M (39) 

where a are some unknown parameters which may move 
(slowly) on some topological manifold M.  Call zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 A $(a )  E 

IR” the local coordinates correspondent of a. Suppose we are 
able to measure n: up to some white, zero-mean Gaussian noise 

y(t) = 5( t )  + n(t) n E N(0, Rn). 

We are interested in identifying the parameters a recursively 
from the measurements {y(t)} based on the minimization of 

some cost function of the prediction error (for a classical 
treatment of prediction error methods (PEM) for linear explicit 
models, see for example, [67], [48j, and [47]). 

A common paradigm for PEM identification consists in 
forcing a Kalman filter to work as a parameter estimator. The 

state of the filter is augmented with the unknown parameters 

which are described using a random walk model. In this section 

we will extend this paradigm to nonlinear implicit dynamics 
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Fig. 13. Motion estimates for the rocket sequence: The six components of motion as estimated by the local coordinate estimator are showed in solid 
lines. The corresponding ground truth is in dotted lines. Units are d f r ame  for the components of translational velocity. Rotational velocity, expressed 
in rad/frame, is approximately zero 

and parameters living on a topological manifold. We will 
restrict our attention to discrete time dynamics, although the 
same analysis may be carried out for continuous time models. 

First we proceed in analogy with the linear-explicit case: we 

describe the local coordinates of the parameters as first-order 

random walk and use the dynamic constraint as an implicit 

measurement constraint 

a(t  + 1) = a(t)  + n,(t) a(0) =a0 

h [ ~ ( t )  - n( t ) ,y ( t  - 1) - n(t - l),$-'(a(t))] = O  (40) 

where we have substituted the index t with t - 1 in the 

measurements {y} (or equivalently the estimator runs with 
one step delay). We assume n,, the noise driving the random 

walk, to be white, zero-mean and Gaussian; its variance R, 
may be regarded as a tuning parameter. The noise process 

{n(t )}  induces a residual in the measurement equation: If 

we approximate x ( t )  with y( t ) ,  in general we will observe 

h[y(t) ,  y(t  - l), a] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  # 0, where iz depends on {n},  {y} 

and U .  This residual-as we will see-is the prediction error 
(or pseudo-innovation) when choosing a least-squares criterion 

in the PEM. 
Let us collect the measurements into a vector g ( t )  = 

[yT(t)  yT(t - l)lT and, similarly, with n ( t )  = [nT(t)  nT(t - 
1)IT. Our task is to estimate a from the model 

a(t + 1) = a(t) + n&) a(0) = a0 

h[jj(t) - n(t), $-l(a(t))]  = 0. (41) 

To follow the course of the linear-explicit case, we have to 
solve a number of problems: 

1) The noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi is not white zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I RnS(t - S) RnS(t - s + 1) 

RnS(t - s - 1) R,S(t - S )  
E [n( t )ET ( s ) ]  = 

2) The error E does not appear additively in the measure- 

3)  The measurement equation is nonlinear and implicit. 

ment equation. 

The extended Kalman filter (EKF) [40], [ I l l ,  [39] is a general- 
purpose local extension to nonlinear systems of the traditional 
Kalman filter. It is based on a variational model about the 

best current trajectory. The system is linearized at each step 
around the current estimate of the state to calculate a correcting 

gain; the update of the previous estimate is then performed 

on the original (nonlinear) equations. To solve step three, we 

need to further extend the EKF to cope with the implicit 
measurement constraint. This is done in Appendix B. We call 

the result IEKF; some variations of the scheme have been used 
in different applications in the last years, see for example [15], 
[17], [36], and [26]. The derivation is based on the simple fact 
that the variational model about the current trajectory is linear 
and explicit, so that the a pseudo-innovation process may be 

defined analogously to the explicit case. 

The derivation of the IEKF in Appendix B does not address 

the fact that the noise 5, is correlated (see point 2) above). 
The residual of the measurement equation f i ,  which is in fact 
the pseudo-innovation of the filter, is characterized in terms of 
E,  provided that the last is white, zero-mean, and uncorrelated 
with n,. In the following section, we will show how to whiten 

and therefore reduce the problem to a form suitable for using 
the IEKF as derived in Appendix B. Later on we will see how 
the problem simplifies by assuming that E is white. 

