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Abstract
In the present work, we investigate experimentally and numerically the motion of solid macroscopic spheres (Brownian and 
colloidal effects are negligible) when settling from rest in a quiescent fluid toward a solid wall under confined and unconfined 
configurations. Particle trajectories for spheres of two types of materials are measured using a high-speed digital camera. 
For unconfined configurations, our experimental findings are in excellent agreement with well-established analytical frame-
works, used to describe the forces acting on the sphere. Besides, the experimental values of the terminal velocity obtained 
for different confinements are also in very good agreement with previous theoretical formulations. Similar conditions are 
simulated using a resolved CFD-DEM approach. After adjusting the parameters of the numerical model, we analyze the 
particle dynamic under several confinement conditions. The simulations results are contrasted with the experimental find-
ings, obtaining a good agreement. We analyze several systems varying the radius of the bead and show the excellent agree-
ment of our results with previous analytical approaches. However, the results indicate that confined particles have a distinct 
dynamics response when approaching the wall. Consequently, their motion cannot be described by the analytical framework 
introduced for the infinite system. Indeed, the confinement strongly affects the spatial scale where the particle is affected by 
the bottom wall and, accordingly, the dimensionless results can not be collapsed in a single master curve, using the particle 
size as a characteristic length. Alternatively, we rationalize our findings using a kinematic approximation to highlight the 
relevant scale of the problem. Our outcomes suggest it is possible to determine a new spatial scale to describe the collisional 
process, depending on the specific confining conditions.
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1 Introduction

Stokes’ law establishes the fluid resistance acting on a sphere 
when moving through a viscous liquid with a low Reyn-
olds number. Its derivation assumes a fixed, rigid sphere 
immersed in a uniform velocity field with infinite dimen-
sions [1]. However, in most practical cases, there is move-
ment of both particle and fluid, and the system is bounded 
by walls [2]. These factors inevitably affect the motion of the 
sphere, inducing a wall-bounded flow around the particles 
and requiring corrections to the drag formula. In any case, 
the underlying principles of Stokes’ law have notably helped 

developing more elaborated approaches used in industrial 
applications [3].

In another limit, the rheological behavior of dense sus-
pensions under confinement is often intriguing. For instance, 
common sense suggests that inertial effects should have no 
relevance for minimal shear rates. However, several studies 
with microfluidic systems have demonstrated that a small 
inertial contribution can give rise to a variety of exciting 
effects. For instance, shear-induced migration, particle seg-
regation, and shear thickening have been experimentally 
observed [4–8]. In fact, characterizing the single-particle 
dynamics in confined conditions is paramount to defining a 
baseline for understanding dense scenarios in which many 
particles interact between them and also with the system 
boundaries. Typically, the results for the particle trajectories 
are acquired with acoustic methods, magnetic interferom-
etry, or direct optical measurements [9–14].
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In addition, particle–particle and particle–wall colli-
sions play an essential role in many processes involving 
particle suspensions. At very low Reynolds conditions, 
the movement of a single sphere settling towards a wall is 
an old but still exciting topic [15–18]. These theoretical 
frameworks accurately resolve the flow field around the 
particle, helping to predict the hydrodynamic coupling 
between the particle and the fluid. There are many results 
in the literature for the influence of the confinement on the 
dynamics of particles. For instance, the motion of spheres 
under confined configurations has been analyzed for paral-
lel planar walls [19, 20], cylindrical containers [10, 21], 
and rough walls [22]. However, a significantly lower num-
ber of studies have explored the settling of particles toward 
a wall under confined conditions. It is worth mentioning 
the efforts of studying spheres settling in pipes [10, 23], 
spheres in conical containers [24], sphero-cylindrical par-
ticles in cylindrical containers [25]. Moreover, Despey-
roux et al. investigated the settling of spheres confined in 
a cylindrical container using a non-newtonian fluid [26].

It is known that adding suspended particles to a fluid 
typically increases its viscosity. On top of this, the intrin-
sic lack of scale of particulate systems is very relevant 
when these systems are forced to pass through constric-
tions where particle clogging events can occur. So far, 
the majority of the studies have mainly centered on the 
consequences of the blockage process on the global flow-
ing properties [27, 28]. However, Agbangla et.al. [29] 
numerically analyzed the collective hydrodynamic effects 
of microparticles moving through a pore. They found 
very stable clogged structures induced by strong particle-
particle interaction and particle-wall adhesion, which pre-
vents rearrangements of particles within an aggregate and 
enhances the clog’s stability. Moreover, van de Laar at. al. 
[30] performed microfluidic real-time imaging to capture 
the influence of pore geometry and particle interactions 
on suspension clogging in constrictions. In general, it is 
accepted that the clogging (or jamming) process is mainly 
governed by the driven force acting on the particles, the 
long-range hydrodynamic interactions, and the nature of 
the particle-particle and particle-wall interactions [29–33]. 
Here, we examine experimentally and numerically the 
impact of the lateral confinement on the particle decelera-
tion process when it settles from rest in a quiescent fluid 
toward a solid flat wall.

The manuscript is organized as follows: in Sect. 1.1 we 
discuss the set of analytical models used to describe the set-
tling of spheres for different geometries. Next, we discuss 
the relevant details of our experimental setup (Sect. 2) and 
numerical model (Sect. 3). Then, we present the results and 
discussions in Sect. 4, contrasting the experimental and 
numerical data. Lastly, we summarize our findings and pre-
sent the future perspectives of the present work.

