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Abs t rac t .  Algorithms to perform point-based motion estimation under 

orthographic and scaled orthographic projection abound in the literature. 

A key limitation of many existing algorithms is that they rely on the se- 

lection of a minimal point set to define a "local coordinate frame". This 

approach is extremely sensitive to errors and noise, and forfeits the advan- 

tages of using the full data set. Furthermore, attention is seldom paid to 

the statistical performance of the algorithms. We present a new framework 

that caters for errors and noise, and allows all available features to be used, 

without the need to select a frame explicitly. This theory is derived in the 

context of the affine camera, which generalises the orthographic, scaled 

orthographic and para-perspective models. We define the affine epipolar 

geometry for two such cameras, giving the fundamental matrix in this case 

and discussing its noise resistant computation. The two-view rigid mo- 

tion parameters (the scale factor between views, projection of the 3D axis 

of rotation and cyclotorsion angle) are then determined directly from the 
epipotar geometry. Optimal estimates are obtained over time by means of 

a linear Kaiman filter, and results are presented on real data. 

1 I n t r o d u c t i o n  

Orthographic and scaled orthographic projection are widely used in computer vi- 

sion to model the imaging process [1, 3, 5, 7, 9, 10~ 21, 22, 23]. They provide a good 

approximation to the perspective projection model when the field of view is small 

and the variation in depth of the scene along the line of sight is small compared 

to its average distance from the camera [20]. More importantly, they expose the 

ambiguities that  arise when perspective effects diminish. In such cases, it is not 

only advantageous to use these simplified models but also advisable to do so, for by 

explicitly incorporating these ambiguities into the algorithm, one avoids comput- 

ing parameters that  are inherently ill-conditioned [7]. This paper investigates the 

motion estimation problem in the context of the affine camera, which generalises 

the orthographic, scaled orthographic and para-perspective models (see [18]). 

Many existing point-based motion algorithms are of limited practical use be- 

cause the inevitable presence of noise is often ignored [10, 12], unreasonable de- 

mands are often made on prior processing (e.g. a suitable perceptual frame must 

first be selected) [10], special case motions are often assumed (e.g. no rotation 

about a fixed axis) [8, 9], and some algorithms require batch processing rather than 

the more natural  sequential processing [21]. The tool we employ to redress these 
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shortcomings is a]fine epipolar geometry. The epipolar constraint is well known 

in the stereo literature, and has also been used in motion applications under per- 

spective and projective viewing to establish motion correspondence, recover the 

translation direction and compute rigid motion [6, 12]. By contrast, affine epipolar 

geometry has seldom been used for motion estimation (though see [9, 10]). 

Section 2 defines the epipolar geometry of the anne  camera and derives its 

special fundamental matrix; no camera calibration is needed at this juncture. To 

obtain a reliable solution for these parameters, we evaluate three least squares 

algorithms based on image distances, and determine that  a 4D linear method per- 

forms best. The utilisation of all available points (rather than just a minimum set) 

not only improves the accuracy of the solution (by providing immunity to noise 

and enabling detection of outliers), but also obviates the need to select a mini- 

mal point set. Section 3 relates the affine epipolar geometry to the rigid motion 

parameters, and formalises Koenderink and van Doorn's novel motion representa- 

tion [10]. Using two views, we compute scale, cyclotorsion and the projected axis 

directly from the epipolar geometry, requiring only the aspect ratio. Our n-point  

framework subsumes the results for minimum configurations. For the multiple view 

case, we define a linear Kalman filter to determine optimal two-view estimates. 

Unlike some previous point-based structure and motion schemes (e.g. [4]), we do 

not assign an individual Kalman filter to each 3D feature; this liberates us from 

having to track individual 3D points through multiple views, so points can appear 

and disappear at will. 

2 A f f i n e  e p i p o l a r  g e o m e t r y  

2.1 Affine a n d  weak  p e r s p e c t i v e  cameras  

A camera projects a 3D world point X = (X, Y, Z) -r into a 2D image point x = 

(x, y ) T  The weak perspective (or scaled orthographic) camera has the form 

x - X -i- : M w p X  -I- twp, (1) 
L 

where Mwp is a 2 x 3 matrix whose rows are the scaled rows of a rotation matrix 

R = [Rid], and t~op = (tz,ty) T is a 2-vector (the projection of the origin of the 

world coordinate frame, X = 0). This equation is derived by approximating the 

depth Z[ of each individual point i (measured along the line of sight in the camera 

frame) by the average distance of the object from the camera, Z~w. The camera is 

"calibrated" when its intrinsic parameters are known, namely the camera aspect 

ratio ~ and focal length f .  

