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Motion induced by surface-tension gradients
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Abstract. The physical mechanisms of flows generated by surface-tension gradients
are clearly defined and the relevant dimensionless parameters are derived. These
are used to indicate the qualitative nature of possible flows.
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1. Intraduction

It has been indicated in the carlier article by the author in these proccedings that
the surface-tension gradients can induce fluid flow in a rcduced gravity environ-
ment (Ostrach 1977) or modify the existing flow. Depending upon whether the
gradient is caused by gradients in temperature, composition or electric potential,
the ensuing flow is refsrred to as thermocapillary, diffusocapillary or thermo-
electric flow, respectively (Scriven 1974). The flow could be of two types (Scriven
1974) as is also the case with buoyancy driven convention. If one of the above
gradients is perpendicular to the interface, a Marangoni instability can occur,
under proper conditions, leading to cellular flows, analogous to unstable convec-
tion induced by buoyancy under normal gravity, Although the Marangoni
instability is also referred to (Sternling and Scriven 1959 ; Kenning 1968) as a
form of interface turbulence, the flow obtained is laminar. This flow, however,
can become turbulent under proper conditions (Schmidt and Milverton 1935).

Since temperature or concentration gradients can causc gradients in surface
tension as well as density, buoyancy and surface-tension driven flows can
occur simultaneously. However, the relative importance of the two mechanisms
is governed by the value of gravitational acceleration and the size of the fluid
body as is evident from the Bond number

By = pg da, 1)

where p is density, g the acceleration due to gravity, 4 a characteristic linear
dimension and o the surface tension. The surface tension becomes important in

125



126 Simon Ostrach

deciding the shape and stability of surfaces or interfaces and fluid flows in liquids
of larger configuration only in reduced gravity environment. Therefore, most
existing work on the effect of surface tension deals with motions in liquids of
smallzr configuration, such as, with flows in capillary tubes or thin films or the
motion of droplets or bubbles or short wavelength water waves. Within the
limits imposed by this restriction thzre are, nevertheless, many technclogically
important processes in which surface tension can be significant, The excellent
summaries by Kenning (1968) and Levich and Krylov (1969) outline the many
types of problems treated covering such applications as boiling heat transfer,
spreading of films such as oil and paint, wave phenomena, jet decay, and corro-
sion problems, Surface tension was also studied as a mechanism of flame
spreading (Sirignano and Glassman 1970).

The effect of surface tension on large sized fluid bodies under reduced or micro-
gravity environment is receiving researchers’ focussed attention only now. Perhaps
the most unique aspect of the reduced gravity environment in a spacecraft is that
it offers the possibility of containerless processing of materials so that contami-
nation or defects due to container reactions or interactions can be eliminated.
There arc other advantages to the containerless handling of liquids, such as, longer
stable lengths of flrating liquid zones. Liquids and molten metals with free
surfaces are inherent to all containerless processes, and their nature must be well
understood to take full advantag: of that novel processing scheme. In particular,
the shape of the bulk fluid under various conditions and its stability to changes
must be predictable. Furthermore, from equation (1) it appears that surface
tension is important under micro-gravity conditions with essentially no limita-
tions on the configuration scale, Thus, the details of the surface-tension
induced flows and the transport processes within the fluids over ranges of condi-
tions must also be known. In addition, surface and bulk constitutive proper-
ties must be known with accuracy. Unfortunately, there exists little information
of this kind for configurations and conditions that would be applicable to space
processing.

2. Dimensionless parameters

Estimates of the relation between the two flow mechanisms have been previously
obtained from the Bond number, equation (1). However, the limits of appli-
cability of the Bond number is uncertain so that a more general criterionis required,
Such a criterion (dimensionless parameter) would also be extremely valuable to
see which, if any, space-related phenomena could be simulated on earth, It is
essential to determiae the relevant dimensionless parameters that describe complex
phenomena, because they indicate the dominant physical factors, mathematical
simplifications, data correlations, and proper theoretical and experimental models.
Furthermore, the dimensionless parameters permit order cf magnitude estimates
to be made so that the qualitative features of the phenomena can be determined.,
The parameters can be obtained in several ways, but, to obtain all of the infor-
mation from them, it is best to derive them from the basic equations and boun-
dary conditions that describe the phenomena. This is done by making all
variables not only dimensionless, but also of unit order of magaitude (Ostrach
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Figure 1. Configuration.