1.1  Dynamics of the particle settling 
through a viscous fluid

The present research effort is focused on the collision of a 
sphere that moves in a quiescent fluid, approaching a bottom 
wall in confined and unconfined conditions. Figure 1 depicts 
a sphere settling at a distance hz from the bottom wall, and 
confined on the x- and y-axis directions by parallel plates sepa-
rated by a distance W. Figure 1a is a 2D view and Fig. 1b is 
a 3D view. Note, that unconfined conditions corresponds to 
( W
2R

≫ 1).
In general, Newton’s law describing the translational 

motion of the sphere reads as follows:

where the added mass correction jmf  has been introduced to 
take into account the inertial force of the fluid mass around 
the particle [34]. Typically, the dimensionless coefficient 
j = 0.5 for dense spheres. Besides this, mf  is the added mass, 
g accounts for the gravity field, Fb is the buoyant force and 
Fd is the drag force. It is known that the magnitude of Fd 
is dependent on the liquid viscosity � , the particle radius R, 
and the distances from the lateral and bottom walls.

For a long time ago, it has been understood that confine-
ment increases viscous friction, reducing the settling velocity 
compared to unconfined cases. In 1923, Faxén introduced a 
theoretical framework for a sphere moving along the center-
line between parallel walls, but far from the bottom wall 
( hz → ∞ ), resulting in the following drag force:

(1)(jmf + mp)
dv

dt
= Fd + Fb + mg

(2)
Fd = −6��Rvf (s)

f (s) =
1

1 − 1.004s + 0.1475s2 − 0.131s4 − 0.0644s5

(a) (b)

Fig. 1  A sphere sedimenting towards the bottom wall at the center-
line between parallel walls a 2D and b 3D representation
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where s = d

W
 accounts for the magnitude of the confinement 

[2], and possibly allowing the introduction of an effective 
viscosity �eff = �f (s) . Faxén’s solution was later found to 
be applicable only when W ≫ d , while Ganatos et. al. intro-
duced a generalized solution, which is suitable for closer 
particle-to-wall spacing [35].

After these seminal works, a notably large number of 
works have been devoted to developing their ideas, although 
many open questions about the mechanisms of energy dis-
sipation remain unsolved. Consider, for instance, a settling 
sphere centered in a tall cylindrical pipe of diameter D. 
Under this condition Haberman and Sayre [21] provided a 
correction factor Kp for the drag force in the limit of low 
Reynolds numbers:

A thorough list of correction functions for the lateral 
confinement on the settling velocity was published by 
Arsenijević et. al. [36].

Another still open problem regarding particle-fluid 
interactions concerns the influence of surrounding fluid 
on the collision dynamics of the immersed particles. Early 
last century, Lorentz described analytically the motion of 
a particle sedimenting in a laterally unbounded fluid and 
settling towards a wall [15], and long afterwards, in 1961, 
Brenner introduced a better approach for the same system 
but requiring no assumptions concerning the distance to the 
boundaries [16]. The obtained expression for the drag force 
reads as:

where � is:

and � = cosh−1(hz∕R) is the angular component in bipolar 
coordinates. Note that in the case limhz→∞ �(hz) = 1 , Eq. 
(4) reduces to the well-known Stokes’ law [1]. Hence, the 
parameter � is interpreted as the correction factor to the 
Stokes’ drag force, considering the gap z = hz − R between 
the particle and the bottom wall.

This procedure indicates that as the sphere approaches 
the wall, it experiences a diverging drag force, which pre-
vents the surfaces from making contact with each other 
[37]. Exploring the high Reynolds limit response, a series 
of experimental and numerical efforts have been done [11, 

(3)

Fd = −3��dvKp

Kp =
1 − 0.75875(d∕D)5

1 − 2.1050(d∕D) + 2.0865(d∕D)3 − 1.7068(d∕D)5

(4)Fd = −6��Rv�(hz)

(5)
� =

4

3
sinh(�)

∞
∑

n=1

n(n + 1)

(2n − 1)(2n + 3)
[

2 sinh[(2n + 1)�] + (2n + 1) sinh(2�)

4 sinh2[(n + 0.5)�] − (2n + 1)2 sinh2(�)
− 1

]

,

37–39]. In this other limit, particles collide with the wall 
with non-zero velocity, indicating that a finite force acts on 
the sphere at all times. An exhaustive discussion of the for-
mal theoretical aspects regarding the particle fluid interac-
tion hydrodynamics and the available approximations to deal 
with it can be found in Kim & Karrila’s book [40].

It is worth mentioning that the details of the particle-wall 
collision under confinement are less theoretically explored 
[20, 41]. Brenner suggested that the combined action of lat-
eral walls and the bottom wall can be considered as a linear 
superposition of both effects [16], but to our best knowledge, 
there are no existing systematic studies devoted to this limit. 
Accordingly, we examine the dynamics of a particle settling 
in liquid towards a rigid wall in this manuscript, varying 
the confinement levels systematically. We implement an 
experimental setup to measure the influence of the confine-
ment on the particle bottom wall collisional dynamics and 
numerically simulate the analogous situation by a hybrid 
CFD-DEM approach. Importantly, the numerical protocol 
allows to quantify the dynamics of the fluid, assessing the 
stress distribution around the particle, which determines the 
energy dissipation mechanisms.

2  Experimental setup

The experiment consists of recording a solid sphere sedi-
menting motion in a fluid onto a solid wall. We use steel 
spherical beads of radius R = {0.5, 1.0, 1.5}   mm with den-
sity �p = 7.605 ± 0.005 g/cm3 , sedimenting in a silicon oil 
with kinematic viscosity � = 1000   cSt (Sigma-Aldrich™). 
We also use plastic spheres with radius R = 1.0   mm and 
density �p = 2.210 ± 0.005 g/cm3 . We assume that surface 
forces such as Van der Waals, attractive, or electrical double 
layer repulsive forces are negligible for the radius used in 
our experiments.