A. Uncorrelating the Model from the Measurements 

tion about the point jj(t), a( t )  
Consider a first-order expansion of the measurement equa- 

h [ m $ - l ( a ( t ) ) I  - D+(t)n(t)  - D-(t)n(t  - 1) 

= O((lZ112) E 0 

where the limit implicit in 0 is intended in the mean-square 
sense, and where we have defined 
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Fig. 15. Norm of the pseudo-innovation process of the local estimator for the rocket scene. Convergence is reached in less than five steps 

Here the residual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i ( t)  = -D+(t)n(t) - D-(t)n(t  - 1) is 
clearly correlated. To estimate the dynamics of n(t),  we may 
insert it into the state: call ~ ( t )  n(t - 1) 

a(t + 1) = a(t)  + na(t) a(0) = a0 

z ( t  + 1) =n(t)  z(0)  = 0 

0 = h[r/(t) ,$-l(a(t))]  - D-(t).(t) + w(t)  (44) 

where we have defined w(t)  = -D+(t)n(t).  Now the mea- 
surement error w is white; however, it is correlated with the 
model error U [n:,nTlT. We may therefore project the 
model error onto the orthagonal span of the measurement 
error, H ( w ) ,  to make the two uncorrelated. We define G(t) A 

v( t )  - k [v ( t ) (H (w) ] .  Since w(t) ,n( t )  and n,.(t) are white, 
it is easily seen that 

fi[4t)IH(w)l = a 4 t ) l w ( t ) l  
= E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[U ( t )WT ( t ) ]  (E [w ( t )  WT ( t ) ] )  - 1 w ( t )  
= C,,C,lw(t). 

If we define 
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Fig. 16. (top) One frame of the original sequence with the feature points highlighted. (bottom left) five components of the estimated motion (vertical units are 
rad for the rotational velocity and rad for the components of the direction of translation, the horizontal axis is the frame number). (bottom right) Reconstructed 
scene viewed from the top (the horizontal axis is a slice of the image plane, and the vertical axis is the depth of each feature point in cm). 

it is easy to see that E,, = S(t)R- l ( t ) ;  furthermore 
Ca = Q(t) = Q(t)+S(t)R- ' ( t )ST(t) .  NOW zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe v-SR-lw 
is by construction orthogonal (uncorrelated) to w. 

where we have defined 

K ( t )  = R, (t)D? ( t )  (D+ (t)R, (tp:  ( t ) )  (49) 

w(t )  A -D+(t)n(t).  (50) 
B. A Model for PEM Identification of Nonlinear 
Implicit Models 

In the Previous Paragraph we have derived an extended 
model (up to first order) with the model error uncorrelated 
from the measurement error 

By applying the results of Appendix B, we can derive a 
pseudo-optimal PEM identification scheme described by the 
following iteration: 

Prediction Step: 

a(t + 1) = a( t )  + na(t) a(0) = a0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z ( t  f I) = K(t)(h[V(t),  V ( a ( t ) ) ]  - D-( t )z ( t ) )  + n(t) 

z (0 )  = 0 

&(t + llt) = &(tlt) ir(010) = a0 

q t  + llt) = K(t)(h[3(t) ,  &(tlt)] - D-( t ) i ( t l t ) )  
q o p )  = 0 

0 = h[g(t) ,$- l (a( t ) ) ]  - D-( t )z ( t )  + w ( t )  (48) P(t  + llt) = F( t )P( t ( t )FT( t l t )  + Q(t) P(O(0) = PO (51) 
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where 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD-(t  + 1)qt  + lit)) 

P(t  + lit + 1) 

= r(t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ) ~ ( t  + ilt)rT(t + 1) + ~ ( t  + 1) 

. D+(t + 1)R,(t + l )D;( t  + l )LT( t  + 1) (52) 

where 

L(t + 1) + P(t  + l lt)CT(t + l)h-'(t + 1) 

h(t + 1) = C(t + 1)P(t + l lt)CT(t + 1) 

(53) 

(54) 

(55) 

+ D+(t + 1)R,(t + l )DT( t  + 1) 

r(t + 1) = I  - ~ ( t  + qc(t + 1). 

Note that we are trying to estimate a process { ~ ( t ) }  which is 
nearly white noise (n(t) is correlated only within one step). 

Furthermore, if we expect a large number of measurements, 
the cost in updating a large state and tuning a large number 
of model-variance parameters may be relevant. In practical 
applications, the approximation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE as white noise are often 
better behaved. In the following section we show how the 

structure of the filter simplifies under such an approximation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. A Simplijied Version: Approximate 
Least-Squares PEM Identijcation 

In this section we report the equations of the parameter 
estimator which are obtained supposing that the residual ii is 
white. This corresponds to applying the results of Appendix 
B directly to the model of (41), assuming that {E }  is a white 
process: 

Prediction Step: 

8(t + llt) = &(tlt) S(Ol0) = a0 

P(t + lit) =P(t l t )  + R,(t) P(OI0) = Po. (56) 

Update Step: 

&(t + 1Jt + 1) 

P(t  + llt + 1) 

= &(t + llt) + L(t + l ) h [?J ( t ) , ?p (&( t  + lit)] 

. D+(t + 1)R,(t + l )DT( t  + l )LT( t  + 1) 

= r(t + t ) ~ ( t  + ilt)rT(t + 1) + ~ ( t  + I) 

(57) 

where the quantities L(t+1), h(t+l), and r ( t + l )  are defined 
according to Appendix B. Note that we have reduced the size 
of the state from n + m down to m. 

