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Abstract. The physical mechanisms of flows generated by surface-tension gradients 
are clearly defined and the relevant dimensionless parameters are derived. These 
are used to indicate the qualitative nature of possible flows. 
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1. Introduction 

It has been indicated in the earlier article by the author in these proceedings that 
the surface-tension gradients can induce fluid flow in a reduced grv.vity environ- 
ment (Ostraeh 1977) or modify the existing flow. Depending upon whether the 
gradient is caused by gradients in temperature, composition or electric potential, 
the ensuing flow is referred to as thermocapillary, diffusoeapillary or thermo- 
electric flow, respectively (Seriven 1974). The flow could be of two types (geriven 
1974) as is also the ease with buoyancy driven convention. If  one of  the a.hove 
gradients is perpendicular to the interface, a Marangoni instability can occur, 
under proper conditions, leading to cellular flows, analogous to unstable convec- 
tion induced by buoyancy under normal gra.vity. Although the Mzrangoni 
instability is also referred to (Sternling and ~zriven t959 ; Kenning 1968) as a 
form of interface turbulence, the flow obtained is laminar. This flow, however, 
¢an become turbulent under proper conditions (gekmidt and Milverton 1935). 

Since temperature or concentration gradients can cause gradients in surface 
tension as well as density, buoyancy and surface-tension driven flows can 
occur simultaneously. However, the relative imports, nee of the two mechanisms 
is gaverned by the value of  gravitational acceleration and the size of  the fluid 
body as is evident from the Bond number 

Bo = Pg dZ/a, (1) 

w~re  p is density, g the acceleration due to gravity, d a characteristic linear 
dimension and ~ the surface tension. The surface tension becomes important in 
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deciding the ~shape and stability of surfaces or interfaces and fluid flows in liquids 
of larger configuration only in reduced gravity environment. Therefore, most 
existing worl~ on the effect of surface tension deals with motions in liquids of 
smaller configuration, such as, with floras in capillary tubes or thin films or the 
motion of droplets or bubhles or short wavelength water waves. Within the 
limits imposed hy this restriction there are, nevertheless, many technologically 
important processes in which surface tension can be significant. The excellent 
summaries hy Kenning (1968) and Levieh and Krylov (1969) outline the many 
types of problems treated covering such applications as boiling heat transfer, 
spreading of films such as oil and paint, wave phenomena, jet decay, and corro- 
sion problems. Surface tension was also studied as a mechanism of ttame 
spreading (Sirignano and Glassman 1970). 

The effect of surface tension on large sized fluid bodies under reduced or micro- 
gravity environment is receiving researchers' focussed attention only now. Perhaps 
the most unique aspect of the reduced gravity environment in a spacecraft is that 
it offers tl~ possibility of containerless processing of materials so that contami- 
nation or defects due to container reactions or interactions can be eliminated. 
There are other advantages to the eontainerless handling of liquids, such as, longer 
stahle lengtks of flgating liquid zones. Liquids and molten metals with free 
surfaces are inherent to all containerless processes, and their nature must he well 
understood to talae fuU advantage of that rtovel processing scheme. In particular, 
the shape of the hulk, fluid under various conditions and its stability to changes 
must he predictable. Fartkermare, from equation (1) it appeara that surface 
tension is important under micro-gravity conditions with essentially no limita- 
tions on the configuration scale. Thus, the details of the surface-tension 
induced flows and the transport processes within the fluids over ranges of condi- 
tions must also be l~nown. In addition, surface and bulk constitutive proper- 
ties must be l~nown with accuracy. Unfortunately, there exists little information 
of this kind for configurations and conditions that would be applicable to space 
processing. 