Figure 2 shows one of the containers used during the 
experiments. In our analysis, the container width W var-
ies systematically, thus allowing the assessment of different 
confinement conditions. In all cases, the container is filled 
to the same liquid height. Specifically, we use three different 
cells: 10 × 10 × 10 cm and 2 × 2 × 5 cm acrylic boxes and a 
1 × 1 × 5 cm quartz cuvette (Fig. 2). The optical quality of 
the used material allows for a direct recording of the par-
ticle trajectory. The spheres is released from an adjustable 
lid with an aperture in its center. For all beads, the aperture 
diameter is not larger than dh = 2.25R ; hence the off-center 
particle misalignment against the cell axis is less than the 
bead radius.

A Photron FASTCAM Mini UX100™high-speed video 
camera is used to record particle motion with a 1280 x 1024 
pixels image resolution. Images are analyzed with the Pho-
tron FASTCAM Analysis™software, extracting the location of 
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the particle center frame by frame. Depending on the field of 
view used to track the motion of the bead, the centroid detec-
tion procedure imposes spatio-temporal resolution and corre-
sponding errors. Another relevant aspect when accounting for 
errors is the defition of the reference position ( z = 0 ). In the 
literature, we find an example of the importance of measuring 
with good precision the reference position [13] to determine 
correct dynamics of the particle when z∕R << 1 . In Table 1 we 
report for each set of experimental realization the correspond-
ing resolutions, errors and reference position precision. In a 
typical particle-wall collision sequence, particle velocities v(t) 
and accelerations a(t) are computed as the temporal derivatives 
of successive coordinates. After that, results are processed 
by a simple moving average protocol in order to smooth the 
results. Despite the dispersion in the magnitudes of the calcu-
lated instantaneous particle velocities, the correlation between 
time and vertical coordinate ( hz ) is always linear when the 
particle falls down a typical distance of ten times its diameter 
after the initial contact with the free surface (Pearson’s correla-
tion factor is larger than 0.999 for all the studied situations). 
Accordingly, we will assume the fitted slope of this evolution 
as particle terminal velocity, v∗ . It is worth noting that the short 
acceleration process until reaching the limit velocity is not 
assessed ignoring an initial displacement equal to the particle 
diameter. In all cases, the experiments are repeated three times 
to guarantee the reproducibility of the results.

3  Numerical method

The numerical algorithm is an extension of the well-estab-
lished CFDEM®coupling framework [42]. This approach can 
handle the movement of spherical particles with density �p 
embedded in a Newtonian fluid with kinematic viscosity � . 
The software combines the Computational Fluid Dynamics 
(CFD) solving capabilities of OpenFOAM [43] with a Discrete 
Element Method (DEM) implementation in LIGGGHTS [42], 
which addresses the motion of each particle. Our approach 
explicitly introduces a body force term when solving the 
Navier-Stokes Equation, and applies the viscous and strain 
components of the stresses acting on the particle. This proce-
dure has been more reliable in resolving the stokesian behavior 
of a particle settling in a quiescent fluid [44–46]. Describing 
the fluid phase, the incompressible Navier-Stokes equation 
including the gravitational body force reads as:

Additionally, the continuity equation also holds:

The particles are inserted at specific locations in the continu-
ous CFD domain. Thus, the solid-particle occupation region 
Ti  is defined using a void fraction field � . At the points 
occupied by solid particles (nodes inside Ti ), the velocity 
is fixed by the particle velocity. In principle, this procedure 
implies the violation of the local mass conservation in Eq. 7. 
Note that this is equivalent to applying a body force fFDM 
on the liquid:

where Û is the new velocity field after fixing the velocities 
inside each node. As can be noticed, Û is not divergence-
free. In order to keep the validity of the continuity equa-
tion, a corrected velocity field U† = Û − �� is introduced. 
It guarantees that �⋅U† = 0 , and consequently:

(6)�f
�U

�t
+ �f (U⋅�)U = −�p + ��

2U + �f g.

(7)�⋅U = 0

(8)fFDM = �f
�

�t

(

Û − U
)

(9)�⋅Û = �
2
�.

Fig. 2  Experimental setup for the 1 × 1 × 5 cm quartz cuvette

Table 1  Spatial and temporal resolutions for each set of experimental run. The point of contact z = 0 between sphere and wall is defined by the 
last position of the center of the particle subtracted by its radius. The resolution of this point is also available in the table

Material Radius (mm) FPS (frame/s) Spatial resolution (pixel/
mm)

Position Error (mm) Precision of 
z = 0 (mm)

Steel 0.5 125 68 0.026 0.032
Steel 1.0 500 32 0.072 0.081
Steel 1.5 1000 24 0.110 0.180
Plastic 1.0 500 39 0.063 0.070
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Finally, the Navier–Stokes equation is redefined considering 
Û = U† + ��:

The technical description of the used numerical tool is in the 
literature [42]. However, no specific details about the imple-
mentation of the particle motion towards a wall is available.

The discrete element method (DEM) has the capacity to 
resolve the behavior of granular media at the particle scale 
[47]. In a typical DEM simulation, all the particles in the 
computational domain have their motion solved explicitly in 
every time step. Accordingly, the DEM is capable of simu-
lating a wide variety of systems, from dense to dilute par-
ticulate systems, as well as rapid and slow granular flow. The 
general details of the used method are presented here, and a 
full description is provided by Goniva et. al. [47].

3.1  Simulation parameters

The simulation details are adjusted to achieve a good match 
between the calculation and experimental results. We simu-
late the motion of a sphere of radius R = 1 mm in a 3D 
viscous fluid. Particle and fluid densities are �p = 7.60 g/cm3 
and �f = 0.97 g/cm3 , respectively. The fluid has kinematic 
viscosity � = 1000  cSt. As per the experimental counterpart, 
we examine a sphere initially placed at the central position 
of the simulation domain, and we left it to settle from rest in 
a quiescent fluid. We set a grid resolution equal to �x = R∕4 
and varying integration time steps �t , which was kept the 
same for the CFD and DEM. For the sake of generality, the 
time steps are always referred to as a fraction of the charac-
teristic time given by the stokesian dynamics in an 
unbounded fluid � =

2

9�
�pR

2.