Detecting Outliers: Note that each component of the 
pseudo-innovation is a measure of the consistency of each 

datum with the current parameter estimates. This proves useful 

when applied to the motion problem because it allows us to 

detect outliers and also segment the scene into a number of 
independently moving objects [64]. 

D. An Iterative Scheme for Computing the Update 

The EKF update seen in the previous section may be 
substituted with a Gauss-Newton iteration, as it is customary 
in recursive ID of linear models 

&(k + 1) = & ( k )  - L N R ( k ) h ( & ( k ) )  

where LNR = J;'(&(k)), and Jh is the Jacobian of h. 
Note that at each fixed time we could perform a New- 

ton-Raphson iteration on the function h(?J, a) ,  for which local 

convergence results can be derived as well as bounds on the 

convergence rate. This suggests, as an alternative to the IEKF, 
fixing t and performing a Newton-Raphson iteration along 
the k coordinate. Once this is done, we propagate the estimate 
across time with an iteration which now is linear and has all 
the desirable asymptotic properties. 

Iteration at Each Fixed Time: At each time instant, a new 

set of measurements ?J(t) becomes available. The constraint 

imposes 

h[?J(t),a] = 0 Y t .  

Define T, h: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEt" 4 IR" to be the derivative of the map h and 

3h(a) the Jacobian matrix calculated at the point a. Suppose 
that there exists some a* such that h(?J(t),a*) = 0 for our 

particular (fixed) t. Then we may write a first-order expansion 
around the point a*, starting from some point QO (we neglect 

time indexes for the remainder of this section); the resulting 

iteration which is obtained by neglecting the second-order term 
of the expansion is defined by 

h[QkI + Jh(Qk)[Qk+l - 4 .  

J h ( Q k ) Y  = h[%] 

At each iteration we solve for Y the linear problem 

and then define a k + l  a k  + Y. In general, also due to noise, 

we can expect h[Qk] $! Im( Jh ( a k ) ) ,  so that we will be seeking 
for Y such that Jh(ak)Y is the projection of h[ak] onto the 

range space of Jh (ak )  

Q k + l  = Q k  - LNR(k)h [Qk]  

where L N R ( ~ )  = ( J ~ ( a k ) J h ( a k ) ) - ' J ~ ( a k ) .  The map de- 
fined by the right-hand side of the above equation is contrac- 
tive as long as J h ( a k )  has full rank, in which case the scheme 
is guaranteed to converge to some (possibly local) minimum. 

At each time the scheme will converge to some a* which 
best explains the noisy measurements ylZ(t), ~ ~ ( t  - 1); hence 
we have a* = a + na, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, is an error term and can be 

interpreted as a white noise whose variance can be inferred 
from the variance of n and the linearization of the scheme 
about zero-noise. The estimate obtained at each fixed time, 
together with its variance, is fed to a time-integration step 
which we describe next. 
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Propagation Along Time: Suppose at each fixed time the 

iteration along IC described above converges to a fixed point 

The linearization of the measurement equation about the point 

(Z( t ) ,  y(t)) is 

which realizes a linear Kalman filter based upon the model 

a(t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) = a(t) + na(t) 
a*(t) = a(t) + no(t) (58) 

where n, is the noise driving the random walk model for 
the parameters, which we assume to be white, zero-mean 
and Gaussian, and no is the error made by the fixed-time 

iteration. L(t)  is the usual linear Kalman gain [40], [391. The 

above model has all the desirable properties, as it satisfies the 

conditions of the asymptotic theorem of Kalman filtering. 
Suppose now that the k-iteration has converged to a local 

minimum which is compatible with the current observations. 

At the next step the t-iteration will predict an estimate which 
is, in general, no longer compatible with the current observa- 
tions. This should help to disambiguate local minima as the 
measurements accumulate in time. 

APPENDIX B 

MEASUREMENT CONSTRAINTS 

We are interested in building an estimator for a process { a }  
which is described by a stochastic difference equation of the 
form 

EXTENDED KALMAN FILTERING FOR IMPLICIT 

a(t + 1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (a ( t ) )  + v( t ) ;  a(t0) = a0 

where ~ ( t )  E N(0, Q v )  is a white, zero-mean Gaussian noise 
with variance Qu. Suppose there is a measurable quantity x ( t )  
which is linked to Q by the constraint 

h[a(t) ,z( t ) ]  = 0 vt. (59) 

We will assume throughout f , h  E C';r 2 1. Usually I(: is 
known via some noisy measurement 

(60) 5( t )  = y ( t )  + w(t): w(t) E N(0, R,) 

where the variancekovariance matrix R, is derived from 

knowledge of the measurement device. The model we consider 
is hence of the form 

a(t + 1) = f (a( t ) )  + w ( t ) ;  a(t0) = a0 

h b ( t ) ,  Y(t)  + w(t)l = 0. (61) 