1966). The normalization of the variables is not an automatic process, but requires
sufficient physical information or insight to choosc the preper reference quentities.
It was surprising to find from an extensive, but perhaps not complete, review of the
literature on surface-tension induced flows, that although some authors, for
example, Levich (1962), Kenning (1968) and Stanck and Szekely (1964) indicate,
or imply, a physically reasonable rcference velocity, there does not appear to be
an explicit derivation of the parameters bascd on such a reference. Furthermore
no classification of problems or analyses based on the parameters could be found.
Therefore, the derivation will be outlined herein and the results will be comparcd
to existing ones, and the implications for future work will be indicated.

For convenience only, consideration will be given to a two-dimensional rect-
angular container which is filled with a2 quasi-incompressible liquid with the
upper surface free (see figure 1). Quasi-incompressible means that the liquid
density is taken to be constant cxcept in the body force term which can then
be written as a buoyancy force. The surface-tension variation is considered to
be induced by a temperature variation, recognizing that the dcvelopment for
diftusocapillarity is similar, Therefore, the flow is assumed to be steady and
will be described by the basic equations that express the conscrvation of mass,
momentom, and energy. To normalize the variables let

x =X|L, y = Y|H, u = UlUg, v = VU (H/L),

_P _T-T.
P=rua TTT,—1, @

where capital letters denote dimensional quantitics and the lower case letters
dimensionless oncs ; also X and ¥ are the coordinatcs indicatcd in figure 1, L is
the contziner length, H is the liquid depth, T, and T, arc the hot and cold wall
temperatures, respectively, P is the fluid pressure, pis the density, and Uand V
are the velocity components. Note that with the exception of the velocity compo-
nents (and, possibly the pressure) all the variables as expressed in (2) are clearly
not only dimensionless but also of unit order of magnitude i.e., they are normalized
as well. The dimensionless basic equations obtzined by us of equation (2) are

ou
oy =0 ©
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where the Reynolds number is Re = UpLfv, the Grashof number is
Gr = pg(T, — T,) L?3/v? the aspectratio is 4 = HJ/L, and the Prandtl number is
Pr = v/a with B the fluid volumetric expansion coefficient, g the acceleration due
to gravity, v the kinematic viscosity, and a the thermal diffusivity.

An appropriate reference, Ug, must now be determined for the velocity in order
to normalize it. In every existing analysis of surface-tension flows it appears that
either the ratio /L or /L has been used as the reference velocity. The first one
implies that inertia and viscous forces are of the same order of magnitude and the
second that conduction and convection are of the same order. Neither of these
is necessarily true in many problems of interest. These ratios do, indecd, have
the dimensions of velocity but they do not normalize the velocity, The driving
mechanism for the flow is the shear stress induced at the free surfacc by the surface-
tension gradient. Therefore, for surface-tension flows the scale of the velocity
must be obtained from the balance of the tangential stresses at the frec surface.
Although this was suggested by Kenning (1968) it was not properly applied nor
ultimately used.

The tangential stress balance at the free surface can be written as

_ 90U _da _do OT
Ry = 3x = 3T 3%’ (N
where g is the absolute viscosity and a the surface tension. If Re 42<1 it can
be seen from (4) and (5) that inertia effects will be negligible and the flow will
be a viscous type. Therefore, the effects of surface tension will penetrate down-

ward into the fluid by viscosity and # is the proper length scale for ¥. Thus,
substitution of (2) into (7) yields

o _ (0a)9T)(T, = T) o
dy uUs L x
which, for both terms to be of the same order,

U, = (30'/31’) LTW - Tc) g. (8)

Equation (8) together with the inequality for this case indicates the configuration
conditions for such flows to occur viz.,

( 1/2 - 1—— (9)
< (0a/aT)(T —TyH) VR

The surface-tension Reynolds number, R,, defined here is similar to that given
in Kenning (1968) and Stanck and Szekely (1964). Levich (1962) presented
equivalent expressions to (8) and (9).
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On the other hand, if Re 42> 1 a boundary layer flow will occur and the
viscous and inertia terms must be of the same order therein. The boundary-
layer thickness, &, is the appropriate length scale for this case and it can be
found by .2 coordinate stretching to be

