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ABSTRACT

Recovering of the depth structure of a scene from monocular video

content provides an important advantage in applications such as AR

(placing and removing of objects) or 3D-TV and 3D cinema (2D-to-

3D video conversion). In this paper, we present an automatic method

to generate relative depth maps from monocular video sequences. It

relies on the dynamic occlusion depth cue to recover the depth order

of objects in the scene. The forward and backward motion analysis

between each two consecutive frames allows the calculation of their

dynamic occlusions. We estimate the motion using a modified ver-

sion of the EpicFlow. Our modifications to this optical flow method

made it coherent in forward-backward directions without compro-

mising its performance. Thanks to this new feature, occlusions are

simpler to calculate than the approaches used in the relevant litera-

ture. The obtained occlusions allow order deduction of the objects

contained in the image. These objects are obtained using a segmen-

tation approach which considers both color and motion. Ours results

show a small improvement to the quality of the optical flow while

adding the forward/backward coherence. With respect to the depth

ordering our approach obtains slightly better results than the refer-

ence method while removing a computationally costly step from the

processing.

Index Terms— relative depth map, occlusions, depth ordering,

segmentation

1. INTRODUCTION

Retrieving depth information from 2D content is possible by exploit-

ing depth cues present in 2D images, such as linear perspectives [1],

motion parallax [2], static occlusions [3] and motion occlusions.

The motion occlusion cues are reliable and present in all scenes

types and at all distances [4]. For that reason, many approaches

use them to retrieve depth ordering information. The approach pro-

posed in [5] treats the case of static scenes containing a single mov-

ing object, where the object is partially occluded by scene parts. The

case of static scenes containing multiple moving objects is treated

in [6]. Other approaches do not consider restrictions on camera mo-

tion [7, 8, 9]. The method followed in [9] has the advantage of seg-

menting the scene by jointly considering color and motion informa-

tion, but a parametric region-based optical flow has to be computed

in order to calculate motion occlusions.

In our proposed approach, the idea is to compute forward/backward

coherent optical flow in order to simplify the computation of occlu-

sions’ relations. Once calculated, the occlusions are used to gener-

ate segmentation and define the depth ordering of objects, in an ap-

proach similar to [9]. In a nutshell, the color and motion information

are used to represent the image with a hierarchical structure called

a binary partition tree [10]. After that, this binary tree is pruned

according to the occlusion relations. The pruning step results in seg-

mentation of the scene. The last step of the method consists in or-

dering regions of this segmentation according to the estimated depth

relationships. This paper is organized as follows. In section 2, we

present the proposed approach. We expose the obtained results and

discuss it in section 3, followed by a conclusion in section 4.

2. PROPOSED APPROACH

We propose to estimate relative depth order using motion occlusion

cues. The proposed approach consists of four main steps: the esti-

mation of coherent forward/backward optical flow, the computation

of occlusions based on the results of the optical flow, a partitioning

of the image using color and motion information and lastly an as-

signment of depth order to each region in the partition by exploiting

the occlusion information. Figure 1 illustrates these steps applied to

the sequence chair1 of the CMU dataset [11].

Image

t

Image

t − 1
Image

t + 1

Optical flow
(t − 1) → t

Optical flow
t → (t − 1)

Forward

and

Backward

optical

flows

Optical flow
(t + 1) → t

Optical flow
t → (t + 1)

Forward

and

Backward

optical

flows

Initial Partition

Binary parti-

tion tree BPT

Pruning/segmentation

Relative depth map

Occluded

Pixels
Disoccluded Pixels

Occlusions Calculation

Fig. 1: Proposed depth ordering estimation steps
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2.1. Forward/backward coherent optical flow

Motion fields are estimated using a modified version of the EpicFlow

method [12] because, contrary to other methods, EpicFlow explicitly

preserves the edges, which are essential for occlusion detection. The

main steps of the EpicFlow method consist in interpolating matched

points between the two images according to a geodesic distance in

order to keep the edges, followed by a step of energy minimization

to obtain the final flow estimation. The DeepMatching method [13]

allows to generate the matching, the SED method [14] is used to

compute the edges and Voronoı̈ regions are computed to approxi-

mate the geodesic distance. In this paper, we modified the original
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Fig. 2: EpicFlow and modified EpicFlow steps

EpicFlow in order to ensure the forward/backward coherence. The

idea is to jointly calculate the backward and forward optical flows

by ensuring the coherence of the used matched points and of the

calculated regions. Figure 2 illustrates these modifications.

We can observe that the DeepMatching method doesn’t provide

the same corresponding points when matching an image It with It+1

or matching It+1 with It. The first proposed modification consists in

applying the matching procedure in both directions and merging the

results into a unique set of matching points, so we have coherent en-

try points to compute both forward and backward optical flows. The

second modification changes the computation of Voronoı̈ regions.