4  Results and discussions

4.1  Particle–wall collision in viscous fluid: 
unbounded case

We start by summarizing the relevant velocities and dimen-
sionless numbers observed in our data. Table 2 lists the set 
of Stokes velocities ( vS ) for each particle type, their respec-
tive observed terminal velocities ( v∗ ), and their respective 
Reynolds ( Re = v∗2R

�
 ) and Stokes ( St =

1

9

Re�p

�f
 ) numbers. Note 

that the Stokes velocity and the dimensionless numbers were 
calculated using the experimental values described in 
Sect. 2. We observe that the measured terminal velocities 
( v∗ ) of the particles in all cases are below the 3% deviation 
from the Stokes velocity. It is also important to notice that 

(10)
�f
�U†

�t
+ (U⋅�)U = −

(

�p + �f
���

�t

)

+ ��
2U + �f g + fFDM

the Reynolds numbers are below 0.1 for all configurations, 
indicating creeping flow conditions for all runs. Lastly, the 
Stokes numbers indicate that no bouncing motion should be 
observed, considering the findings of Gondret et al. [11].

We proceed to describe the complete settling process 
for each particle inside the three used cells. These results 
are summarized in Fig. 3. In all cases, the data show simi-
lar trends, a long linear periods of time where the particle 
pass equal distances at equal time intervals, followed by a 
strong deceleration when approaching the wall. Note that 
no rebound is observed. The insets of all figures show the 
velocity v∗∕vS when varying the bead type and contrast the 
terminal velocity found with the expected Stokesian velocity. 
To compare the temporal evolution, we arbitrarily select the 
location hz = 3.5 cm as the initial vertical coordinate, which 
correspond to t = 0 s . At this height, the space-time curves 
are linear, providing a straightforward way of calculating the 
particle terminal velocity, corresponding to each confine-
ment, v∗ . As mentioned earlier, a cube with 10 × 10 × 10cm 
is used to mimic the infinite size limit (see Fig. 3a). In this 
particular case, the slope of the linear fit should match the 
stokesian limit, providing an excellent baseline to compare 
the effects of the lateral confinement on the asymptotic 
velocity. The inset in Fig. 3a illustrates the values of termi-
nal velocities, obtained for the four studied types of beads. 
Remarkably, our measurements reproduces stokes’ terminal 
velocity with excellent accuracy.

Nevertheless, the use of narrower cells (increasing the 
lateral confinement) implies a systematic decrease of the 
terminal velocity, as clearly depicted by the insets of Fig. 3b, 
c. In fact, it is the reflex of the influence of the lateral walls, 
which increase the drag force and, as a result, the limit 
velocity v∗ reached by the particles decreases significantly. 
We rationalize our experimental findings of v∗ using the 
expression introduced by Haberman and Sayre [see Eq. (3)]. 
They considered a spherical particle falling along the axial 
direction of a long cylindrical container, assuming the same 
cylindrical boundary conditions for both the particle and the 
container wall. In our case, the squared corners could have 
an influence on the particle, although we compare the exper-
imental results with the parameter K introduced in [21]. We 
assume that an effective radius, RW =

W
√

�
 , can be estimated 

from the container section, W2 . As is evident from the con-
tinuous line in Fig. 4, this first-order approximation allows 
us to describe the influence of square-section containers. 
Note, it resembles a symmetric drag acting on the particle 
due to a cylindrical container of radius Rw.

After examining the role of the lateral confinement on the 
asymptotic limit velocity of the particle, let us concentrate 
on the influence of the bottom wall on the particle velocity. 
Figure 5 summarizes the main features obtained experimen-
tally using a cube with 10 × 10 × 10 cm. For the sake of 
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generality, the case of two different materials (steel and plas-
tic) and various particle radii are examined. As mentioned 
earlier, the no border scenario has been handled analytically 
(see Brenner’s approximation in Sect. 1), and it will serve 
as a baseline to investigate confined cases. The results show 
that the larger the bead mass, the shorter the time necessary 
to reach the bottom. Hence, the numerical integration of 
Brenner’s approach (using a drag force given by Eq. (4)) 
provides an excellent agreement with the measured posi-
tions when setting the initial numerical conditions from the 
experimental ones.

The long-range effect induced on the particle dynamics 
by the bottom wall is more clearly evidenced in the panels 
of Fig. 5d-f), where particle velocities are displayed against 
the vertical distance z = hz − R . In all cases, velocity vari-
ations are perceptible for distances larger than ten times 
the particle radius. Moreover, the sphere reaches the wall 
with practically zero velocity, and no bouncing motion is 
observed. These panels also suggest that results can be col-
lapsed using adequate kinetic and spatial scales. Assuming 
that the theoretical Stokes’s velocity vS is the characteristic 
velocity scale in this case, Fig. 6 shows the collapse obtained 
when the dimensionless velocity is plotted against the nor-
malized gap distance z/R to the bottom-wall. The black solid 
line represents the numerical integration of Brenner’s drag 
force given by Eq. (4), considering the initial condition as 
the terminal velocity at z = 20R . Note that regardless of the 
particle size or density, the resulting behavior is compatible 
with the scaled Brenner’s approximation (see Eq. (5)), and 
Brenner’s theoretical framework fully describes the charac-
teristic motion of the particle towards the wall.

Until here, our outcomes deliver two main messages. 
Firstly, the experimental procedure can measure the particle-
wall collision with great accuracy and repeatability. Besides, 
the results obtained using a large cube reproduce the theo-
retical limit of particle-wall collisions under creeping flow 
conditions.

4.2  Particle‑wall collision in viscous fluid: confined 
conditions

Provided a reference baseline for the particle-wall collision 
process, we repeat the experiment but using narrower con-
tainers. Our aim is to clarify the impact of confinement on 
the collision dynamics.