S/H =1/4(Re)*2. (10)

From the free-surface tangential stress balance and (10) it follows that

_(0/dT)(T,— T) & _ (30/3T)(T, — To) e
UR =T u L - U (V/URL) / H
so that
(8a/dT)* (T, — T)* \V®
Un = o ) . n

Note that both reference velocities derived, (8) and (11), are expressed in terms
of the variables that are the physically important ones for establishing such
flows.
For boundary layer flows it can be found that
H|L> 1/(R;)'2. 12)

With the reference velocities determined, the dimensionless equations are : For
the viscous case

R, A* <1 [HIL<1/(R;)"?]
Pu 32u ap

— 2 e —— 2
0=4 ax2 o T oy (13)
Lo G L
0= A5 5t tE TR T oy (14)
3r a7 RN
Ma 4% 4 5 3y> - 45 5:?2 oy (15)

where for this case the appropriate reference pressure is pUgL/H? rather than
pUg?. The left side of (62) can also be neglected unless

Pr> 1/R 4%
Por the boundary-leyer case Ry4*> 1 (HL> 1/Ry)
au c’)u J*u  d*u dp

[ 9/3 "W  O"U 0P
3 + 'U (A/Ro') axz + ay ax > (16)
v QP = 2390 0%v  Grd 2/33p

“ o + v a7y (A4/R;) 3x2 + 3y X T — (R, 4) 3y’ 17
dt Jdr _ 1 2730 3 1:']

Hoe T 0 3y Pr [(A ) axz 9 (18)

where the Marangoni number, M2 = PrR,, is a modified Pcclet number. Equiva-
lent expressions follow for diffusocapillary flows. For Prandtl numbers different
from unity, the velocity and temperature boundary layers will be unequal.

The sitvation derived above is analogous to that in natural convection. In
the latter, different reference velocitics are required for different force balances
(Ostrach 1964) and the resulting equations contein the parzmeters to various
powers.
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The influence of buoyancy for each case is determined from the coefficient of
the buoyancy term in (13). Explicitly, for viscous flows

Gr 4/R, = pfg L*/(35/0T) = B, 19

where By is a modificd Bond number. For boundary-layer flows, however, the
buoyancy term must be compared to the highest order term in its equation (the
pressure gradient) so that

Gr A5/3R,5/% = B,(4/R,)¥3. (20)

Note that buoyancy is negligible in a sufficiently reduced gravity environment.
The various options for reducing buoyancy on earth are indicatcd in (19) and (20).

With the normalization presented above no dimensionless parameters appear
in the boundary conditions. The dimensionlcss cquations utilised in the existing
analyses of surface-tension flows that are based on Uz = v/L have only Gr as a
factor of the buoyancy term and (1/Pr) as a factor of the conduction term. The
situation for diffusocapillarity with Up = ofL is similar, with the Schmidt number,
v/D replacing the Prandtl number in the factor of the diffusion term. No other
parameters appear in the basic equations. However, R, appears as a factor of
the surface-tension gradient in the free-surface tangential stress boundery condition.
For extreme values of R, the proper boundary condition could be lost. In that
formulation thc Marangoni number docs not appcar explicitly. From (4) to (6)
it should be evident that flow quaatitics are related to R, and trensported to Me.

If no terms in the equations are to be neglectcd (as in numerical solutions)
any non-dimensionalization czn be used although thcre are definite advantages
to working with unit-order variables that are obtzined by normalizetion. How-
ever, to obtain a qualitative view-of the phenomena or to simplify the equations
by ordering procedures it is essential that the equations be normalized. If this is
not done either terms will be incorrectly neglected or retained; the latter usually
unduly extends computing time at the least. With proper normalization the order
of magnitude of each term is indicated by its coefficient (dimensionless parameter)
and comparison among terms is possible. Such a procecdure enables one to
know explicitly the conditions under which the simplifications are valid. With
equations (4) to (6) in the form presented herein (which is the same as for usual
fluid problems) the qualitative nature of the flow and transport can be determined
before the equations are solved by evaluating the dimensionless paremeters for the
specific cases of interest. Noté that thermocapillary flow problems with buayzancy
arc defined by four parameters, viz.,, R,, Ma, Gr, and 4. It is interesting to note
from the definitions of (9), (19) and (20), that aside from length scales and the
imposed temperature difference the parameters arc «ll given in terms of thermo-
physical properties. Estimates of the parameters are presented in table 1 for
length scales of 10 cm, temperature differences of 50°C, and an aspect ratic of
unity.