2. Dimensionless parameters 

Eatimates of the relation between the two flow mechaltisms have been previously 
obtained from the Bond number, equation (1). However, the limits of appli- 
cability of the Bond number is uncertain so that a more general criterion is required. 
S~eh a criterion (dimensionless parameter) would also be extremely valuable to 
see which, if any, space-related phenomena could be simulated on earth. It is 
essential to determine the relevant dimensionless parameters that describe complex 
phenomena, because they indicate the dominant physical factors, mathematical 
simplifications, data correlations, and proper theoretical and experimental models. 
Furthermore, the dimensionless parameters permit order cf magnitude estimates 
to be made so that the qualitative features of the phenomena can be determined. 
The parameters can be obtained in several ways, but, to obtain all of the iafor- 
marion from them, it is best to ~rive them from tke basic equations and boun- 
dary conditions that describe the phenomena. This is done by making all 
variables not only dimensionless, hut also of unit order of mngnitude (Ostrach 
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1966). The normalization of the variables is not an au toma tic process, bu t requires 
sufficient physical information or insight to choose the prcper reference quantities. 
It was surprising to find from an extensive, but perh~.ps not complete, review of the 
literatt~re on surface-tension induced flows, that although some authc~rs, for 
example, Levich (! 962), Kenning (1968) and Stanek and Szekely (1964) indicate, 
or imply, a physically reasonable reference velocity, there does not appear to he 
an explicit dcrivatioaa of the parameters based on such a reference. Furthermore 
no classification of problems or analyses based on the parameters could be found. 
Therefore, the derivation will be outlined herein and the results will he compared 
to existing ones, and the implications for future work will be indicated. 

For convenience only, consideration will he given to a two-dimensional rect- 
angular container which is filled with a quasi-incomprcssihle liquid with the 
upper surfaoe free (see figure t). Quasi-incompressible means that the liquid 
density is talcen to he constant except in the hody force term whieh can then 
be written as a buoyancy force. The surface-tension variation is considered to 
be indt:ced by a temperature variation, recognizing that the development for 
diflusocapillarity is similar. Therefore, the flow is e:ssumed to be steady and 
will he described hy the basic equations that express the conservation of  mass, 
momentum, and energy. To normalize the w.riables let 

x = X/L,  y = Y/H, u = U/fiR, v = V/UR (H/L),  

P T - T ~  
P - pu ' - ( 2 )  

where capital letters denote dimensional quantities and the lower case letters 
dimensionless ones ; also X. and Y are the coo.rdinatcs indicated in figure l, L is 
the container length, / t i s  the liquid ~pth ,  T~ and Tc are the hot and cold wall 
temperatures, respectively, P is the fluid pressure, p is the density, and Uand V 
are the velocity components. Note that with the excepti6n of the velocity compo- 
nents (and, possibly the pressure) all the variables as expressed in (2) are clearly 
not only dimensionless hut also of unit order of magnitude i.e., they are normalized 
as well. The dimensionless basic equations ohtzined by us of equation (2) are 

t~u b~ 
+ = 0, (3) 
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a. a,, 1 ( a' , ,  at, 
u-~  + V ~-y ~"~-'~2 k, A~ + (4) = ~ ~y2/  Ox' 

Ov Ov 1 (" O ~ v O ~ v~ Gr t Op 
u ~ + v Oy Re A ~ k, A2 + z A2 , (s) 

u ~ + V O y - p r R e ~  ~ .4 ~ +a- -~ - , ] ,  (6) 

where the Reynolds number is Re = URL/v, the Grashof numher is 
Gr = pg(T,~ - T~) L3/v ~, the aspect ratio is A = H/L, and the Prandtl number is 
Pr = v/~ with fl the fluid volumetric expansion coefficient, g the acceleration due 
to gravity, v the l~inematic viscosity, and ~ the thermal diffusivity. 