The affine camera has the same form as Equation (1) but has no constraints 

on the matrix elements. It is written as 

x = M X  + t, (2) 

where M is a general 2 x 3 matrix and t a general 2-vector. The affine camera 

has eight degrees of freedom and corresponds to a projective camera with its 

optical centre on the plane at infinity [14]. Consequently, all projection rays are 
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parallel, and lines that  are parallel in the world remain parallel in the image. The 

affine camera covers: (i) a 3D aj~ne transformation between world and camera 

coordinate systems; (ii) parallel projection onto the image plane; and (iii) a 2D 

affine transformation of the image. It therefore generalises the weak perspective 

model in two ways: non-rigid deformation of the object is permitted (due to the 

3D affine transformation) and calibration is unnecessary (unlike in Equation (1)). 

Consider an affine stereo pair. A 3D world point Xi is projected by an affine 

camera {M, t} to an image point xi = MXi  + t, and the scene moves according 

to X~ = AXi  + D, where X} is the new world position, A a 3 x 3 matr ix and 

D a 3-vector. This motion transformation encodes relative motion between the 

camera and the world as a 3D affine transformation (12 degrees of freedom). The 

new world point projects to 

x} = M X ~ + t = M ( A X i + D ) + t = M A X i + ( M D + t ) = M ' X i + t ' ,  (3) 

which can be interpreted as a second affine camera {M',  t '} observing the original 

scene, where { M ' , t  ~} accounts for changes in both the extrinsic and intrinsic 

camera parameters. 

2.2 T h e  a t t ine  e p i p o l a r  l ine a n d  f u n d a m e n t a l  m a t r i x  

The concept of an epipolar line is well known in the stereo and motion literature. 

For an affine camera, the epipolar lines are all parallel, since the projection rays 

are parallel and the afflne camera preserves parallelism. Thus, the epipoles lie at 

infinity in the image planes. An implicit form of the epipolar line is derived by 

eliminating the world coordinates (Xi, Yi, Zi) from Equations (2) and (3), giving 

a single equation in the image measurables: 

] ' , a x i + byi + exi  + dyl + e = 0 (4) 

This aJfine epipolar constraint equation [24] is a linear equation in the unknown 

constants a . . . e ,  which depend only on the camera and motion parameters, not 

structure. Only the ratios of a . . . e  can be computed, so Equation (4) has only 

four independent degrees of freedom. Solving this equation does not require a 

calibrated camera, since an affine camera model has been used throughout. This 

equation may also be expressed in the form of a fundamental matrix FA, [00!] 
= / I 1] 00  = 0 ,  p,-C FA p [xi Yi (5) 

c d  

where p '  = (x', y', 1) T and p = (x, y, 1) T are homogeneous image vectors. The 

matr ix FA has maximum rank two. The epipolar lines corresponding to p and p~ 

are u ~ = FAp and u = FATp I respectively, where u ---- (ul, u2, u3) -r represents the 

line ulx  + u~y + u3 = 0. The tbrm of FA in Equation (5) is a special case of the 

general 3 x 3 fundamental matrix F used in stereo and motion algorithms (e.g. [13]). 

Equation (4) can also be written as r [ n  + e = 0, where ri = (x~, y~, xi, yi) -c and 

n = (a, b, c, d) r .  Here, n is the normal to a 4D hyperplane and when r~ is noisy, 
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I r~Tn + e I / I n I is the 4D perpendicular distance from r~ to this hyperplane. For 

the following, ~" will denote the centroid of the 4-vectors {rl} and vi the centred 

points v~ = r~ - ~. Note that nz = (c, d) -c and n2 = (a, b) y are the 2D normals to 

the epipolars in I1 and /2  respectively (Figure 1). 