In addition to contour information, the computation of the modified

regions uses the color information expressed in the CIELAB color

space as shown in Algorithm 1.

The distance used to calculate the regions is:

Dr(pk, p) = Dlab(pk, p) +Dcontour(pk, p)

Data: N matching points pk = (xk, yk),
I image in CIELAB color space, C contour image

Result: R Image of regions’ labels

1 begin

2 D array with same size as the image,

3 initialized to maximum value

4 k ← 1
5 while k ≤ N do

6 xstart ← xk − offset

7 xend ← xk + offset

8 ystart ← yk − offset

9 yend ← yk + offset

10 x← xstart

11 while x ≤ xend do

12 y ← ystart
13 while y ≤ yend do

14 d← Dr((x, y), (xk, yk))
15 if d < D(x, y) then

16 D(x, y)← d

17 R(x, y)← k

18 end

19 y ← y + 1

20 end

21 x← x+ 1

22 end

23 k ← k + 1

24 end

25 return R

26 end

Algorithm 1: Region calculation for optical flow estimation

where:
Dlab(pk, p) = (Il(pk)− Il(p))

2

+(Ia(pk)− Ia(p))
2

+(Ib(pk)− Ib(p))
2

Il, Ia, Ib are respectively the three color components expressed in

the CIELAB color space. And

Dcontour(pk, p) =





∑

pi∈L

C(pi)





2

L is the segment that joins pixel p to pixel pk, and C is the contour

image of I computed by the SED algorithm [14].

2.2. Occlusion Computation

We propose to estimate the occlusions between two images It and

It+1, using the forward wt→(t+1) and the backward w(t+1)→t opti-

cal flows calculated using the modified EpicFlow. Figure 3 summa-

rizes the occluding pixels detection procedure.

Let us define L = (pu, po) a set of pixel pairs, where pu ∈
It is occluded in It+1 by the pixel po. We know that an occluded

pixel does not have a corresponding pixel in the next image, so the

optical flow can’t be coherent at its position, despite the fact that

the calculated motion tries to ensure backward/forward coherence.

Then, a pixel p is potentially occluded if: p 6= pret, where:
{

pt+1 = p+wt→(t+1)(p)

pret = pt+1 +w(t+1)→t(pt+1)
(1)
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Let p1 be a pixel that respects this condition. We also know

that occluded pixels are in general near color edges. So, we use Ct,

the contour of image It, previously estimated by the SED method,

to check if p1 verifies the condition: Mt(p1) == 1. Mt(p1) is

a binary image obtained by applying the morphological image pro-

cessing operation of dilation on C∗
t using a 3 × 3 neighborhood,

with:

C
∗
t (p) =

{

1 if Ct(p) > Cth

0 otherwise
(2)

Cth is empirically fixed to 0.15. Let p2 be a pixel verifying this

condition. In order to be sure that p2 is an occluded pixel instead

of a newly exposed one, we check if its neighboring pixels, moved

by wt→(t+1), are coming close to pt+1. The considered neighboring

pixels are those in the normal direction to the contour at the position

of p2. Nn pixels are considered on each side of p2 according to that

direction. We consider the pixel occluded if at least Nt neighboring

pixels (out of Nn), coming from the same side of the contour and

moved by the forward wt→(t+1) motion, came closer to pt+1. For

this study, Nn = 10 and Nt = 8. Algorithm 2 is used to perform

this test.

Let pc be a detected occluded pixel, its occluding pixel po is

estimated as follows:

po = pc +wt→(t+1)(pc) + w(t+1)→t(pc +wt→(t+1)(pc))

2.3. Initial Partition

Segmentation at pixel level is costly in terms of computational com-

plexity. Therefore, and for simplicity reasons, we start with an initial

partition. In order to ensure that the initial partition has minimal im-

pact on the segmentation, we perform it by calculating the intersec-

tion of the superpixels calculated from both, the colour and motion

images. We used the SLIC algorithm [15] to recover the superpixels

in our study.