In Fig. 7a, we show the time evolution of the velocity 
of particles settling and colliding while subjected to lateral 
confinement. The figure compares outcomes obtained for 
spheres with different radii and density but subjected to the 
same level of confinement. Specifically, two different steel 
beads with radius R = 0.5 mm and R = 1.0 mm and a plastic 
bead R = 1.0 mm are tested. In all cases, the confinement is 

(a)

(b)

(c)

Fig. 3  Experimentally observed trajectories of the settling of different 
spheres in a viscous fluid. Outcomes corresponding to different par-
ticle radius and containers are presented. Data corresponding to the 
containers a W = 10 cm , b W = 2 cm , and c W = 1 cm . The colors 
indicate: R = 1.5mm (green), R = 1.0mm (yellow), R = 0.5mm 
(black), and plastic R = 1.0mm (blue). In the insets, we observe the 
velocity v∗∕vS when varying the type of bead used. The steel spheres 
are represented by black circles and the plastic spheres by blue 
crosses
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the same with W = 20R . As can be appreciated in Fig. 7a, we 
detect a steady-state regime characterized by a well-defined 
terminal velocity v∗ , which depends strongly on the parti-
cle size and density. Similarly to the results obtained for 
W = 100R , the particle gets close to the wall, and its velocity 
diminishes practically to zero at the final stage. The cor-
responding spatial dependencies of the particle velocity are 
illustrated in Fig. 7b. For convenience, the data is rescaled 
using the particle radius R and the obtained terminal veloc-
ity v∗ , as characteristic scales, respectively. Interestingly, 
the data collapse suggests that the beads approach the wall 
experiencing the same energy loss mechanisms, regardless 
of their size and material. However, the behavior illustrated 
in Fig. 7b is not compatible with Brenner’s formulation [16], 
indicated by the red curve and the terminal velocity v∗ = vS . 
This incompatibility is observed in the full domain of the 
distance from the wall.

Table 2  Velocities and 
dimensionless numbers 
for the set of experimental 
configurations used

Material Radius (mm) v
S
 (cm/s) v

∗ (cm/s) Reynolds number Stokes Number

Steel 0.5 0.37 0.37 0.0036 0.0286
Steel 1.0 1.49 1.46 0.0293 0.2292
Steel 1.5 3.35 3.30 0.0990 0.7756
Plastic 1.0 0.247 0.245 0.0049 0.0385

Fig. 4  The additional drag force acting on the particle vS∕v∗ versus 
the relative confinement R∕RW . It shows a good agreement between 
the expression introduced by Haberman (black line) and the experi-
mental results [21]

(a) (b) (c)

(d) (e) (f)

Fig. 5  a–c Experimental velocity v as a function of time for 
R = 0.5mm , b R = 1.0mm , and plastic R = 1.0mm beads settling in 
the container with W = 10 cm . d–f The experimental velocity v as a 

function of the gap to the wall z. In all cases, the solid lines represent 
the analytical solution of Eq. (1) predicting the particle motion
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Next, our efforts focus on clarifying how different lev-
els of confinement affect the collision dynamics of the 
beads. Figure 8a illustrates the time evolution of the veloc-
ity of a sphere of R = 1.0    mm sedimenting towards a 
wall under different confinements W = [10R, 20R, 100R] . 
As mentioned earlier, the confinement significantly affects 
the limit velocity of the particle. Moreover, it also influ-
ences the collision dynamics, determining the instants of 
time when the wall effect is significant, and when impact 
occurs.

Complementarily, Fig. 8b analyzes the data but rescaled 
using the particle size R and the Stokesian settling veloc-
ity vS , as the characteristic size and velocity scales respec-
tively. For comparison, Brenner’s theoretical formulation 
[16] is also included. The collapse in the data indicates that 
at locations z < R the particles experience an energy loss 
mechanism which is compatible with Brenner’s theoreti-
cal formulation. However, a distinct behavior is identified 
beyond a particular spatial scale. Initially, the particle main-
tains a constant limit velocity v∗ which is abruptly reduced. 
Consequently, Fig. 8b shows that the data corresponding to 
W ≤ 20R is not compatible with Brenner’s formulation at 
large distances from the wall.

In general, we observed that this critical distance 
depends on the confinement strength, but it is compara-
ble with the particle size in all cases. Thus, the obtained 
trends indicate that increasing the confinement level reduces 
the typical length scale where the drag experienced by 
the particle depends on the location of the bottom wall. 
We can argue that Brenner’s approach fails in these cases 
( W ≤ 20R ), because by its construction the expansion �(hz) 
(see Eq.(5)) only imposes the particle radius R as the char-
acteristic length of the creeping particle as it decelerates to 

zero velocity, in the neighborhood of the wall. As a result, 
Brenner’s formulation predicts a smooth decreasing in 
the particle velocity from the Stokesian limit, which is at 
infinite distance from the bottom wall. As we commented 
earlier, our outcomes indicate this assumption can also be 
made in the (quasi) unbounded limit with W = 100R (see 
Fig. 6). However, even considering the boundary correction 
that accounts for the confinement effect [16], the experi-
mental data corresponding to confined conditions is not 
reproduced. In all cases, we detect a finite length where 
the bottom wall influence almost disappears. It is worth 
mentioning that equivalent results are obtained using plastic 
beads (data not shown), which confirm the validity of our 
analysis.