2.3 Solv ing  t h e  ep ipo l a r  e q u a t i o n  

Equation (4) is defined up to a scale factor, so only four point correspondences are 

needed to solve for the four independent unknowns (conditions for existence of a 

solution are discussed in [19]). When n correspondences are available (n > 4), it 

is advantageous to use all n points, since this improves the accuracy of the solu- 

tion, allows detection of (and hence provides immunity to) outliers, and obviates 

the need to select a minimal point set. The presence of "noise" (i.e. corner local- 

isation/measurement error) in the overdetermined system means that the points 

won't lie exactly on their epipolar lines (Figure 1), and an appropriate minimi- 

sation is required. The perpendicular distance D~ between x~ and its associated 

epipolar line in /2  is D.'. = ( r / n  + e ) / x / ~  + b 2 the counterpart distance in I1 is 

Di = (rTn + e ) / ~ .  

h i =  (c,d) Image 1 

O"D - -  

Epipolar line 

for x '  

yZ 

n 2 = (a,b) Image 2 

- - . . ?  D,.~ x' 
" "  - S '  Epipolar line 

- .  for x 

/ 

Fig. 1. The normals to the epipolar lines are na and n2. Noise displaces a point x ~ in I2 

from the epipolar line associated with its counterpart x by perpendicular distance D'. A 

similar displacement by D occurs in I1. 

We examine the following three minimum variance cost functions which involve 

the epipolar parameters, and differ in the image distances minimised: 

]~l(n, e) = 1 1 E ( a x ~  by i H- dyi q- e) 2 (6) 
a 2 + b  2 + c  ~Z-d 2 + ' + c z i  

i = 0  

n - 1  

1 + + + dy, + e) (7) 
E 2 ( n ,  e) - a2 + b2 

i = 0  

r t - 1  

1 E ( a x ~  + by~ + cxi + dyi + e) 2 (S) E 3 ( n , e ) =  a 2 + b 2 + c 2 + d 2  
i = 0  

All three functions minimise the sum of squares of a perpendicular distance mea- 

sure, all are scale-invariant (i.e. if {n, e} is a solution, then so is {kn, ke} where k 
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is a non-zero scalar), and all can be minimised over e directly (giving e = --nTr). 

Discussion The three abovemengioned functions all involve image distances; this 

is important since the observations are made in the image and the system noise 

originates there [7]. We assess these cost functions in terms of accuracy and com- 

plexity, and show that E3 is superior to E1 and E2 in several respects. 

Cost function E1 sums the squared perpendicular image distances over/1 and 
rt--1 

h ,  i.e. E1 = 2i=0 D~ + (D~) 2. The solution satisfies a system of non-linear 

simultaneous equations and requires non-linear minimisation. Cost function E2 

sums the squared perpendicular distances in a single image, e.g. E2 -- 2i(D~) 2 (for 

/2). The solution involves a 2D eigenvector equation. Cost function E3 sums the 

squared 4D perpendicular distances between the concatenated image points and 

the 4D fitted hyperplane, i.e. E3 = ~ ( r i -  n + e )2 / In  ]2. This is classic linear least 

squares, or orthogonal regression. The solution satisfies the eigenvector equation 

W n = A1 n, where W = ~ vi v [  and n is the unit eigenvector corresponding to 

the minimum eigenvalue ,~1. 

Faugeras et al. [13] evaluated candidate cost functions for computing the funda- 

mental matrix F of a projective camera; E1 is the anne analogue of their favoured 

non-linear criterion (using distances to epipolar lines 1) and E3 is the analogue 

of their linear criterion (using the eigenvector method). They eriticised the lin- 

ear approach for failing to impose the rank constraint on F and for introducing 

a bias into the computation by shifting the epipole towards the image centre. 

In the affine case, however, FA is guaranteed to have a maximum rank of two 

(cf. Equation (5)) and the epipole lies at infinity, removing these two objections 

against the linear method. Furthermore, although E3 may be interpreted as a 4D 

algebraic distance measure, it is equivalent to an image distance measure based 

on point-to-point (rather than point-to-line) distances. It measures the distance 

between the observed image location and the location predicted by projecting the 

computed anne structure using the computed affine cameras (cf. Equations (2) 

and (3)), that is, 

n - 1  n - 1  

E T K = E I x i - M X i - t l 2 + E ] x ~ - M ' X i - t ' I  2. (9) 
i=O i = 0  

Reid [16] showed Equation (9) to be the cost function minimised by Tomasi and 

Kanade [21]. We have shown further [19] that after differentiating ETK with re- 

spect to t, t ~ and Xi and resubstituting, E3 obtains. It is sensible to minimise ETK 
since it involves the exact number of degrees of freedom in the system, namely t, 

t ~, M, M ~ and Xi. Thus, Ea is optimal with respect to both the structure Xi and 

the camera parameters {M, t} and {M', t'}. 