An appropriate reference, UB, must now be determined for the velocity in order 
to normalize it. In every existing allalysis of surface-tension flows it appears that 
either the ratio v]L or c~/L has been used as the reference velocity. The first one 
implies tha, t inertia and viscous forces are of the same order of magnitude and the 
second that conduction and convection are of the same order. Neither of these 
is necessarily true in many prohlems of interest. These ratios do, indeed, have 
the dimensions of velocity hut they do not normalize the velocity. The driving 
mechanism for the flow is the shear stress induced at the free surfe.ce hy the surface- 
tension gradient. Therefore, for surface-tension flows the scale of the velocity 
must he obtained from the balance of the tangential stresses at the free surface. 
Although this was suggested by Kenning (1968) it was not properly applied nor 
ultimately used. 

The tangential stress balance at the free surface can be written as 

~U ~ 0~ aT 
- P U Y  = b x  = ~ r  0 X '  (7) 

where/z is the absolute viscosity and tr the surface tension. If Re A2~ 1 i t  can 
be seen from (4) and (5) that inertia effects will be negligible and the flow will 
be a viscous type. Therefore, the eff~zts of surface tension will penetrate down- 
ward into the fluid by viscosity and h is the proper length scale for '2. Thus, 
substitution of (2) into (7) yields 

which, for both terms to be of the same order, 

U~ = (OaIOZ3 (T. - ~) H 
Z"  (S) 

Equation, (8) to~ther  with the inequality for this ease indicates the configuration 
conditions for such flows to occur viz., 

h (  lzv H)x"  l 
L < (OalOr)(r, - re) - v'-R~" (9) 

The surface-tension Reynolds number, Pc, defined here is similar to that given 
in Kenning (1968) and Stanel~ and Szel~ely (1964). Levich (1962) presented 
equivalent expressions to (8) and (9). 
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On the other hand, if Re d 2 >~ 1 a boundary layer flow will occur and the 
viscous and inertia terms must be of the same order therein. Tire houndary- 
layer thickness, 6, is the appropriate length scale for this case and it can be 
found by a coordinate stretching to be 

6 / H  = l lA  (Re) ~/':. (10) 

Prom the free-surfaee tangential stress balance and (10) it follows that 

u,, = (O~/Or) ( T ~ -  T3 a _ (O~/Or) ( r .  - T~) (vl u RLp / L  

so that 

UR "-~ ((Oa/OT)S(Tw _ Te)2 ~)1/3. (t1) 
#z L 

Note that both reference velocities derived, (8) znd (11), are expressed in terms 
of the variables that are the physically important ones for establishing such 
flows. 

For houndary layer flows it can be found that 

H[L >> 1/(R~) 112. (12) 

With the reference velocities determined, the dimensionless equations are : For 
the viscous ease 

R~A ~ < 1 [H/L < II(R~W ~1 

0 = A s O~ U 02 u Op (13) 
+ ay f -  ~gy' 

0 = A  2 02v O ~v GrA 1 Op (14) 
+ Oy ~ R----~ ~ A 2 Oy' 

( a~ O ~ ) = A ~ O 2 ~  a2~-- (15) MaA ~ u o-~ -q- v ff-~¢ + Oy 2 , 

where for this ease the appropriate reference pressure is I~UnL/H 2 r~.ther than 
pun z. The left side of (6~.) can also be neglected unless 

Pr >i 1IRMA s. 

For the boundary-layer case R,,A2>~ ! (HL>~ !/R#) 

Ou Ou ~32 u 0 2 u 01) 
raf R ' ~ 2 / a  + (16) u ~ + v ~ = ~,~l ~J Ox 2 Oy2 ,gx ' 

Ov 8 v  0 2 v 0 2 v Gr A s/a Op 
, , ~  + v -& = (A/R~)S~ ax 2 -  + ay 2 -  R ,  v - ( R , I . 4 )  ~ ) ,  (17) 

a~ a~ l V as ~ ash'] 
U-~x + v Oy Pr -(A/R~)2/a - -  = - -  Ox ~ + a y e .  j , (18) 

where the Marangoni number, Me. = PrR~, is a modified Pcclet number. Equivz= 
lent expressions follow for diffusocapillary flows. For Prandtl numbers different 
from unity, the velocity and temperature boundary layers will be unequal. 