If Ry < 1 the flow will be of a creeping aor highly viscous type and inertial effects
will be negligible. Such flows appear to be possible only with very viscous fluids
like oils and glass. If Ma < 1 also, the heat transfer will be solely due to conduc-
tion. For R, > 1 flow boundary layers can be expected. If Ma > 1 there will
also be a temperature boundary layer (of a different extent if Prs# 1). These
considerations (together with the ones concerning the configuration geometry) can
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Table 1. Parametric values for length scales of 10cm, temperature differences of
50°C and an aspect ratio of unity.

Ry Gr Ma B, =Gt/R, BiR,®
Silicone oils 10-2-10* 102-107 103-1¢8 10% 10
Glass 10— 10 102 102
Water 108 108 107 .. 10~
Liquid metals 105-108 108-102° 10%-10° e 10-2

either lead to sufficient mathecmatical simplifications so that analytical solutions
can be obtained or else they can indicate regions in which finer grids are required
for numerical solutions. From the tableitcan be seen thata large range of problems
is possible, Furthermore, buoyancy is probably not important in & normal gravi-
tational environment for the conditions corsidered fcr water and liquid metals.

The theoretical approach, outlined above, to tackle surface-tension driven
flows has been applied to study the problem of transient thermocapillary flow
in infinitely thin liquid layer with spatially varying temperature distribution
imposcd on the free surface (Pimputkar and Ostrach 1980). The layer is assumed
thin enough so that, the inertial forces are negligible. The equations of motion
arc non-dimensionalized by the scaling procedurc described above. Smeall-time
and large-time solutions are obtained with surface height as part of the solution.
One potential area of application of such work is the design of experiments and
interpretation of data where thermocapillary flows are studied.

3. Thermo and diffusocapillary forces

Relatively less study has been made of flows induced by surface tension gradients
along the frec surface than of those with the gradients normal to it (Marangoni
instability). Since the former have many interesting and complex features (like
natural convection) and are 2lso of considerable technological importance,
increased research on such problems is warranted.

To serve as a guide for future work a review of representative existing work on
this typé'of problem was presented by Ostrach (1977). 1t is pointed out therein
that even for the rather simple thin-layer configuration there are inconsistencies
in the solutions 2nd uncertainty in the interpretation of the results. Many of the
difficultics arise because of the multiplicity of relevant parameters and they could
have been avoided if the mathematical models were obtained from the normali-
zation of the complete equations rather than in an ad hoc menner.

In order to differentiate among different types of problems it is important to
note that there ere two distinct types of diffusocapillary flows. The first (analogous
to thermocapillary flows) occurs because of concentration gradients on the surface
and within the bulk of the fluid. The second type (treated in Yih 1969 and
Adler and Sowerby 1970) considers an insoluble surface layer. This leads to



132 Simon Ostrach

surface-tension gradients but there are nc buoyancy effects, This may be signi-
ficant to plan ground-based experiments. The second type cf diffusocapillary
phenomena could possibly approach the first type if there is sufficient time for
the solute to diffuse into the bulk fluid.

A number of papers (Sirignano and Glassman 1970 ; Adler 1970, 1975; Sherma
and Sirignano 1971 ; Torrance and Mahajan 1975), on problems of the general
type considered herein have been written in relation to flame spreading pheno-
mena. These are interesting because they deal with problems over different
ranges of parametric values, conditions not directly applicable to space processing.
However, thzir significance lics in the fact that some work is numerical, some
analytical, and some experimental and comparisons among them are sometimes
made. Thus, indications of physical mechanisms and checks of assumptions are
presented that give further insight into problems of this type.

It appears that relatively little experimental work has been done in these types
of problems. Decteils of onz such experiment by the present author, are described
in a later article in these proceedings.

4, Conclusion

Attention has been focusscd on flows driven by surface-tension gradients along
the free surfzce becausc they are both interesting and important. Some of the
complexities of both physics and mathematics have been indicated. A uvseful
method of d»aling with the difficulties was outlined and similarities between flows
due to buoyancy and surface-tension gradients was pointed out. The conditions
for their relative interaction were derived.
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