2.4. Segmentation and depth ordering

After the initial partition computation, the image is represented as

a binary partition tree (BPT) [10] as in [9]. The BPT is formed by

iteratively merging the most similar adjacent regions (Rg and Rd) in

Data: p2 = (i, j) potentially occluded pixel, α gradient

direction Ct en p2,wt→(t+1)

Result: occ = true if p2 is occluded; else occ = false

1 begin

2 occ← false

3 (ii, jj)← (i, j) + wt→(t+1)(i, j)
4 for s ∈ {1,−1} do

5 N ← 0
6 k ← 1
7 for k ≤ Nn do

8 ik ← round(i+ k · s · sin(α))
9 jk ← round(j + k · s · cos(α))

10 (iik, jjk)← (ik, jk) + wt→(t+1)(ik, jk)
11 dt ← dist((i, j), (ik, jk))
12 dt+1 ← dist((ii, jj), (iik, jjk))
13 if dt+1 < dt then

14 N ← N + 1
15 end

16 end

17 if N > Nt then

18 occ← true

19 end

20 end

21 return occ

22 end

Algorithm 2: Distinction between occluded and newly ex-

posed pixels

a region Ri until all regions are merged into one. We prune this BPT

following these steps: we visit the BPT in a bottom-up fashion and

decide for each region Ri if it’s better for the final segmentation to

include its two children merged or separated. A node is pruned if:

Et−1(Ri) ≤ NO and Et+1(Ri) ≤ NO

Eq(Ri) =
∑

(pc,po)∈Lq

Γ(pc, po)

where q = t ± 1, Lq is a set of occluded/occluding pixel pairs be-

tween It and It+1 as calculated in section 2.2

Γ(pc, po)=

{

1 if (pc∈Rg and po∈Rd) or (pc∈Rd and po∈Rg)

0 otherwise

NO is fixed to 30 in this work. The leafs of the pruned BPT, is

the final partition segmentation. The depth ordering is then deduced

using the resulting segmentation and occlusion information as pro-

posed by [9].

3. RESULTS AND DISCUSSIONS

Results are presented in two parts. The first part evaluates the pro-

posed optical flow estimation in section 2.1 The second part presents

the results of depth order estimation.

3.1. Optical flow estimation

We apply the modified EpicFlow on the 8 sequences of the Mid-

delbury dataset [16] for which the ground-truth flow is publicly

available. The used metrics are the End Point Error (EPE) and

the Angular Error (AE). Table 1 presents the results obtained by



NW Interpolation LA Interpolation

Modified

EpicFlow
EpicFlow

Modified

EpicFlow
EpicFlow

EPE 0.2643 0.3232 0.2829 0.3517
AE 2.9821 3.2675 3.0351 3.2665

Table 1: EpicFlow and modified EpicFlow results on publicly avail-

able ground-truth Middelbury dataset
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Fig. 4: Forward/Backward modified EpicFlow coherence

the EpicFlow [12] and modified EpicFlow, on the 8 sequences,

with the two interpolation options: Nadaraya-Watson (NW) and

locally-weighted affine (LA) used in [12]. The results of EpicFlow

were generated using the published code from its authors with the

parameters suggested for the Middlebury dataset [16]. We can ob-

serve that the modifications made to EpicFlow didn’t deteriorate

the performance and it added the Forward/Backward coherence as

illustrated by Figure 4, where we can see that only pixels near edges

are incoherent.

The precision provided by the edge preservation feature of the

modified EpicFlow algorithm allowed us to remove the costly esti-

mation of a quadratic parametric motion for each region used in [17]

to ensure that motion edges are reliable. It allowed as well to remove

a second pruning of the BPT that became unnecessary because of the

highly improved precision in the computation of the occlusions.

3.2. Depth order estimation

Two datasets were used to evaluate the proposed method: the CMU

dataset [11] and the BVSD [18]. The metric used to evaluate the

performance of the depth order estimation is the local consistence

order proposed in [17]. This metric is a generalization of the clas-

sic precision and recall metrics. This metric could be presented in

a precision/recall coordinate system, but a result is represented by a

segment instead of a point. The highest point of the segment repre-

sents the segmentation performance, and the lower one the combined

effect of the segmentation and the ordering. Figure 5 shows the ob-

tained results on the BVSD dataset. Two parameters were varied, the

size S of the superpixels on the initial partition and Nmax, the max-

imum number of regions allowed in the final partition. The black

segment represents the result obtained using the ground truth of the

segmentation as the input to the depth ordering estimation.

In [17], a global metric for the depth ordering estimation named

Over Random Index (ORI) is also proposed. A positive ORI indi-

cates that the system performs a better classification than a random

Local consistence order

Fig. 5: Local consistence order results on the BVSD dataset

classifier and an ORI = 1 indicates a perfect ordering. Our system

obtained an ORI = 0.27 on the BVSD dataset. It is comparable to

an ORI = 0.25 presented in [19] which includes the region optical

flow estimation in it’s calculation, resulting in a more complex pro-

cess. Figure 6 presents the results for four sequences on the CMU

dataset.
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Fig. 6: Results on the CMU dataset

4. CONCLUSION

In this work, we proposed a method to estimate depth ordering us-

ing motion occlusion cues. It shows that estimating a coherent for-

ward/backward optical flow that preserves edges simplifies the depth

ordering estimation while at the same time slightly improving the

performance of the algorithm.
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