The fituation derived above is analogous to that in nature.1 convection. In 
the latter, di~:rent reference velocities are required for different force h~.lanees 
(Ostraeh 1964)and the resulting equations contain the parameters to various 
powers. 
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The influence of huoyaney for each ease is determined from the coefficient of 
the buoyancy term in (13). Explicitly, for viscous ttows 

Or A I . ~  = pl~g L~ l (a~ la r )  -- Bo, (19) 
where J~o is a modified Bond number. Por boundary-layer flows, however, the 
huoyancy term must be compared to the highest order term in its equation (the 
pressure gradient) so that 

Gr As/31R~5/3 = no (A/Rq) ~/3. (20) 
Note that buoyancy is negligible in a suffloiently reduced gravity environment. 

The various options for reducing buoyancy on earth are indicated in (19) and (20). 
With the normalization presented above no dimensionless p~rameters appear 

in the boundary conditions. The dimensionkss equations utiliscd in the existing 
analyses of surface-tension flows that are based on UR = v/L have only Gr as a 
factor of the buoyancy term and (t/Pc) as a factor of the conduction term. The 
situation for diffusoeapillarity with U~ = all is similar, with the Sc hmidt number, 
v/D replacing the Prandtl number in the factor cf  the diffusion term. No other 
parameters appear in the basic equations. However, R~ aptle,-.rs zs a factor of 
the surface-tension gradient in the free-surface tangential stress honndary eondition. 
Pot extreme values of Re the proper houndary condition could be lost. In that 
formulation the Marangoni number does not appear explicitly. Prom (4) to (6) 
it should be evident th,.t flow quantities are related to R~, a~d trz.nsported to Me. 

If no terms in the equations are to be llegleetcd (as in numerical solution.s) 
arty non-dimensionaliz~tion can be used although there are definite advantages 
to worl~ing with unit-order variables that are obtained by normalization. How- 
ever, to obtain ~, qu~.litative view.of the phenomena or to simplify the eqnations 
hy ordering procedures it is essential that the equations be normalized. I f  this is 
not done either terms will be incorrectly neglected or retained; the le, tter usually 
unduly extends oomputing time at the least. With proper normalization the order 
of magnitude of e~.eh term is indicated by its ooeffieient (dimensionless parameter) 
and comp~.rison -~.mong terms is possible, guch a procedure enables one to 
Icrtow explicitly the conditions under which the simplifications are valid. With 
equations (4) to (6) in the form presented herein (which is the same as for usual 
fluid problems) the quality.tire n~.ture of the flow ap.d transport ee.n he determined 
hefore the eqt:ations are solved by evaluating the dimrnsionless parameters for the 
speoifie eases of interest. Note th~.t thermoeapiUary flow prohkms with buoyancy 
are defined hy four parameters, viz., R~, Me., Gr, and .4. It is interesting to note 
from the definitions of (9), (t9) and (20), that aside from length scales and the 
imposed temperature difference the parameters arc all given in terms of thermo- 
physical properties. Estimates of the parameters are presented in table 1 for 
length sc~,les of 10 era, temperature differences of 50 ° C, and an aspect ratio of 
unity. 

If R~ < 1 the flow will be of a creeping or highly viscous type and inertial effects 
will be negligible. Such flows appear to be possible only with very viscous fluids 
lihe oils and glass. If  Ma < 1 also, the heat transfer will he solely due to conduc- 
tion. For R~ > 1 flow boundary layera can be expected. If Ma > 1 there will 
also he a temperature boundary layer (of a different extent if P r #  1). These 
considerations (together with the ones concerning the configuration geometry) can 
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Table 1. Parametric values for length scales of 10cm, temperature differences of 
50°C and an aspect ratio of unity. 

Silicone oils 

Glass 

Water 

Liquid metals 

Re Gr Ma /~: = Gr/R~ ~o/R= =/~ 
r 

lO-X-lO ~ 10~-10 ~ lO~-l& s 10 ~ 10 

10 -1 10 10 ~ 10 z .. 