It can be shown that E~ is the aNne version of the expression minimised by 

Harris [7]. This approach has several drawbacks, the most important being that 

by only minimising the noise in one image, the errors are unevenly distributed 

between [1 and/2: a set of epipolars which fits one image well, may not do likewise 

1 They also weighted each point by its inverse distance to the epipote; for the affine case, 
the epipole lies at infinity so all points are weighted equally. 
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in the other image, leading to discrepancies in the epipolar geometry [131. The E2 

method is therefore unattractive. 

Noise model  The noise characteristics of linear least squares solutions (such as 

E3) were analysed in [17]. Suppose each data point ri is perturbed by independent, 

isotropic, additive, Gaussian noise 5ri. The noise has zero mean (E{Sri} = 0) with 

variance cr 2, so E{SriSr-f}  = 5~j o-214, where 5ij is the Kronecker delta function and 

I4 the 4 x 4 identity matrix. The noise in r~ induces an error 5vi in the centred 

data point vi, which propagates through to the solution n. The eigenvalues of 

W, {)~1, �9 - -, A4}, are arranged in increasing order with corresponding eigenvectors 

{ul, u2, ua, u4}. The eigenvector corresponding to the minimum eigenvalue, ul ,  

gives the solution vector n. The covariance matrix for n is [17] 
4 

= = = . 2  ( 1 0 )  

k=2 

This matrix provides a confidence measure in the parameters of the epipolar fit. 

Furthermore, it facilitates the rejection of outliers, "rogue observations" which 

plague data analysis techniques such as linear least squares regression. Removing 

these outliers is crucial since an analysis based on the contaminated data set 

distorts the underlying parameters. This is another reason for using all available 

points, since outliers cannot be identified using minimal point sets. We employ the 

eigenvalue-based regression diagnostic of Shapiro and Brady [17]. 

Resul t s  Figure 2 shows two sequences, one with a camera moving in a static world 

and the other with an object moving relative to a stationary camera. Corner fea- 

tures were extracted and tracked over time (using the scheme in [19]), and outliers 

removed. Figure 2 shows the computed epipolar lines. The mean perpendicular 

distances between each corner and its epipolar line are 0.76 and 0.49 for the two 

sequences respectively; the epipolar lines are thus typically within pixel accuracy 

(on 256 x 256 images) and so provide effective constraints for correspondence. 

Figure 2(e) illustrates the advantage of using all available points when com- 

puting epipolar geometry. A synthetic scene with 63 points (no outliers) had its 

256 x 256 images corrupted by independent, isotropic, Gaussian noise (c~ = 0.6 

pixels). Subsets of the data comprising p points (where p varied from 4 to 63) were 

randomly selected and a fit {n, e} computed using this subset. The E1 distance 

was then calculated for the whole point set, summing the squared perpendicular 

image distances from each point to its computed epipolar line. For each value of 

p, 500 experiments were performed. The median distance and the standard devi- 

ation of the distances are shown for each value of p. Both decrease as p increases, 

showing that the use of more points leads not only to better fits but also to more 

consistent ones. 

3 R i g i d  m o t i o n :  t w o  v i e w s  

It is well-known that two distinct views of four non-coplanar, rigid points generate 

a one-parameter family of structure and motion solutions under parallel projec- 

tion [3, 9, 10]. This section shows how to compute the partial two-view motion 

solution directly from the affine epipolar geometry. 
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Fig. 2. Corner points with associated affine epipolar lines: (a)(b) The camera moves 

(every 10 th line shown); (c)(d) The object moves (every 2 nd line shown); (e) Improvement 

in the epipolar geometry as the number of points increases. The solid line shows median 
perpendicular distance between points and their epipolar lines and the dotted line shows 

the standard deviation (1r level). 

3.1 P r e v i o u s  w o r k  

Harris [7] used a weak perspective camera and the Euler angle representation to 

solve for rotation angles over two frames. The weak perspective form of E2, whose 

shortcomings were outlined in Section 2.3, was minimised and shown to be inde- 

penden t  of the turn angle out of the plane, illustrating the bas-relief ambiguity. 