Construction of the Variational Model About the Reference 
Trajectory: Consider at each time sample t a reference trajec- 
tory Z( t )  which solves the difference equation 

E(t + 1) = f (Z( t ) )  

and the jacobian matrix 

F ( Z ( t ) )  = P( t )  = - . (;:) k ( t )  

where 

E 2  {Ita - all2, 115 - Y1l21 

and the limit implicit in 0 is intended in the mean-square 

sense. Exploiting the fact that h[a,z]  = 0, calling Sa(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 
a(t) - &(t), and neglecting the arguments in C and D,  we 

have up to second-order terms 

h[E(t) ,  y(t)] = -CSa(t) - Dw(t) .  

Prediction Step: Suppose at some time t we have available 
the best estimate &(tlt); we may write the variational model 
about the trajectory Z(t )  defined such that 

Z(t + 1) = f (Z( t ) ) ;  Z(t )  = &(tlt). 

For small displacements we may write 

6a(t + 1) = F(E(t))Sa(t)  + G ( t )  (62) 

where the noise term a(t) may include a linearization error 

component. 
Note that with such a choice, we have S&(tlt) = 0 and 

S & ( t  + llt) = F(Z(t))b&(tI t)  = 0 from which we can 
conclude 

&(t + llt) = Z(t  + 1) = f (Z ( t ) )  = !(&@It)). 

The variance of the prediction error S&( t  + llt) is 

(63) 

P(t + llt) = F( t )P( t l t )FT( t )  + Q (64) 

where Q = var(6). The last two equations represent the 
prediction step for the estimator and are equal, as expected, to 
the prediction of the explicit EKF [401, [391, [ll]. 

Update Step: At time t + 1, a new measurement becomes 
available y ( t  + 1) which is used to update the prediction 

&(t + llt) and its error variance P(t + llt). Exploiting the 
linearization of the measurement equation about E(t + 1) = 
8(t + llt), we obtain, letting & = &(t + llt) and y = y(t + 1) 

h[&, y] = -C(&, y ) S a ( t  + 1) - n(t + 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(65) 

where we have defined n(t + 1) --1 D(&,y)w(t  + 1). This, 
together with the (62), defines a linear and explicit variational 
model for which we can finally write the update equation based 
on the traditional linear Kalman filter 

S&( t  + llt + 1) = S&( t  + lit) + L(t  + l)[h[&, y] 

+ C(&,y>8&(t + lit)] (66) 
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where [I21 F. Chaumette and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Santos, “Tracking a moving object by visual 
serving,” in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. I2th IFAC World Congr., vol. 9, pp. 409414,  1993. 

1131 R. Cipolla and A. Blake, “Surface orientation and time to crash from 

image divergence and deformation,” in Proc. European Con$ Computer 
Vision, 1992. 

[14] R. Curwen, A. Blake, and A. Zisserman, “Real-time visual tracking for 
surveillance and uath ulannine.” in Proc. ECCV. 1992. 

L(t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) = -P(t + Ilt)c(&, ~ ) ~ R - l ( t  + 1) 

h(t + 1) = C(&,  y)P(t l t )C(S, Y ) ~  + &(t + 1) 

(67) 

(68) 

~ ( t  + ijt + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI) =r(t + i ) ~ ( t  + iIt)rT(t + 1) [15] F. Darmon, “A recurs;ve metcod to apply the hough transform to a set 
of moving objects,” Proc. IEEE, 1982. 

[16] W. Dayawansa, B. Ghosh, C. Martin, and X. Wang, “A necessary and + L(t + l )Rn(t + 1)L(t f (69) 
sufficient condition for the perspective observability problem,” Syst. r(t + 1) = ( I  - ~ ( t  + i)c(&, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY)). (70) Contr. Lett., 1994. 

Since S&( t  + llt) = 0 and S8(t + llt + 1) = &(t + llt + 
1) - 8(t + l lt), we may write the update equation for the 

original model 

6(t + lit + 1) 

= 8(t + Ilt) + L(t + l )h[&(t  + I l t ) , ~ ( t  + I)]. (71) 

In this formulation, the quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh[h(t + lit), y(t  + l)] plays 
the role of the pseudo-innovation. The noise n defined in (65) 

has a variance which is calculated from its definition 

&(t) = D ( 4  y)Rw(t)DT(&, Y). (72) 

The update of the variance P(t  + llt + 1) is computed from 

the standard equations of the linear Kalman filter. The implicit 
Kalman filter was used by other researchers such as Darmon 

[15], Faugeras [26], [46], [80], and Heel [36], although in 
slightly different formulations and always without a consistent 
derivation of the form of the update. 

- 
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