10 6 10 8 10 ~ .. 10 -2 

105-166 IOB-IO lo 10~-10 ~ .. tO -~ 

either lead to sufficient mathematical simplifications so that analytical solutions 
can be obtained or else they can indicate regions in which finer grids are required 
for numerical solutions. From the table itcan be seen thata large range of  problems 
is possible. Furthermore, buoyancy is probably not important in a normal gravi- 
tational environment for the conditions cor:sidered fcr water and liquid metals. 

The theoretical approach, outlined above, to tackle surface-tensiondriven 
ttows Im..s been applied to study the problem of transient thermoeapillary flow 
in infinitely thin liquid layer with spatially varying temperature distribution 
imposed on tile free surface (Pimputkar and Ostraeh 1980). The layer is assumed 
thin enough so that, the inertial forces are negligible. The equations of motion 
arc non-dimensionalizcd by the sealing procedurc described above. Small-time 
and large-time solutions are obtained with surface height as part of  the solution. 
One potential area of  application of suck work is the design of  experiments and 
interpretation of  data where thermocapillary flows are studied. 

3. T h e r m o  and d i f fusoeapi l lary  forces  

Relatively less study ~.s been made of flows induced by surface tension gradients 
along the free surface than of those with the gradients normal to it (Marangoni 
instability). Since the former have many interesting and complex features (like 
natural convect ion)and are also of  considerable technological importance, 
increased research on such problems is warranted. 

To serve as a guide for future worI~ a review of representative existing work on 
this type of prohlem was presented by Ostrach (1977). It is pointed out therein 
that even for the rather simple thin-layer configuration there are inconsistencies 
in the solutions and uncertainty in the interpretation af  the results. Many of the 
diflicu lties arise b ecau se of the mu lfiplicity of relevant parameters an d they c ou ld 
have been avoided if tM mathematical models were obtained from the normali- 
z2.tion of the complete equations rather than in an ad hoe manner. 

In order to differentiate among different types of  problems it is important ta 
note that there are two dietinet types of  diffusocapillary flows. The first (analogous 
to t~rmocapillary flows) occurs because of  concentration gradients on the surface 
and within, tke hulk of the fluid. The second type (treated in Yih 1969 and 
Adler and Sowerby 1970) considers an insoluble surface layer. This leads to  
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surface-tension gradients but there are no buoyancy effects. This may be signi- 
tieant to plan ground-based experiments. The second type cf  diffusocapill~.ry 
phenomena could possibly a.pproaeh the tirst type if  there is sufficient time for 
the solute to difft,.se into the hulk fluid. 

A number of  papers (Sirigrmno and Glass.man 1970 ; Adler 1970, 1975 ; She.rma 
and Sirigna.no 1971 ;. Torrance and Mahajan 1975), on problems of the general 
type considered herein h~.ve been written in relation to flame spreading pheno- 
mena. T~se  are interesting hecause they deal with problems over different 
ranges of parametric values, conditions not directly ~,pplieahle to space processing. 
However, their significance lies in the fact thz, t some work is numerical, some 
analytical, and some experimental and comparisons among them are sometimes 
m~.de. Thus, indications of physical meche.nisms and checks of a~sumptions are 
pre~ented th~.t give further insight into problems of this type. 

It appears that relatively little experimental work ha.s been done in these types 
of  problems. Details of one such experiment by the present e.uthor, are described 
in a later article in these proceedings. 

4. Couelusion 

Attention has been focussed on flows driven hy surface-tension gradients along 
t/so free surf~.ce because they are both interesting and important. Some of  the 
complexities of both physics and mat/r:maties have been indicated. A useful 
method of d,:aling with the difficulties was outlined and similarities between flows 
due to buoyancy and surface-tension gradients was pointed out. The conditions 
for their relative interaction were derived. 
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