No confidence estimates in the solution were provided, and only the projected 

axis was interpreted (not the cyclotorsion angle or scale). Koenderink and van 

Doom [10] solved for the scale factor and the projections of the axes of rotation 

by observing a chosen local coordinate frame comprising 4 non-coplanar world 

points. Our scheme retains the underlying principles of their approach, but uses 

all available points and obviates the need to first define an affine basis. Lee and 

Huang [1 1] independently described the same technique as that of Koenderink and 

van Doorn. 

Huang and Lee [9] assumed orthographic projection and proposed a linear al- 

gorithm to solve the equation R 2 3 A x  ' - R 1 3 A y  ' + t~32Ax -- R 3 1 A y  = 0 (a special 

case of the form given later in Equation (11)). Hu and Ahuja [8] criticised this 

approach, noting that the equation has only two independent unknowns, since 

R~3 + R~3 = R~I + R322 = 1 - R323. Our formulation has three independent un- 

knowns since we also cater for the scale factor s, making a linear solution valid. 



80 

None of the above authors [8, 9] noted that the projections of the axis of rotation 

could be found directly from R13, R23, Ral and R32. ttuang and Lee [9] deduced 

that two views yield a one-parameter family of motion (and structure) solutions, 

since R13, R23, R31 and R32 could only be recovered up to a scale factor. 

3.2 Weak  pe r spec t ive  epipolar  g e o m e t r y  

Rigidity is imposed on the world motion parameters {A, D} by requiring A to be 

a rotation matrix R. This reduces the degrees of freedom in the motion parameters 

from 12 to 6. The use of relative image coordinates (or "difference vectors") cancels 

out translation effects, where the AX notation denotes registration with respect to 

a designated reference point. 

Three rotational degrees of freedom then remain. Since solving for R requires 

the measurement Of angles (which are not affine invariants), it is necessary to 

use weak perspective cameras, M~p and M~p (cf. Equation (1)). We introduce 
C C t 

the scale factor s = Za~JZaw (S > 1 for a "looming" object) and define scaled 

depth Azi = fAZ~/Z~,  e. The aspect ratios 4 and ~ must be known in order to 

compute angles, and the ratio of focal lengths f / f t  must be known (or unity if 

unknown) in order to determine scale. No other calibration parameters are needed. 

The rigid motion, difference-vector form of the affine epipolar constraint equation 

(Equation (4)) is then 

1R 3ax'- + = 0J (11) 

This equation generalises the pure orthographic forms (s = i) derived by Huang 

and Lee [9] and used in [8]. There are only three independent degrees of freedom 

in Equation (11), since only the ratios of the coefficients may be computed; we 

show these to be the scale factor s and two rotation angles. 

There are various ways to parameterise rotation angles, the most popular being 

Euler angles and the angle-axis form. Koenderink and van Doom [10] introduced 

a novel rotation representation (which we term KvD and show in [19] to be a 

variant of Euler angles), and presented a geometric analysis of it. We formalise 

their representation algebraically to illustrate its advantages. In KvD, a rotation 

matrix R is decomposed into two parts, R = Rp R0. First, there is a rotation R0 

in the image plane through angle 0 (i.e., about the line of sight). This is followed 

by a rotation Rp through an angle p about a unit axis ~ lying in a plane parallel 

to the image plane and angled at r to the positive X axis, i.e., a pure rotation out 

of the image plane. We write ~ -- (cos r sin r 

The KvD representation has three main advantages. First, rotation about the 

optic axis provides no new information about structure, and it therefore makes 

sense to first remove this "useless" component. Second, it explicitly captures the 

depth-turn (or bas-relief) ambiguity in a way that the more popular angle-axis 

form doesn't - an advantage of Euler forms in general [7]. Third, it is elegant in 

that two views enable us to completely solve for two rotation angles (r and 0), with 

the third (p) parameterising the remaining family of solutions. This contrasts with 

the angle-axis form, for which only one angle is obtained from two views, the two 

remaining angles satisfying a non-linear constraint equation [3]. The disadvantage 

of KvD is that the physical interpretation of rotation occurring about a single 3D 

axis is lost. 
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3.3 Solving for  s, ~b a n d  0 

We now solve for the scale factor (s), the projection of the axis of rotation (r and 

the cyclotorsion angle (0) directly from the affine epipolar geometry. Substituting 

the KvD expressions for Rij into the epipolar constraint of Equation (11) gives 

sin p [cos r Ax~ + sin r zSy~ - s cos(r - 0) Axi - s sin(r - 0) Ayi] = 01 (12) 