We speculate that this sudden evolution is related to 
changes in the transient hydrodynamic force exerted on the 
particle by the advected fluid. In Sect. 4.4, the numerical 

Fig. 6  Experimental velocity v∕vS with respect to the gap z/R for four 
different beads of different and density radius, settling in the acrylic 
cube. The black solid line represents the analytical solution of Eq. (1) 
corresponding to the particle motion

(a)

(b)

Fig. 7  a Experimental temporal evolution of the velocity v for beads 
subjected to the same confinement of W = 20R with different radii 
and materials. b Experimental velocity v∕v∗ as a function of the gap 
z/R. In all cases, the relative behavior only depends on the relative 
confinement
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approach demonstrates that the lateral confinement induces 
notable changes in the advected fluid dynamics around 
the sphere. Consequently, the proper dynamic analysis to 
describe the particle movement would require the integration 
of the momentum balance equation using the correct set of 
boundary conditions for the particle and walls. Although 
this is beyond the scope of our research, next we introduce a 
simple scaling analysis, shedding light on the relevant scale 
of this problem.

On the one hand, note that although the unbounded 
regime can be rendered dimensionless by assuming vS and 
R as typical scales, it is not valid for confined systems. 
On the other hand, Fig. 8a shows that the larger the initial 
velocity, the larger the deceleration involved in the colli-
sion due to the time necessary to reach the bottom being 
smaller. Therefore, based on simple dimensional analysis, 
we propose a typical length scale for the collision process 
as � ∼ (v∗)2∕ac , where ac accounts for the particle accelera-
tion during the collision process. In each case, we derive 
the specific values of ac and v∗ from the experimental data. 
Figure 9 shows the collapse of all the data corresponding to 
confined conditions into a single master curve when using � 
and v∗ as relevant distance and velocity scales, respectively. 
Remarkably, the analysis holds for particles of different 
sizes and materials. For comparison, Fig. 9 also includes 
the outcome obtained for the unbounded limit, denoting a 
different characteristic scale. This shows that the particle-
wall collisional scale is influenced by the level of confine-
ment, and the length scale � ∼ (v∗)2∕ac governs the strength 
of the effective interaction between the particle and bottom 
wall.

4.3  Numerical confined collisions

As first step and guided by our experimental findings, we 
assess the capabilities of the used numerical method. It also 
allows us to enrich the analysis, exploring the fluid dynamics 
involved in the drag process. Thus, we perform simulations 
to mimic the explored confinements. However, due to com-
puting limitations (running time and memory limits), the 
widest system investigated has W = 20R wide. Specifically, 
we simulate a steel particle with radius R = 1.0  mm settling 

(a) (b)

Fig. 8  a Experimental velocity v as a function of time for a R = 1 mm 
steel bead settling in three containers with different width. b Experi-
mental velocity rescaled with the Stokesian settling velocity v∕vS with 

respect to the gap z/R. The black solid line is the solution of the Eq. 
(1) considering the force given by Eq. (4)

Fig. 9  Experimental v∕v∗ vs the scale-free distance z∕� for different 
confinements and materials. Experimental results for the confined 
scenarios to steel and plastic are represented with black and blue cir-
cles, respectively
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into squared-section boxes with lateral dimension: W = 20R , 
W = 15R and W = 10R.

Figure 10a) illustrates the evolution in time of the bead 
velocity settling in the 10R × 10R × 30R box. For validation 
purposes, the figure illustrates results obtained for several 
time steps �t , and the same spatial discretization R/4. In 
addition, the corresponding experimental data (black cir-
cles) is included for comparison. As expected, the motion 
of the particle towards the wall is better resolved as the inte-
gration time step is reduced, yielding more realistic impact 
length and collision velocities. Besides, Fig. 10b portrays the 
obtained spatial evolution of the velocity v in terms of the 
limiting velocity v∗ . The outcomes indicate the used numeri-
cal tool describes the complete deceleration process with 
reasonable accuracy. However, in all cases, we obtain that 
the particle reaches the wall with non-zero velocity. This dis-
crepancy is related with both the finite discretization of the 
fluid representative volume element and the integration time 
step. Indeed, the application of lubrication theory might be 
needed to compensate for the lack of spatial resolution in the 
simulations [17, 18]. Altogether, we evaluate the capability 
of the numerical tool, varying the integration time step; and 
finding it is conditioned by a time step lower than �∕580 . In 
that conditions, the used CFD-DEM method reproduces with 
reasonable accuracy the motion of spheres moving toward a 
wall under confined conditions. The trend suggests that an 
infinitely small-time and space discretization would repro-
duce the experimental results.

After adjusting the parameters of the numerical model, 
we systematically analyze the particle dynamic changing the 
confinement conditions. Figure 11a displays the temporal 
evolution of the vertical velocity, as the particle approaches 
to the bottom-wall. For comparison, outcomes of three dif-
ferent confinements are illustrated W = [10R, 15R, 20R] . As 

(a)

(b)

Fig. 10  a Numerical velocity v vs. time t for different time steps with 
fixed confinement W = 10R . b Velocity v∕v∗ versus gap z/R for a con-
fined system with W = 10R . The particles radius is R = 1.0 mm, in all 
cases. The black circles represent the experimental values, while the 
colored ones represent the numerical results for different time steps

Fig. 11  a Numerical velocity v as a function of time for a R = 1 mm 
bead settling in three containers with different widths. b Numerical 
velocity v∕vS with respect to the gap z/R. The red solid line is the 

solution of the Eq. (1) considering the force given by Eq. (4). For 
all numerical results presented, the integration time step used was 
�t = �∕580
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expected, the limit velocity is strongly affected by the lateral 
dimensions of the box. Moreover, the confinement strength 
also affects the collision dynamics, determining the instant at 
which the wall effect is significant. However, as we pointed 
out earlier, the numerical tool fails in accurately determin-
ing the moment when impact occurs. Figure 11b shows the 
spatial dependency of the particle’s velocity. Similarly to the 
experimental analysis (see Fig. 8b) we use the particle size 
R and the Stokesian settling velocity vS as the characteristic 
scales. The outcomes are compared with Brenner’s theoreti-
cal formulation [16]. Note that in the region close to the wall 
with z < R , we obtain a collapse in the data, but it deviates 
from Brenner’s formulation. However, as in the experimental 
case, we find that the larger the confinement is, the smaller 
the typical distance where the bottom-wall drag influences 
the particle dynamics. Thus, Brenner’s creeping stationary 
solution does not capture the rapid change of the particle 
velocity from its asymptotic value.