It is evident from Equation (12) that s, 0 and r can be computed directly from 

the affine epipolar geometry, because the difference vector form of Equation (4) is 

aAx~ + bAy~ + cAxi + dAyl = O, 

and a direct comparison with Equation (12) yields 

t a n r  t a n ( r  and s 2 = ( c  2+d2)/(a 2+b2), (13) 

with s > 0 (by definition). This illustrates, for instance, that the projection of the 

axis of rotation q~ is perpendicular to the epipolar lines. (Recall from Figure 1, for 

instance, that  n2 = (a, b) T is the normal to the epipolar line in/2 . )  Equation (12) 

also shows immediately that Equation (11) has only two independent rotation 

parameters, 0 and r because the angle p cancels out (provided it is non-zero). If 

p = 0 ~ there is no rotation out of the image plane and @ is obviously undefined, 

so this technique cannot be used. Equation (12) is therefore more informative than 

Equation (11) since it identifies explicitly what quantities can be computed, and 

under what circumstances. 

E r r o r  m o d e l  a n d  K a l m a n  f i l ter  We now compute noise models for s, r and 

0, each of which is a non-linear function of n. Given the covariance matrix An 

from Equation (10), the task is to compute the means and variances of s, r and 

0. Let the true (i.e. noise-free) value of n be fi, with n = (nl, n~, n3, n4) -c. The 

noise perturbation of fi is 5n, so n = fi + 5n. The diagonal elements of An define 

the variances of 5hi while the off-diagonal elements define the covariances. The 

Taylor series for a function q(fi) expanded about n is 

4 4 4 

q(fi) = q(n - 5n) = q(n) - E 0q(n) 1 02q(n) + . . . .  

i = 1  i = l  j----1 

We ignore terms above second order, assume that 02q/Orti Onj = 02q/Onj Onl, 

and note that  E{Sn} = 0 and E{fi} = ft. The estimate of q is in general biased, 
1 4 4 O~q(n) since E{q(n)} = q ( f i ) -  B, with the bias term B = g E i = l E j = l  0n~0aj Aij. 

Expressions for the variance and covariances of q can then be derived, and these 

provide confidence regions for the two-frame motion parameters. 

Physical objects have inertia and it is sensible to exploit this temporal con- 

tinuity to improve the motion estimates. We achieve this by means of a linear 

discrete-time Kalman filter [2], a popular framework for weighting observations 

and predictions. We estimate s, r and 0, employing a constant position model 

(~ = ~b = 0 = 0). The state vector is (s, 6, 0) -r with state transition matrix 13. We 

observe s, r and r  giving the observation vector (s+Bs, r162  r162  n-, 
where Bi are the relevant bias terms. 
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R e s u l t s  Figure 3 shows a subject shaking his head. The true axis is unknown, 

but it is approximately vertical and the results are qualitatively correct. Figure 4 

shows the algorithm running on the images and corner data of Hart'is [7], where 

a car rotates on a turn-table about a known fixed axis. There is no scale change 

between views, and the fiducial axis is 10 ~ off the vertical. Figure 4(a) graphs 

the successive two-frame estimates of the projected axis angle together with the 

computed errors, which serve as the filter input. Our unfiltered solution (using E3) 

is identical to the Harris values (obtained using E2); this will always be true when 

the scale s is unity (see Shapiro et al. [18]). The error estimates correctly bound 

the true parameter values (which lie within the computed 95% error bounds). The 

filtered output is shown in Figure 4(b) with the Kalman filter's 95% confidence 

intervals. The solution is clearly smoother (and more reliable) after filtering. 

Fig. 3. A shaking head, where the true axis is roughly vertical. The computed axis is 

drawn through the image centre in both black and white to enhance contrast. 

4 C o n c l u s i o n s  

We have proposed a new framework, based on the affine camera and its epipolar 

geometry, for computing motion from point features viewed under parallel pro- 

jection. This framework accounts for the major theoretical results pertaining to 

this problem [3, 7, 9, 11, 21, 22], including partial solutions, ambiguities and de- 

generacies [18]. The affine camera enables the identification of necessary camera 

calibration parameters, and the facility to use all available points both ensures ro- 

bustness to noise and obviates the need to choose a local coordinate frame. Noise 

models provide confidence estimates in the computed parameters, and the process- 

ing of successive frame-pairs permits straightforward extension to long sequences 

in sequential mode. 
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