Next, we replicate the experimental data processing, do 
a simple dimensional analysis, and propose a typical length 
scale of the collision process as � ∼ (v∗)2∕ac , where ac 
accounts for the particle acceleration and v∗ is the measured 
limit velocity. The values of ac and v∗ are directly obtained 
from the numerical tool. Remarkably, Fig. 12 illustrates the 
collapse in the data corresponding to three confined values 
W = [10R, 15R, 20R] into a master curve with � and v∗ as 
relevant distance and velocity scales respectively. Thus, the 
CFD numerical tool reproduces the result that the level of 
confinement influences the particle-wall collisional scale. 
Furthermore, the length scale � ∼ (v∗)2∕ac seems to govern 
the strength of the effective interaction between the particle 
and bottom wall. Notably, the numerical approach is capa-
ble of reproducing the main features of the bead dynamics. 

In the next section, we extract relevant information of the 
CFD results about the role played in the settling process 
by the fluid dynamics around the bead, and the fluid-wall 
interaction.

4.4  Response of the fluid phase

Numerical simulations allow us to obtain valuable informa-
tion about the motion of the fluid and the stresses it experi-
ences as the particle moves through it. Next, we illustrate the 
velocity fields ( Ux and Uz ) and pressure fields ( pk ) obtained 
in the conditions mentioned above.

Figure 13 shows the streamlines for the velocity field U 
corresponding to the systems with two confinement levels 
W = 20R and W = 10R , respectively. In both cases, the anal-
ysis focuses on the cell corresponding to the central plane, 
where the particle moves through during the settling process. 
The figure displays the velocity fields in the x − z plane, and 
the particle position. The first two panels (a) and (b) show 
the fields after the particle reaches its asymptotic velocity. A 
symmetrical pattern develops as the particle settles. Besides, 
this pattern remains while the particle is at a distance large 
enough from the bottom wall denoting steady-state condi-
tions. In the unbounded case, it is known that the streamlines 
of the disturbance velocity field typically converge above 
the particle and diverge below. Moreover, at a large distance 
from the particle, the flow lines are parallel to each other. 
However, as noticed in Fig. 13, the presence of the lateral 
walls induced almost symmetric vortical structures accom-
panying the particle displacement. This vortex enhances 
energy dissipation, and consequently, the effective drag is 
larger than the Stokesian limit expected without boundary 
conditions. Thus, the numerical results show that the devel-
opment of a well-structured vortex correlates with increasing 
the momentum transmission towards the lateral walls. As the 
particle gets closer to the bottom wall, the vortex rings are 
markedly disturbed. Systems with low confinement develop 
large vortical currents, which interact earlier with the bottom 
wall, reducing the efficiency of the momentum transmission 
to the lateral wall by increasing the stress transmission to 
the bottom wall. The panels in the second row (c) and (d) of 
Fig. 13 show the ring structure at z∕R = 5 . The system with 
W = 20R has already perturbed streamlines, while for the 
case W = 10R , it is still invariant despite the presence of the 
bottom wall at the same distance.

In both cases, the graphs also show that the outward 
motion of the fluid with respect to the particle vanishes as 
the sphere approaches the bottom wall. Nevertheless, the 
region perturbed by the vortex deformation is larger as the 
confinement is small, but in a larger confinement situation 
the displaced liquid and its influence is strongly restricted 
to the surrounding of the particle. Hence, in less confined 
systems, the intensity of the bottom-wall dissipation is 

Fig. 12  Numerical data for v∕v∗ vs the scale-free distance z∕� for dif-
ferent confinements. For all numerical results presented, the integra-
tion time step used was �t = �∕580
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restricted to a region not larger than the particle size, while 
in the more confined system, the opposite is true.

In order to further analyze the liquid fields, we imple-
ment the spatio-temporal diagrams showed in Fig. 14. These 
diagrams provide an insight into the temporal evolution 
of the horizontal profiles Ux and Uz . In the diagrams, the 
temporal evolution has been replaced by its correspond-
ing vertical coordinate to compare to the previous results 
directly. Thus, it is easy to distinguish this case as the fluid 
vertical velocity rapidly decreases beyond the particle limit 
and eventually inverts its direction (see Fig. 14a), until the 
magnitude becomes zero near the lateral wall. The strength 
of the energy dissipation will be associated with the spatial 
gradient of Uz , which becomes more relevant as the confine-
ment is increased. However, this mechanism seems not to 
be strongly affected by the bottom wall until h < d as can be 
concluded from Fig. 14b where Uz profile is normalized with 
respect to the corresponding particle velocity.

The temporal evolution of the horizontal velocity gives 
us more relevant information. In this case, we consider the 
Ux profile located at a distance z (the lower extreme of the 
bead). Contrary to the former situation, this profile changes 
when the particle reaches a vertical distance similar to the 
particle size. Note that the magnitude of the spatio-temporal 
evolution (normalized with respect to the corresponding ver-
tical velocity) indicates that the peak of the horizontal veloc-
ity becomes almost equal to one, i. e, the dissipation at the 
collision is controlled by the wall boundary layer dissipation 
instead of the vortical circulation.

Additionally, we assess the spatial stress profile acting on 
the fluid, evaluating the kinetic pressure field pk . Figure 15 
illustrates the pk fields corresponding to same representa-
tive configurations of particle displacements. The first two 
panels (a) and (b) show the pk spatial profiles obtained when 
the particle reaches its terminal velocity at ( z∕R = 15 ) and 
at z∕R = 5 . Both situations are comparable with each other, 
with almost symmetric isobaric profiles. Moreover, at the 
depth where Ux starts to grow, the profiles become asym-
metric, and the bottom wall influence is evident. A pressure 
gradient from the bottom wall towards the particle starts 
developing at this stage, indicating the characteristic dis-
tance at which the bottom wall begins affecting the particle 
motion.

The over-pressure generated by the bottom wall causes 
the fluid horizontal velocity responsible for the energy dissi-
pation at the final stages of the collision. Remarkably, at that 
stage, the pressure gap between the particle and the bottom 
wall is one order of magnitude larger than the values when 
the sphere was far from the wall. During the deceleration 
process, the numerical method is capable of approximately 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 13  Streamlines for the velocities fields for the systems with 
W = 20R and W = 10R , respectively. Both simulations were per-
formed with a fixed integration time step �t = �∕580 . The four 
frames shown represent a, b The moment when the particles reach 
their terminal velocities. c–f The moment when symmetry breaks and 
the total drag acting on the particle is now impacted by the presence 
of the bottom wall, for systems with W = 20R and W = 10R , respec-
tively, g, h the instant before the collision when the lateral circulation 
occurs in a reduced region with smaller intensity
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resolving the motion of the particle according to the experi-
mental results (refer to Fig.  10). However, the particle 
reaches the bottom wall with a non-zero velocity, indicating 
that it does not fully reproduce the typical drag force acting 
on the particle. These outcomes seem to indicate that the 
pressure values represented in the last two panels in Fig. 15 
are underestimated when compared to the expected in the 
experimental scenario.

The results discussed in the present section reveal four 
features of the dynamics inside the simulated domain. 
Firstly, a vortex ring circulation occurs, driven by a pressure 
gradient caused by the sphere movement and the presence of 
the lateral walls. Secondly, a pressure gradient develops from 
the bottom wall and particle when the particle approaches 

the wall. This gradient increases when the gap distance 
decreases and the particle experiences a more significant 
drag force. Thirdly, the degree of confinement determines 
the upstream flow in the lateral walls, implying that more 
kinetic energy is present in the region between the surface of 
the particle and the wall for highly confined particles. Lastly, 
the outward motion of the fluid with respect to the particle 
grows when the sphere approaches the bottom surface, this 
effect is not captured by the vortex dynamics (see Fig. 13) 
as evidently observed from Fig. 14c).

Summarizing: we examine experimentally and numeri-
cally the behavior of solid macroscopic spheres when set-
tling from rest in a fluid toward a solid wall under confined 
and unconfined situations. The experiments are done using 
particles of two different materials and several sizes. The 
particle trajectories are accurately measured using a high-
speed digital camera. Interestingly, the particle deceleration 
is typically observed at distances larger than ten diameters 
of the particle from the wall, regardless of the confine-
ment imposed. Although all the explored scenarios lead 
to collisions with zero velocity, a noticeable difference is 
reported in how the deceleration occurs. For unconfined 
configurations, our findings are in excellent agreement with 
well-established analytical frameworks, used to describe 
the forces acting on the sphere. Besides, the experimental 
values of the terminal velocity obtained for different con-
finements are also in very good agreement with previous 
theoretical formulations. Similar conditions are simulated 
using a resolved CFD-DEM approach. After adjusting the 
parameters of the numerical model, we analyze the particle 
dynamic under several confinement conditions. The simula-
tions results are contrasted with the experimental findings, 
obtained a reasonable agreement.

Fig. 14  Spatio-temporal diagrams of the velocity fields a Uz and c Ux 
for a system with width W = 10R as the sphere moves towards the 
bottom wall. The contour lines of a are represented in (b). The slice 

taken of the z-axis is considered to represent the general patterns 
found around the particle and we can represent its changes over time. 
The integration time step used was �t = �∕580

Fig. 15  Kinetic pressure ( pk ) for the systems with W = 10R . a The 
instant when the particle reaches its terminal velocity. b The moment 
when the influence of bottom wall starts to impact the motion of the 
particle. c The moment when the spheres reaches hz = 2R . d repre-
sents a close-up look around the sphere for the frame in (c). The inte-
gration time step used was �t = �∕580
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We analyze large systems varying the radius of the 
bead and show the excellent agreement of our results 
with the analytical solution provided by Brenner. How-
ever, the results indicate that confined particles have dif-
ferent dynamics responses as they approach the bottom 
wall, and their motion cannot be described by the analyti-
cal solution introduced for the infinite system. Indeed, 
the confinement strongly affects the spatial scale where 
the particle is affected by the bottom-wall and, accord-
ingly, the dimensionless results can not be collapsed in 
a single master curve using the particle radius as the 
typical scale. Alternatively, we rationalized our findings 
using a simple dynamical approximation, explaining a 
particle’s deceleration process while approaching a flat 
wall. Accordingly, a confinement-dependent spatial scale 
allows us the collapse of the data (see Fig. 9), revealing 
the typical distance at which the bottom wall influences 
the particle displacement under confinement conditions. 
Furthermore, we expect that this scaling analysis will 
also be valid to describe bead-to-bead collisions. Hence, 
the clogging probabilities described in a series of recent 
papers that study the passage of particles through con-
strictions could be affected by confinement level as the 
relative particle velocity is notably affected by the con-
finement [48].

Finally, the numerical simulations also allow us to obtain 
valuable information about the motion of the fluid and the 
stresses it experiences as the particle moves through it. The 
evolution of the fields indicate the apparition of vortex ring 
circulations, which are caused by the sphere movement and 
the presence of the lateral walls. As a result, a pressure gra-
dient develops from the bottom wall, increasing when the 
gap distance decreases. These outcomes strongly suggest 
that the degree of confinement determines the upstream flow 
in the lateral walls, implying that more kinetic energy is 
present in the region between the surface of the particle and 
the wall for highly confined particles.
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